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Abstract 

Background: Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition 

and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the 

mechanism driving within to assist clinical decision-making.

Methods: Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were 

collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities 

and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global 

Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, 

random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area 

under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the 

best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 

2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the 

predictions made by ML algorithms.

Results: 430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC 

(0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, 

and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low 

intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 

and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI 

made by GBM model.

Conclusions: Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to 

assist decision-making after LT.

Keywords: Kidney dysfunction, Liver transplant, SHapley Additive exPlaination methods, SHAP value, Gradient 

boosting machine, Perioperative medicine, Big data, Artificial intelligence, Prognostic predictor, Clinical assisting tool

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Acute kidney injury (AKI) after liver transplantation 

(LT) holds unique etiology and risk factors compared to 

AKI in other clinical settings. �e reported incidence 

of post-LT AKI, which derived from various diagnostic 

criteria, varies from 17 to 95% [1, 2], with an average 
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around 40.7% [3]. Kollmann et  al. demonstrated that 

when using KDIGO criteria, the incidence of post-LT 

AKI observed was 61% in the DCD group and 40% in 

the DBD group [2]. AKI after LT is associated with 

increased post-operative mortality, potential progres-

sion to chronic kidney disease (CKD), longer length 

of stay and increased medical expenditure [1].Graft 

characteristics, intraoperative hemodynamic instabil-

ity and post-operative exposure to nephrotoxic immu-

nosuppression have been considered to be associated 

with AKI after LT [4–6]. Early interventions like perio-

perative continuous renal replacement therapy (CRRT) 

and restraint on nephrotoxic medications shall be con-

sidered in patients with AKI, but the timing of such 

decisions depends largely on personal experience and 

a reliable predicting model can greatly facilitate these 

decisions [7].

Machine learning (ML) algorithms have demon-

strated satisfactory performance in building robust 

predictive models of inpatient AKI [8]. However, many 

of these studies fed relatively abundant features to 

ML algorithms without dimensionality reduction [9]. 

Highly correlated features without regularization are 

of limited utility in enhancing the predictive power of 

the model [10]. Moreover, high dimensional features 

are susceptible to missing data once being externally 

validated across institutions, hindering clinical appli-

cation of these models. With current surge of these 

ML-derived clinical assisting tool [11, 12], criteria for 

evaluation and regulation of such predictive algorithms 

have been advocated, which include setting meaningful 

endpoints and appropriate benchmarks, and ensuring 

generalizability among institutions [13].

Besides these criteria, relational validity of ML-derived 

predictive models, that is, the extent to which physicians 

can interpret them, has been emphasized lately, since a 

sound statistical validity does not necessarily guarantee 

the usability of these models [14]. �e “black magic” of 

ML remains to be debated for the difficulty to understand 

the mechanisms driving within [15]. SHapley Additive 

exPlanations (SHAP) method developed by Lundberg 

[16] is a Game �eory-based method, within which the 

individual features act as players in a prediction task and 

the Shapley value helps to fairly distribute the prediction 

performance among the features [17]. �is method ena-

bles black-box ML algorithms to be explained on individ-

ual level. In this study we aimed to select a ML classifier 

that outperforms statistically in predicting post-LT AKI 

and further visualize the decision made by  ML algo-

rithms to clinicians to assist their decisions. Meanwhile 

we also validated an AKI prediction score developed by 

Kalisvaart et al. [5] with our data set and compared the 

performance of our ML model to this score.

Experimental procedures
Source of data and participants

�is was a retrospective, single center research con-

ducted in �e �ird Affiliated Hospital of Sun Yat-sen 

University-Lingnan Hospital. �is study was approved 

by the Ethnic Committee of the �ird Affiliated Hospi-

tal of Sun Yat-sen University (NO. [2019]02-609-01), with 

waiver of informed consent.

Medical data collected by natural language process 

module from EMRs included demographic data, daily 

documentation, laboratory and imaging results, anes-

thesia records, medications, interventions and diagnosis 

[18]. Donor characteristics were manually collected from 

the China Organ Transplant Response Systems (CORS, 

www. cot. org. cn). All data were anonymized. �is study is 

reported as per the Transparent Reporting of a Multivari-

able Prediction Model for Individual Prognosis or Diag-

nosis (TRIPOD) guidelines [19].

As a result, data of 894 cases that underwent LT from 

January 2015 to September 2019 were extracted. After 

excluding pediatric cases, simultaneous liver-kidney 

transplantation, living donor transplantation and cases 

that lack sufficient post-operative records of serum cre-

atinine (SCr), 780 cases were included in the primary 

cohort for model development and internal validation. 

