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ABSTRACT In recent years, machine learning-based intrusion detection systems (IDSs) have proven to

be effective; especially, deep neural networks improve the detection rates of intrusion detection models.

However, as models become more and more complex, people can hardly get the explanations behind their

decisions. At the same time, most of the works about model interpretation focuses on other fields like

computer vision, natural language processing, and biology. This leads to the fact that in practical use,

cybersecurity experts can hardly optimize their decisions according to the judgments of the model. To

solve these issues, a framework is proposed in this paper to give an explanation for IDSs. This framework

uses SHapley Additive exPlanations (SHAP), and combines local and global explanations to improve the

interpretation of IDSs. The local explanations give the reasons why the model makes certain decisions on

the specific input. The global explanations give the important features extracted from IDSs, present the

relationships between the feature values and different types of attacks. At the same time, the interpretations

between two different classifiers, one-vs-all classifier and multiclass classifier, are compared. NSL-KDD

dataset is used to test the feasibility of the framework. The framework proposed in this paper leads to

improve the transparency of any IDS, and helps the cybersecurity staff have a better understanding of IDSs’

judgments. Furthermore, the different interpretations between different kinds of classifiers can also help

security experts better design the structures of the IDSs.More importantly, this work is unique in the intrusion

detection field, presenting the first use of the SHAP method to give explanations for IDSs.

INDEX TERMS Intrusion detection system, Shapley value, SHapley Additive exPlanations, model inter-

pretation, machine learning.

I. INTRODUCTION

With the enormous growth of cyber networks’ usage and the

vast applications running on it, network security is becoming

increasingly important. To be specific, the cloud computing,

5G communication, and Internet of things (IoT) ushered in a

vigorous development [1]–[3]. It is estimated that there will

be a trillion physical devices connected to the Internet until

2022 [4]. However, these new technological developments

have raised some security and privacy concerns. For example,

Internet equipment with wide distribution and openness are

ideal targets for cyber attacks. Moreover, as many Internet

equipments are collecting and processing private informa-

tion, they are becoming a goldmine of data for malicious
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attackers [5]. Therefore, intrusion detection systems (IDSs)

have become essential tools in computer networks to provide

a more secure network environment. The objective of an IDS

is to detect misuse, unauthorized use, and abuse in the host’s

network [6], [7].

Over the last few years, many IDSs using different

approaches have been proposed, developed, and evaluated.

Some systems use shallow methods to detect intrusions.

The classification algorithms like Decision tree [8]–[10],

SVM [11]–[13], K-Nearest Neighbors [14], Bayes Classi-

fier [15], etc., have been used for intrusion detection tasks.

Some other systems utilize feature selection or ensemble

approaches of classifiers to build intrusion detection mod-

els [16]–[18]. In recent years, more and more IDSs have

started to use deep learning methods, such as deep neu-

ral network (DNN) [19], convolutional neural networks
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(CNNs) [20], recurrent neural network (RNN) [21], [22],

variational autoencoder (VAE) [23]–[25], etc. Most of these

methods exhibit excellent detection accuracy and low false

positive rate on the detection of attacks [26].

However, there are still some problems, especially with the

transparency of the systems, in the field of intrusion detection.

Cybersecurity experts now usually make decisions based on

the recommendations of an IDS; therefore, the predictions of

the model should be understandable. Consequently, despite

the impressive accuracies achieved by the aforementioned

models, their increasing complexities are major drawbacks

when humans are involved, as these models can not provide

any information about the reasons behind their decisions,

especially since DNNs are still used as black boxes. There-

fore, it is imperative to provide some information about the

reasons behind IDSs predictions, and provide cybersecurity

personnel with some explanations about the detected intru-

sions. There are a small amount of works [27]–[29] to give

the explanations to the results made by IDSs currently, but

most of these works do not have an excellent theoretical

foundation.

For the sake of solving these disadvantages and giving a

better explanation to IDSs, a framework based on SHapley

Additive exPlanations (SHAP) [30] is proposed in this paper.

The SHAP has a solid theoretical foundation, and can be

used for any model, whether it is a shallow model or a deep

learning model. So this framework can give interpretations

to any IDS. This framework provides local and global expla-

nations which can improve the interpretability of any IDS.

Local explanations used in this framework can give the details

that each feature value that either increases or decreases

the predicted probabilities. There are two kinds of global

explanations in this framework. The first is to extract impor-

tant features from any IDS, and the second can explore the

relationships between the values of features and specific types

of attacks. NSL-KDD dataset [31] is used to demonstrate the

feasibility of the framework that is designed in this thesis.

The major contributions of this paper are as follows:

• We propose a framework that gives local and global

explanations to any IDS. This framework contributes to

a deeper understanding of the predictions made from

IDSs, and ultimately help build cyber users’ trust in the

IDSs. At the same time, this framework also helps cyber-

security experts better understand the cyber attacks, such

as knowing the typical characteristics of the specific

attacks.