Since recipients with impaired pre-transplant renal func-

tion are prioritized during organ allocation determined 

by the model of end-stage liver disease (MELD) score [5], 

and around 90% of these patients can recover after trans-

plantation [20], we agreed with including patients with 

preoperative renal injury or diagnosed with hepato-renal 

syndrome, out of the purpose to predict new onset AKI 

simply associated with perioperative treatment. As for 

survival analysis, the end of follow-up was set at Decem-

ber 31st, 2019. Data of patients that underwent deceased 

donor liver transplantation meeting the same inclusion 

criteria during October 2019 to March 2021 were exclu-

sively extracted for external validation.

Perioperative treatment

�e grafts were procured from either donation after cir-

culatory death (DCD), donation after brain death (DBD) 

or donation after brain death followed by circulatory 

death (DBCD) [21]. No organs from executed prisoners 

were used. �e implantation technique consisted of pig-

gyback, standard and split liver transplantation. Liver 

biopsy samples were collected before and after graft 

reperfusion. Intraoperative extracorporeal venovenous 

bypass was hardly applied since it was not significantly 

advantageous [22]. Transfusion, fluid management and 

use of vasoactive and hemostatic agent were adjusted 

according to an overall assessment of volume balance and 

hemodynamic stability. Boluses of vasoactive agents were 

http://www.cot.org.cn
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mostly given to counter post-reperfusion syndrome, oth-

erwise continuous infusion were preferred. Colloids were 

only used during reperfusion phase when coagulation 

deficiency was corrected and satisfactory urine output 

was observed. For patients receiving ABO-incompatible 

graft, Tacrolimus introduction was initiated at Day 2 

after the surgery, otherwise a renal sparing therapy that 

initiated Tacrolimus at Day 4 was adopted. A detailed 

description of anesthesia and immunotherapy can be 

found in Additional file 4: Appendix S4.

Outcome

�e primary outcome was postoperative AKI, diagnosed 

within 7  days post-operatively according to the criteria 

proposed by �e Kidney Disease: Improving Global Out-

comes (KDIGO) guideline [23] (Additional file  5). Cri-

teria concerning urine output in KDIGO guideline were 

not adopted, since it required urine output to be less than 

0.5 ml·kg−1
·h−1 for 6 h to diagnose AKI, which was not 

as timely as the SCr result obtained immediately after the 

surgery. Moreover, for patients receiving LT we tested 

post-operative SCr on a daily basis, which was sufficient 

to identify AKI within one week after the surgery.

Predictors and selection

A total of 111 variables were chosen for initial analysis 

(Additional file 1: Appendix S1, Table S2), mainly cover-

ing demographics and donor characteristics; preopera-

tive comorbidities, laboratory values, etiology of liver and 

complications; intraoperative incidents, medication, fluid 

infusion and blood product transfusion; post-operative 

medications. Certain categorical variables were gener-

ated by imposing specific rules according to their defini-

tions (Additional file  1: Appendix S1, Table  S1). MELD 

score was calculated according to the standard of the 

United Network for Organ Sharing (UNOS) Liver and 

Intestinal Organ Transplantation Committee (Additional 

6). Graft steatosis was graded according to Nonalcoholic 

Steatohepatitis Clinical Research Network (NASH CRN) 

(https:// jhucc s1. us/ nash/).

For variables with a missing proportion less than 

10%, we imputed categorical variables with the mode 

and continuous variable with Multivariate Imputation 

by Chained Equations (MICE) algorithm [24]. To mini-

mize potential over-fitting brought by high dimension-

ality of the features, only features that were statistically 

significant (p < 0.05) in univariate test were chosen and 

subjected to a least absolute shrinkage and selection 

operator (LASSO) regression approach. Finally, features 

with non-zero coefficients after LASSO regression were 

used to build our models (Additional file 3: Appendix S3, 

Table S4).

Statistics

Data cleaning was conducted using Python (Anaconda 

Distribution, Version 3.7) package. Pandas and Numpy. 

Scikit-learn (https:// github. com/ scikit- learn/ scikit- 

learn) package was used to build base models includ-

ing logistic regression (LR), support vector machine 

(SVM), random forest (RF), gradient boosting machine 

(GBM) implemented by decision tree and adaptive 

boosting (ADA). We also calculated Kalisvaart’s AKI 

prediction score that use donor and recipient body 

mass index (BMI), DCD grafts, plasma requirements, 

and recipient warm ischemic time (WIT) as variables 

for risk stratification [5].