• This work is unique in the IDS field, as it presents

the first application of SHAP method to improve the

transparency of IDSs. Compared with other methods,

SHAP has a better theoretical foundation.

• We explore the differences in interpretation between

the one-vs-all classifier and the multiclass classifier.

By comparing the interpretation of the same attacks by

two types of classifiers, security experts can optimize the

structures of the IDSs. Then the optimized structure can

increase the human operators’ trust in IDSs.

The rest of the paper is organized as follows. Section II

describes the related works. The background in this exper-

iment is introduced in section III, including Local inter-

pretable model-agnostic explanations (LIME) [32], Shapley

value [33], and SHAP [30]. Section IV proposes the frame-

work that is used to improve the interpretability of any IDS

and shows the details of how it works. Section V presents

the experiments carried out using the NSL-KDD dataset and

shows the detailed results. Finally, section VI concludes the

paper and discusses the future direction.

II. RELATED WORK

Although there are some works related to SHAP in other

areas, there are no previous reported works that use SHAP

in IDSs. Not only the SHAP method, but also other meth-

ods of model interpretation are rarely used in the field of

intrusion detection. The works in [34]–[36] just focuses on

the model explanations for computer vision, and the works

in [37], [38] use LIME to give the explanations in the fields of

natural language processing and acoustic analysis. The works

in [39], [40] use SHAP to improve the transparency of the

models in the field of biology. Most of these works do not

directly design or use for IDSs.

In the recent past, deep learning methods have shown

state-of-the-art performances in a multitude of fields, such

as computer vision and natural language processing. As a

result, deep learning models have been widely used in the

field of intrusion detection. A deep neural network (DNN)

with four hidden layers and 100 hidden units with the ReLU

function was employed for the intrusion detection model

in [19]. Vinayakumar et al. used CNNs [20] to build an

IDS, and they evaluated effectiveness of various shallow

and deep networks in IDSs [41]. Meanwhile, Yin et al. used

LSTMs [22] as the deep learning approach for intrusion

detection. Papamartzivanos et al. used a self-taught learn-

ing method to deliver a self-adaptive IDS [42]. Further-

more, Yang et al. proposed a new intrusion detection model

that combined an improved conditional variational AutoEn-

coder (ICVAE) with a DNN [24] to enhance detection rates.

Despite the more accurate predictions, the intrusion detection

models are becoming more and more complex. This leads to

the predictions from these models become more difficult to

understand.

In order to overcome this limitation, some works for

interpreting the intrusion detection model have emerged.

Amareasinghe and Manic [27] used a method named

Layer-wise Relevance Propagation (LRP) [43] to calcu-

late input feature contributions and generated online and

offline feedback for users to help them understand what

features drove the predictions in IDSs. Marino et al. [28]

used an adversarial approach to generate explanations

for incorrect classifications made by IDSs. Li et al. [29]

used ‘‘Local Explanation Method using Nonlinear Approx-

imation’’ (LEMNA) [44] to explain the output of an

anomaly-based IDS. However, the methods used in the above

works lack a solid theoretical foundation. In this paper,
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SHAP, having a solid theoretical foundation in game theory,

is used to improve the interpretability of the IDS. Specifically,

a framework proposed in this paper uses SHAP to give local

and global interpretability. At the same time, the differences

in explanations between the one-vs-all classifier and the mul-

ticlass classifier are also discussed.

III. BACKGROUND

Model interpretability can be divided into two categories:

global interpretability and local interpretability [45]. Global

interpretability means the users can understand the model

directly from its overall structure. Local interpretability just

exams an input, and it tries to find out why the model makes a

certain decision. In this paper, SHAP [30] is used to increase

the interpretability of the intrusion detection systems. SHAP

is a method that can do local and global interpretability at the

same time, and it has a solid theoretical foundation compared

to other methods. SHAP connects LIME [32] and Shapley

Values [33]. Therefore, LIME and Shapely value are firstly

introduced in this section. Then, a brief analysis of SHAP is

included.

A. LOCAL INTERPRETABLE MODEL-AGNOSTIC

EXPLANATIONS (LIME)

LIME, proposed in [32], is a concrete implementation of

local surrogate models. In this paper, the authors trained

surrogate models to approximate the predictions of the black

box models, which are needed to give explanations. Instead

of training a global surrogate model, LIME just focuses on

training the local surrogate model to interpret the individual

predictions.

The idea behind LIME is quite intuitive. It generates a new

dataset consisting of permuted samples, and the correspond-

ing predictions of the black box model are also computed.

LIME then trains an interpretable model on this new dataset.

The interpretable models can be any understandable models,

like linear regression, logistic regression, and decision tree.

And the local surrogate model should be a good approxima-

tion of the black box model predictions locally. The local

surrogate model can be calculated in the following way.

ξ (x) = argmin
g∈G

{

L
(

f , g,wx
)

+ �(g)
}

, (1)

where:
• g represents the explanation model for the instance x,

(e.g., linear regression).

• G is the family of possible explanations. For example,

all possible linear regression models.

• L is the loss function (e.g., mean squared error), which

is used to measure how close the predictions from the

explanation model are to the original model.

• f represents the original model.

• wx defines the weight between the sampled data and the

original data. If the sampled data is similar to the original

data, the weight is greater, and vice versa.

• �(g) represents the complexity of model g.

According to (1), LIME wants to train a local, inter-

pretable surrogate model g on the new dataset by minimizing

L (f , g,wx) + �(g), and then explain the prediction of an

instance x by interpreting the local model ξ (x).

B. SHAPLEY VALUE

The Shapley value, introduced by Shapley in [33], is a tech-

nique used in game theory to determine how much each

player in a collaborative game has contributed to the success.

This method can be used to interpret the machine learning

predictions. The Shapley value is the average contribution of

a feature value to the prediction in all possible coalitions:

φi(f , x
′) =

∑

z′⊆{x ′
1,...,x

′
n}\{x

′
i }

∣

∣z′
∣

∣!
(

M −
∣

∣z′
∣

∣ − 1
)

!

M !

∗
[

f
(

z′ ∪ x ′
i

)

− f
(

z′
)]

, (2)

where:
• z′ is a subset of the features used in the model.

• x ′ is the vector of feature values of the instance to be

explained. The x ′
i is explained in (2).

• M is the number of features.

• f
(

z′
)

is the prediction for feature values in set z′. When

calculating f (z′), the ith feature is masked out and then

simulated by drawing random instances or the random

values of the ith feature from the dataset.
The Shapley value is the only method which satisfies three

properties: Symmetry, Dummy, and Additivity. These three

properties can be considered for a definition of a fair payout.

Symmetry: The contributions of two feature values i and j

should be the same if they contribute equally to all possible

coalitions. If

f
(

z′ ∪ x ′
i

)

= f
(

z′ ∪ x ′
j

)

,

for all z′ ⊆ {x ′
1, . . . , x

′
n}\{x

′
i , x

′
j}, (3)

then φi(f , x) = φj(f , x).

Dummy: If a feature i does not change the predicted value

regardless of which coalition of feature values it is added to,

this feature should have a Shapley value of 0. If

f
(

z′ ∪ x ′
i

)

= f
(

z′
)

, for all z′ ⊆ {x ′
1, . . . , x

′
n}\{x

′
i}, (4)

then φi(f , x) = 0.

Additivity: If f
(

z′ ∪ x ′
i

)

= f 1
(

z′ ∪ x ′
i

)

+ f 2
(

z′ ∪ x ′
i

)

, then

φi(f , x) = φi(f
1, x) + φi(f

2, x)

However, the Shapley value requires a lot of computing

time. An exact computation of the Shapley value is computa-

tionally expensive because there are 2k possible coalitions of

the feature values, and the ‘‘absence’’ of a feature has to be

simulated by drawing random instances, which increases the

variance for the estimation of the Shapley values.

C. SHAP (SHAPLEY ADDITIVE EXPLANATIONS)

SHAP is a unified framework proposed by Lundberg and

Lee [30] for interpreting predictions. It explains the predic-

tion of an instance x by computing the contribution of each
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FIGURE 1. Overview of how to use SHAP to interpret the predictions of
any model.

feature to the prediction. Fig. 1 presents an overview of how

to use SHAP to interpret the predictions of any model.

One innovation that the method SHAP brings to the table

is that the Shapley value explanation is represented as a

linear model. That view connects the two methods, LIME

and Shapley Values. Each SHAP value measures how much

each feature in the model contributes, either positively or

negatively. SHAP value offers two essential benefits. First,

SHAP value can be calculated for any model rather than just

simple, linear models. Second, each record has its own set of

SHAP value.

SHAP specifies the explanation for an instance x as:

g
(

z′
)

= φ0 +

M
∑

j=1

φjz
′
j, (5)

where:

• g is the explanation model.

• z′ is the coalition vector (also called simplified features),

and z′ ∈ {0, 1}M . The 1 in z′ means the features in the

new data are the same as those of the original data (the

instance x), while the 0 means the features in the new

data are different from those of the original data (the

instance x).

• M is the maximum coalition size.

• φj ∈ R is the feature attribution for the feature j for

instance x. It is the Shapley value. If φj is a large positive

number, it means feature j has a large positive impact on

the prediction made by the model.
The big difference to LIME is the weighting of the

instances in the regression model. LIMEweighs the instances

according to how close they are to the original instance.

The more 1’s in the coalition vector, the bigger the weight

in LIME. However, SHAP weighs the sampled instances

according to the weight which the coalition would get in

the Shapley value estimation. Small coalitions (few 1’s)

and large coalitions (i.e., many 1’s) get the largest weights.

Lundberg et al. proposed the SHAP kernel in [30] as:

πx
(

z′
)

=
(M − 1)

(

M
∣

∣z′
∣

∣

)

|z′| (M − |z′|)

, (6)

where:

• M is the maximum coalition size.