�e primary cohort was randomly separated into 70% 

development set and 30% internal validation set. Boot-

strap method was implemented 1000 times on internal 

validation set to derive confidence interval of AUC, 

accuracy, sensitivity and specificity. Grid search method 

with five-fold cross validation was used to choose best 

hyperparameters for each model (Additional file  2: 

Appendix S2, Table S1). Mean with standard deviation, 

or median with interquartile range was used to analyze 

and express continuous variables, the comparisons of 

which were made using the Independent-sample T test 

or Mann–Whitney U test. Categorical variables were 

expressed in quantities and percentages and compared 

by the Chi-square test. Post-operative survival was 

estimated by Kaplan–Meier methods and examined 

by Gehan-Breslow-Wilcoxon test. SHAP method was 

implemented using Python shap package (https:// shap. 

readt hedocs. io/ en/ latest/).

Results
Baseline characteristics of the participants

�e internal validation set consisted of a majority of 

male (n = 682, 87.44%), with a mean age of 50.7  years 

and BMI around 22.78 (Table 1). Among the 780 cases 

included, 430 (55.13%) were diagnosed with AKI (AKI 

group), within which 159 cases (36.97%) were stage 3 

AKI requiring postoperative CRRT.

Patients that did not end up with AKI (Non-AKI 

group) presented comparable percentage of preopera-

tive AKI and CKD to that of AKI group. With evident 

use of CRRT in AKI group (16.27% vs. 6.85%, p < 0.001), 

the biomarkers of renal function were not significantly 

different in clinical settings. Meanwhile, AKI group 

presented more severe liver dysfunction and coagu-

lopathy, and higher MELD score (median 30 vs. 22, 

p < 0.001). AKI group also held less cases with hepatic 

malignancy (28.37% vs. 54.28%, p < 0.001) and higher 

the percentage of hepatic encephalopathy (HE) (32.33% 

vs. 11.71%, p < 0.001). �e percentage of graft steatosis 

https://jhuccs1.us/nash/
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://shap.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/
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Table 1 Characteristics, diagnosis and perioperative features of current cohort

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

Age (y) 50.719 (10.638) 51.051 (10.433) 50.449 (10.808) 0.295

Height (cm) 167.954 (9.065) 167.734 (6.428) 168.134 (10.753) 0.052

Weight (kg) 64.628 (11.304) 63.404 (10.889) 65.628 (11.548) 0.004

Body Mass Index 22.782 (3.574) 22.539 (3.529) 22.98 (3.602) 0.018

Preoperative LOS (d) 11 (2–26) 14 (4–28) 8 (2–23) 0.001

Diagnosis of AKI

 No AKI 350.0 (100.0%) /

 Stage 1 AKI / 177.0 (41.163%)

 Stage 2 AKI / 63.0 (14.651%)

 Stage 3 AKI / 190.0 (44.186%)

 Stage 3 AKI requring CRRT / 159.0 (36.977%)

 AKI diagnosis during POD1 / 288 (66.977%)