• |z′| is the total number of the entry of 1 in instance z′.

Lundberg et al. showed that linear regression with this ker-

nel weight yields Shapley values. The details of estimating

SHAP values for an instance x consists of 5 steps:
• Sample coalitions z′k ∈ {0, 1}M , k ∈ {1, . . . ,K }, where

an entry of 1 means that the corresponding feature value

is ‘‘present’’ and 0 means that it is ‘‘absent’’.

• Convert z′k to the original feature space and the get

prediction by applying model f (hx(z
′
k )), where f (x) is

the the original model and hx(z
′) : {0, 1}M → R, maps

1’s to the corresponding value from the instance x that

we want to explain, and maps 0’s to the values of another

instance that we sample from the data.

• Compute the weight for each z′k according to (6).

• Fit weighted linear model by optimizing the following

loss function L:

L (f , g, πx) =
∑

z′∈Z

[

f
(

hx
(

z′
))

− g
(

z′
)]2

πx
(

z′
)

, (7)

where Z is the training data.

• Get Shapley values φk , the coefficients from the linear

model.
The SHAP values provide three significant advantages

compared to other methods. First, SHAP has a solid theoreti-

cal foundation in game theory. Shapley values are the only

solutions that satisfy three properties: Symmetry, Dummy,

andAdditivity. SHAP can also satisfy these since it gets Shap-

ley values from linear models. Second, SHAP connects LIME

and Shapley values. It helps to unify the field of interpretable

machine learning. At last, SHAP has a fast computation for

machine learning models compared to calculating Shapley

value directly.

IV. PROPOSED METHOD

This section introduces the proposed framework, which is

used to improve the interpretability of any IDS. When human

operators use IDSs to make decisions, interpretability is

almost as important as the accuracy. Therefore, a framework

that can improve the transparency of the IDS is necessary.

Fig. 2 shows the framework used in this paper. There are two

parts in Fig. 2, the left part is the traditional structure of the

IDS, and the right part is used to improve the interpretability

of the IDS.

For the traditional IDS, the dataset, trained intrusion detec-

tion models, and the predictions of the models are included.

The trained intrusion detection models contain two different

classifiers, the one-vs-all classifier [46] and the multiclass

classifier. The one-vs-all classifier consists of multiple binary

classifiers. These two kinds of classifiers are used to compare

the results of the interpretation. The results can provide cyber-

security experts guidance and reference when they design the

structure of the intrusion detection model.

The focus of the presented framework is on improving the

interpretability of the IDS. Therefore, in addition to the IDS’s

predictions, local explanations and global explanations are

generated to improve the security experts’ trust in the IDS.

The SHAP is used to provide an explanation in this paper.
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FIGURE 2. Overview of the structure of the proposed framework.

There are two methods of global explanations in this pre-

sented framework. The firstmethod can analyze the important

features of the IDS (the detailed information and the clear

pictures are shown in section V-F1). The second method

presents relationships between the value of a feature and

the impact on the prediction (the clear pictures are shown

in section V-F2). The local explanation explains the output

of an IDS. This method also gives the relevance of input

features for the IDS prediction (the clear pictures are shown

in section V-E).

For any IDS, the presented framework, which is shown

in Fig. 2, can be used to improve the transparency of the sys-

tem. The cybersecurity experts can have the ability to validate

the IDSs decisions by using local and global interpretations.

By combining the above two methods, it can ultimately help

security experts to have a better understanding of IDSs. Fur-

thermore, one-vs-all classifier and multiclass classifier are

used in this framework. Thus, by comparing the differences

in interpretation between these two classifiers, cybersecurity

personnel can adjust the structure of the IDS, then make the

predictions from this IDS easier to understand.

A. LOCAL EXPLANATION

SHAP can compute Shapley values and then give the local

explanations to the model. The Shapley values show how

much each feature contributes to the final prediction. For

example, high dst_host_serror_rate contributes to the model

to judge the data as DoS. At the same time, a new visualiza-

tion method [47] is used to make the results more intuitive.

Through this method, security experts can clearly understand

the reasons why the IDS makes the judgments under the spe-

cific data. To be specific, the security experts can findwhether

the features increase or decrease the predicted probabilities

made by the model. Detailed experiments and results are

shown in the section V-E.

B. GLOBAL EXPLANATION

1) IMPORTANT FEATURES EXTRACTED BY SHAP

Shapley values can be combined to get the global explana-

tions. A matrix of Shapley values is generated by running

SHAP for every instance. This matrix has one row per data

instance and one column per feature. The entire model can

be interpreted by analyzing the Shapley values in this matrix.
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The important features can be obtained by using the matrix

of Shapley values. First, we average the absolute Shapley

values per feature across this matrix:

Ij =

N
∑

i=1

‖φj(xi)‖, (8)

where:

• Ij refers to the average Shapley value of the j-th feature.

• φj(xi) is the Shapley value of the j-th feature in the

i-th data.

• N is the total number of samples in the dataset.

Next, the features can be sorted in the decreasing order of

their feature importance, and then the top N most important

features of the IDS can be obtained.

2) RELATIONSHIPS BETWEEN FEATURE

VALUES AND ATTACKS

In most cases, only knowing the important features of the

model is not enough, further understanding the relation-

ships between the values of the feature and the predictions

of the IDSs can help cybersecurity experts better under-

stand the model. In particular, when security experts under-

stand the relationships between feature values and different

types of attacks, they can havemore knowledge about the IDS

and network attacks.

In this paper, a method based on SHAP to calculate rela-

tionships between feature values and the types of attacks is

proposed, and a new way of information visualization is also

given.

The idea behind this new method is simple: first, the value

of the feature is divided into several intervals; then, the Shap-

ley values of this feature are calculated across the data.

Finally, the Shapley values in each interval are averaged. The

above calculation procedure is shown in (9), whereM denotes

the number of samples per interval, and xi denotes the i-th

feature in x. The φi(x) represents the average Shapley value of

the i-th feature when xi ∈ intervaln. The visualization method

is described in detail in section V-F2.

φi(x) =
1

M
∗

∑

xi∈intervaln

φi(x). (9)

V. EXPERIMENTS AND RESULTS

In this section, the experimental setup is discussed, including

the dataset used in the experiment, the structure of the IDSs,

the way for training the intrusion detection models, and the

performances of the models. Then, the experimental results

are presented. The experiments show the results of the local

explanation and two different kinds of global explanations

used in our framework. At the same time, the differences in

explanations between the one-vs-all classifier and the multi-

class classifier are mentioned. The goal of this experiment is

to get insight into what the models have learned and provide

explanations to IDSs’ predictions.

A. NSL-KDD DATASET

In intrusion detection, the KDD’99 dataset [48] has been

widely used. However, there are several problems with

the KDD’99 dataset, such as an unbalanced distribution of

data and a huge number of redundant records. Therefore,

NSL-KDD [31] was proposed to solve these issues. The

NSL-KDD dataset is well suited for intrusion detection com-

pared to the KDD’99 dataset.

Therefore, the experiments in this paper are carried out by

usingKDDTrain+.txt as the training data, andKDDTest+.txt

as the testing data; both of them come from NSL-KDD.

There are five classes in the dataset: Normal, Probe, denial

of service (DoS), user to root (U2R), and remote to local

(R2L). The training dataset is made up of 21 different attacks,

while the test dataset is made up of 37 different attacks [49].

This means that there are 16 novel attacks in the test dataset.

Each record in the NSL-KDD dataset has 41 features, and the

detailed descriptions of the features are given in [50].

B. DATA PREPROCESSING

1) SYMBOLIC FEATURES

There are three symbolic data types in the NSL-KDD dataset:

protocol_type, flag, and service. NSL-KDD dataset has 3 dis-

tinct protocols, namely TCP, UDP, and ICMP. There are also

11 flag values (e.g., SF, REJ, etc.) and 70 protocol_type

values (e.g., http, telnet, etc.). A detailed introduction can be

found in Table 1. A one-hot encoder is used to convert these

symbolic features in this experiment.

2) BINARY FEATURES

There are six binary data types in the NSL-KDD dataset:

land , logged_in, root_shell, su_attempted , Is_hot_login, and

Is_guest_login. These binary variables remain unchanged in

this experiment.

3) CONTINUOUS FEATURES

There are 32 continuous data types in the NSL-KDD dataset:

duration, src_bytes, dst_bytes, etc. In this paper, the min-max

normalization method is used for these continuous variables.

That is,

xnew =
x − xmin

xmax − xmin
. (10)

After the normalization process, continuous data is in the

range [0, 1].

After preprocessing, each record in the NSL-KDD dataset

has 122 dimensions.

C. PERFORMANCE EVALUATION

Accuracy, precision, recall, and F1-score are used as evalua-

tion indicators to test the algorithm’s performance.

Before introducing the indicator, the ground truth value is

discussed. In the experiment, true positive (TP) represents the

number of connections correctly classified as attacks. True

negative (TN) represents the number of connections correctly
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TABLE 1. The detailed information about three symbolic features.

classified as others. False positive (FP) represents the num-

ber of attack connections wrongly classified as others. False

negative (FN) represents the number of normal connections

wrongly classified as attacks.

Based on the above terms, the following are ways to calcu-

late the four statistical measures.

(1) Accuracy: This measures the ratio of correctly recog-

nized records to the entire test dataset (Accuracy ∈

[0, 1]).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

(2) Precision:The ratio of the number of samples correctly

classified as attack to all the samples classified as attack

(Precision ∈ [0, 1]).

Precision =
TP

TP + FP
(12)

(3) Recall: The ratio of the number of samples correctly

classified as attack to all the attack records (Recall ∈

[0, 1]).

Recall =
TP

TP+ FN
(13)

(4) F1-score: F1-score is used to measure precision and

recall at the same time. It uses the harmonic mean in

place of the arithmetic mean (F1-score ∈ [0, 1]).

F1 -score =
2 ∗ Recall ∗ Precision

Recall + Precision
(14)

D. STRUCTURE AND PERFORMANCE OF THE

INTRUSION DETECTION MODEL

In order to compare the differences in interpretation between

the one-vs-all classifier [46] and the multiclass classifier,

these two classifiers are trained separately. In this experi-

ment, the one-vs-all classifier involves five distinct binary

classifiers, each designs for recognizing a particular class —

Normal, DoS, Probe, U2R, and R2L. Themulticlass classifier

in the experiment is a single model used to distinguish five

classes in the NSL-KDD data set, one normal and four attacks

which are mentioned above.

TABLE 2. The structures of one-vs-all classifier and multiclass classifier.

The fully-connected networks with ReLU activation are

used in this experiment. The structures of each binary clas-

sifier in the one-vs-all classifier and the structure of the mul-

ticlass classifier are shown in Table 2. The input dimension

of each classifier is 122. Each classifier has the same number

of hidden layers, and the hidden layers contain 100, 50 and

30 neurons respectively. The only difference is that the output

dimension of each binary classifier is 2, while the output

dimension of multiclass classifier is 5. This is performed

mainly to observe the differences between a one-vs-all clas-

sifier and a multiclass classifier when they are interpreted.

Pytorch [51] is used to build the intrusion detection model

mentioned above. All of the classifiers use the Adam opti-

mizer [52], with an initial learning rate of 0.01, a decay

of 0.5 per 100 epochs, and a total of 500 epochs.

Although the two classifiers in this experiment aim to

compare the differences in interpretations, we still need to

make sure that these two classifiers have good detection rates.

The NSL-KDD test dataset KDDTest+ is used to evaluate
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FIGURE 3. Interpretation of two classifiers on Neptune attack.

TABLE 3. Comparison results on the NSL-KDD (KDDTest+) dataset.

the performance of the model. The overall performance of

these two classifiers is shown in Table 3. Generally speaking,

the two classifiers used in the experiment have good classifi-

cation performances.

E. RESULTS ABOUT LOCAL EXPLANATION

The results about local explanation of IDS are discussed in

this section. At the same time, the differences in local inter-

pretations between the one-vs-all classifier and the multiclass

classifier are checked. A specific attack, Neptune, is used

as an example to conduct experiments. The visualization

method in this section can refer to [47]. In a Neptune attack,

the attacker often uses a fake IP address and random ports

to send repeated SYN packets to every port on the targeted

server. This can cause network saturation [55]. Therefore,

Neptune attacks always have high SYN error connections

compared with other attacks.

100 Neptune attacks are randomly selected, and then the

average of Shapley values of each feature is calculated to

avoid randomness. Fig. 3 shows the contributions of each fea-

ture value to these twomodels’ judgments. Each feature value

is a force that either increases or decreases the prediction.

The bold font in Fig. 3(a) shows that the one-vs-all classifier

is 93% sure that these attacks are DoS, and the bold font

in Fig. 3(b) shows that the multiclass is 89% sure that these

are DoS. It can be seen that the prediction probabilities of

the two classifiers have a relatively small difference (≈ 4%).

However, there are big differences between the results of their

explanations.

As shown in Fig. 3(a), the top four features are

dst_host_serror_rate, serror_rate, wrong_fragment , and

srv_serror_rate. And these values of features increase the

probability that the one-vs-all model judge the data as a DoS

attack. Three of these features are related to SYN connection

errors, which are the typical characteristics of Neptune (as

shown in Table 4). Therefore, such solid pieces of evidence

make cybersecurity experts more convinced with the IDS’s

judgments.

As shown in Fig. 3(b), multiclass classifier consid-

ers that wrong_fragment , dst_host_same_src_port_rate,

dst_host_serror_rate, and same_srv_rate play important

roles in classification. For example, wrong_fragment = 0
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FIGURE 4. Top 20 important features of four attacks (Extracted from one-vs-all classifier).

and dst_host_same_src_port_rate = 0.003 have a strong

impact on the judgment that the data is DoS attack (Neptune).

However, only dst_host_serror_rate is directly related to

Neptune. Therefore, this cannot give security personnel valid

reasons to trust the results of the models. In conclusion,

the features extracted by multiclass classifier are not directly

related to the Neptune attack compared with those extracted

by one-vs-all classifier, as shown in Fig. 3.

F. RESULTS ABOUT GLOBAL EXPLANATION

1) IMPORTANT FEATURES EXTRACTED BY SHAP

The results of the important features of IDS are discussed

in this section. Besides, the differences in important features

extracted by SHAP between the one-vs-all classifier and the

multiclass classifier are also discussed.

Fig. 4 shows the top 20 features extracted for each type of

attack from one-vs-all classifier, and Fig. 5 shows the 20most

important features extracted for each type of attacks from

multiclass classifier. Each point in Fig. 4 and Fig. 5 is a Shap-

ley value for a feature and an instance. The position on the

y-axis is determined by the feature, and on the x-axis is deter-

mined by the Shapley value. The color represents the value of

the features from low to high. As the intensity of red color

increases, the value of the features increases. Conversely,

as the intensity of blue color increases, the value of the fea-

tures decreases. Overlapping points are jittered in the y-axis

direction, and this represents the distribution of the Shapley

values per feature. The features are ordered according to their

importance.

For instance, Fig. 4(a) shows the top 20 features of DoS

attack extracted through the one-vs-all classifier, and Fig. 5(a)
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FIGURE 5. Top 20 important features of four attacks (Extracted from multiclass classifier).

shows the top 20 features of DoS attack extracted through

the multiclass classifier. In Fig. 4(a) and Fig. 5(a), it can

be seen that the larger the value of dst_host_serror_rate

(the redder the color), the larger the Shapley value. This

means that when the feature value of dst_host_serror_rate

is larger, both one-vs-all classifier and multiclass clas-

sifier are more likely to consider the data as a DoS

attack.

A brief summary of differences between the top 20 impor-

tant features extracted by the one-vs-all classifier and multi-

class classifier is discussed here. For DoS, Probe, and R2L

attack, 13 of the 20 features are identical, and for the U2R

attack, 10 of the 20 features are the same. Then, a detailed

analysis of the important features of the DoS attack extracted

by these two classifiers is presented.

Table 4 describes every kind of DoS attack that is included

in the NSL-KDD dataset. As shown in Table 4, the feature

wrong_fragment relates to Teardrop and Pod because these

attacks send some wrong packets to the target. The feature

service_ecr_i associates with Smurf because the targets are

flooded with ECHO REPLY packets from every host on

the broadcast address in this attack. The srv_serror_rate

relates to Land and Neptune because these attacks send

spoofed TCP SYN packets, and srv_count relates to Back

for all Back attacks use the service of http. The fea-

tures described above — wrong_fragment , service_ecr_i,

dst_host_serror_rate, and srv_serror_rate — are the top

four important features extracted by one-vs-all classifier

in Fig. 4(a). The srv_count is the eighth most important

feature in Fig. 4(a). At the same time, these five features are
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TABLE 4. Detailed descriptions of different types of DoS attacks.

TABLE 5. Important features of four attack types extracted by three methods (feature no.).

among the top 20 features extracted by multiclass classifier,

as shown in Fig. 5(a). However, the ordering of these features

in multiclass classifier is not as high as their ordering in one-

vs-all classifier.

There are also some other differences in the important

features extracted by these two classifiers. Among the top 20

features about DoS attack extracted by multiclass classi-

fier, num_shells, num_failed_logins, num_access_file are

included. As a matter of fact, these features are related to

the R2L attack. The R2L attack refers to unauthorized access

from a remote machine, the attacker intrudes into a remote

machine and gains local access of the victimmachine. During

the process, the attackers might try to log in or modify the

files in the victim machine. As shown in Fig. 5(c), when

the feature values of num_failed_logins, or num_access_file

are larger, the classifier is more likely to consider the data

as an R2L attack. Therefore, when these feature values are

small, the multiclass classifier considers the data as a DoS

attack. When these features take large values, the multi-

class classifier considers the data to be not a DoS attack.

In conclusion, the important features extracted by amulticlass

classifier may not be directly related to the characteristics of

the attacks.

Next, the important features extracted by these two

classifiers are compared with the features extracted by

Staudemeyer and Omlin [56]. Staudemeyer used a decision

tree to extract the features for four common types of attacks.

In his paper, 11 features were extracted for the DoS attack,

14 features were extracted for the Probe attack, 18 fea-

tures were extracted for the R2L attack, and eight features

were extracted for the U2R attack. The features extracted

by Staudemeyer and the features extracted in this experi-

ment are listed in Table 5, where ‘‘Feature No.’’ corresponds

to [50]. For the DoS attack, the eight features extracted by

the one-vs-all classifier are the same as those extracted by

Staudemeyer. There are also eight features extracted by the

multiclass classifier that are the same as those extracted by

Staudemeyer, totally accounting for 73%. A more detailed

information can be seen in Table 6. In general, the important

features extracted by the one-vs-all classifier are more coin-

cident with the important features extracted by the decision

tree in [56].
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FIGURE 6. Relationships between the values of features and specific types of attacks.

TABLE 6. The coincidence rate of the features extracted by the two
classifiers and the features extracted in [56].

At the same time, it should be noted that the impor-

tant features extracted by using SHAP are better according

to the characteristics of attacks. For example, the features

wrong_fragment , service_ecr_i, dst_host_serror_rate, and

srv_serror_rate all have strong relationships with specific

attacks, which has been discussed above.

2) RELATIONSHIPS BETWEEN FEATURE

VALUES AND ATTACKS

The relationships between feature values and different types

of attacks are discussed in this section, and a new way of

information visualization about IDS is also described. With

this new approach, cybersecurity experts can have a better

understanding of the model’s judgments. Specifically, they

will better know the relationships between the value of a

feature and the impact on the prediction. This experiment

focuses on the different types of DoS attacks. One-vs-all

classifier is used in this experiment.

The results of visualizing the four features — wrong_

fragment , dst_host_same_src_port_rate, same_srv_rate,

and dst_host_serror_rate — are shown in Fig. 6.

The broken-line graph in Fig. 6(a) shows the changes

in wrong_fragment’s Shapley values at different inter-

vals and in different specific attacks. For example, when

wrong_fragment = 0, the average Shapley values of

Pod (red) and Teardrop (brown) are negative numbers. This

means that when the value of wrong_fragment is 0, it has

a negative impact on the judgment that the data is Pod

or Teardrop. When wrong_fragment = 1, it has a large

positive impact on the judgment that the data is Pod. When

wrong_fragment = 3, it has a large positive impact on the

judgment that the data is Teardrop. This matches with the

characteristics of the specific attacks shown in Table 4.

Similarly, Fig. 6(b) shows the relationships between the

dst_host_same_src_port_rate’s values and different spe-

cific attacks. Each type of attack can be judged according

to the range of dst_host_same_src_port_rate. As shown

in Fig. 6(b), dst_host_same_src_port_rate < 0.25 has a

positive impact on the judgment that the data is Neptune,

Back, or Smurf, and has a negative impact on the judgment

that the data is Pod, Land, or Teardrop.

Furthermore, the same_srv_rate’s Shapley values in dif-

ferent intervals and in different specific attacks are shown

in Fig. 6(c). The feature same_srv_rate represents the per-

centage of connections that are to the same service to the

same destination host as the current connection in the past

two seconds. The small value of same_srv_rate means that

there is a large number of different services connected in

the past two seconds. As shown in Fig. 6(c), a small value

of same_srv_rate has a positive impact on the judgment

that the data is Neptune. This is because Neptune has more

types of services than other attacks, as shown in Table 7.
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TABLE 7. Each attack and its services.

In conclusion, this result of visualization fits with the char-

acteristics of the Neptune attack.

The broken-line graph in Fig. 6(d) shows the changes in

dst_host_serror_rate’s Shapley values at different intervals

and in different specific attacks. When dst_host_serror_

rate > 0.75, it has a large positive impact on the judgment

that the data is Neptune. One of the most important char-

acteristics of Neptune is sending a large number of SYN

packages, thus the value of dst_host_serror_rate is larger.

That means this result of visualization matches well with the

characteristics of attacks.

Therefore, the relationships between feature values and

the attacks match well with the characteristics of attacks.

This can help cybersecurity experts to have a good under-

standing of the predictions made by the IDS, and thereby

they can make more accurate judgments. Moreover, this also

helps cybersecurity personnel to understand the cyberattacks

better.

VI. CONCLUSION AND FUTURE WORK

Nowadays, the intrusion detection models provide no infor-

mation about the reasons behind their decisions, and most

of the works that explain machine learning models focus on

other fields like computer vision or natural language process-

ing. Therefore, this study sets out to improve the interpretabil-

ity of the IDSs.

A new framework, providing local and global explanations,

is proposed in this paper. A method called SHAP is used in

this framework. This method has a good theoretical founda-

tion and can be applied to any model. The local explanation

used in this framework can interpret the predictions made

by the IDS. The global explanation contains the important

features, the relationships between the values of features and

different types of attacks. In addition, the NSL-KDD dataset

is used to verify the feasibility of the proposed framework.

The experimental results show that the interpretation results,

generated by our framework, are consistent with the charac-

teristics of the specific attacks, and the results are very intu-

itive. Moreover, the differences in the explanations between

the one-vs-all classifier and the multiclass classifier are also

discussed in this paper. This can help network security staff

choose the right structure when they design the intrusion

detection system.

The research contributes to the understanding of the rea-

sons behind the judgments made by the IDSs. Through the

framework proposed in this paper, the transparency of the

IDSs can be improved. Therefore, cybersecurity experts can

make better decisions and know the characteristics of differ-

ent attacks well. They can also optimize the structure of IDSs

according to the different explanations between different clas-

sifiers, and then design a better intrusion detection system.

The present work has room for improvement. Firstly, more

datasets for network intrusion detection systems can be used

to demonstrate the feasibility of the framework. Secondly,

although SHAPhas fast computation for interpretingmachine

learning models compared with computing Shapley value

directly, it is still not possible to work in real-time. Thirdly,

the SHAP method can be explored on more sophisticated

attacks, like Advanced Persistent Attacks (APTs).

Notwithstanding these limitations, this study offers valu-

able insight into the interpretability of the IDSs. Further work

can focus on experimenting on more datasets, making the

framework work in real-time, and explaining more sophis-

ticated attacks.
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