Preoperative renal function

 CKD (n) 121.0 (15.513%) 49.0 (14.0%) 72.0 (16.744%) 0.34

 AKI (n) 172.0 (22.051%) 67.0 (19.143%) 105.0 (24.419%) 0.093

 HRS (n) 33.0 (4.231%) 8.0 (2.286%) 25.0 (5.814%) 0.024

 SCr (μmol/L) 91.777 (70.334) 92.388 (68.852) 91.28 (71.593) 0.047

 BUN (mmol/L) 6.846 (5.823) 6.56 (5.218) 7.078 (6.268) 0.985

 eGFR (ml/(min*1.732)) 95.029 (32.145) 93.749 (29.966) 96.07 (33.813) 0.127

 SCr_Mean (μmol/L) 79.343 (71.641) 75.837 (65.256) 82.197 (76.402) 0.917

 Use of CRRT (n) 94.0 (12.051%) 24.0 (6.857%) 70.0 (16.279%)  < 0.001

 Frequency of CRRT (times) 2.567 (10.727) 1.351 (8.312) 3.556 (12.269)  < 0.001

Preoperative laboratory values

 HCT 0.299 (0.076) 0.312 (0.08) 0.288 (0.07)  < 0.001

 PLT(109/L) 96.026 (79.4) 116.597 (95.149) 79.281 (58.79)  < 0.001

 ALT (U/L) 126.282 (399.834) 90.349 (235.856) 155.53 (493.081) 0.004

 AST (U/L) 172.242 (538.996) 148.429 (369.227) 191.626 (644.817)  < 0.001

 TBIL (μmol/L) 250.278 (249.713) 172.311 (217.596) 313.739 (256.351)  < 0.001

 DBIL (μmol/L) 159.74 (168.516) 116.107 (152.227) 195.256 (172.907)  < 0.001

 IBIL (μmol/L) 90.537 (96.523) 56.204 (72.764) 118.483 (104.24)  < 0.001

 ALB (g/L) 35.668 (4.906) 36.212 (5.283) 35.225 (4.535) 0.023

 PT (s) 25.16 (13.483) 21.115 (9.851) 28.452 (15.064)  < 0.001

 APTT (s) 54.653 (20.923) 49.183 (16.041) 59.105 (23.267)  < 0.001

 FIB (g/L) 1.982 (1.422) 2.357 (1.372) 1.676 (1.39)  < 0.001

 INR 2.339 (1.574) 1.912 (1.397) 2.686 (1.625)  < 0.001

Etiology of liver

 Hepatitis B (n) 577.0 (73.974%) 257.0 (73.429%) 320.0 (74.419%) 0.817

 Hepatitis C (n) 17.0 (2.179%) 11.0 (3.143%) 6.0 (1.395%) 0.157

 Dual infection (n) 9.0 (1.154%) 5.0 (1.429%) 4.0 (0.93%) 0.756

 Hepatic Malignancy (n) 312.0 (40.0%) 190.0 (54.286%) 122.0 (28.372%)  < 0.001

 Cirrhosis (n) 623.0 (79.872%) 292.0 (83.429%) 331.0 (76.977%) 0.032

Preoperative complications

 MELD score 24 (22–35) 22(22–29) 30 (22–38)  < 0.001

 Portal hypertension (n) 407.0 (52.179%) 192.0 (54.857%) 215.0 (50.0%) 0.201

 Ascites (n) 321.0 (41.154%) 142.0 (40.571%) 179.0 (41.628%) 0.822

 HE (n) 180.0 (23.077%) 41.0 (11.714%) 139.0 (32.326%)  < 0.001

 Plasmapheresis (n) 7.0 (0.897%) 2.0 (0.571%) 5.0 (1.163%) 0.625

 HPS (n) 4.0 (0.513%) 1.0 (0.286%) 3.0 (0.698%) 0.766

 ARDS (n) 7.0 (0.897%) 3.0 (0.857%) 4.0 (0.93%) 0.784
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Table 1 (continued)

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

 ALI (n) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 1

 MV (n) 49.0 (6.282%) 9.0 (2.571%) 40.0 (9.302%)  < 0.001

 ICU stay (n) 439.0 (56.282%) 164.0 (46.857%) 275.0 (63.953%)  < 0.001

 Hypernatremia (n) 44.0 (5.641%) 10.0 (2.857%) 34.0 (7.907%) 0.004

 Metabolic acidosis (n) 336.0 (43.077%) 144.0 (41.143%) 192.0 (44.651%) 0.362

Donor characteristics

 Donor age (y) 39.191 (13.966) 38.894 (14.392) 39.433 (13.621) 0.755

 Donor BMI 22.578 (3.199) 22.336 (3.185) 22.779 (3.201) 0.074

 ABO incompatibility (n) 120.0 (15.385%) 38.0 (10.857%) 82.0 (19.07%) 0.002

 Donor Type 0.248

  DBD (n) 448 (57.436%) 212 (60.571%) 236 (54.884%)

  DCD (n) 324 (41.538%) 134 (38.286%) 190 (44.186%)

  DBCD (n) 8 (1.026%) 4 (1.143%) 4 (0.93%)

 Steatosis of donor liver 0.002

  Steatosis grade 0 (n) 529 (67.821%) 260.0 (74.286%) 269 (62.558%)

  Steatosis grade 1 (n) 170 (21.795%) 62.0 (17.714%) 108 (25.116%)

  Steatosis grade 2 (n) 35 (4.487%) 9.0 (2.571%) 26 (6.047%)

  Steatosis grade 3 (n) 1 (0.128%) 0.0 (0.0%) 1 (0.233%)

Steatosis grade ≥ 1 206.0 (26.41%) 71.0 (20.286%) 135.0 (31.395%) 0.001

Steatosis grade ≥ 2 36.0 (4.615%) 9.0 (2.571%) 27.0 (6.279%) 0.022

 Lack of pathology assesment (n) 45 (5.769%) 19 (5.429%) 26 (6.046%) 0.721

Surgery characteristics

 Time of surgery (min) 442.713 (92.854) 425.297 (87.949) 456.888 (94.418)  < 0.001

 Time under anesthesia (min) 538.888 (97.864) 519.56 (92.679) 554.621 (99.251)  < 0.001

 Recipient warm ischemic time (min) 46.45 (12.035) 45.919 (12.183) 46.883 (11.909) 0.088

 Cold ischemic time (h) 6.255 (1.358) 6.226 (1.393) 6.278 (1.329) 0.476

 Surgical technique 0.304

  Piggyback (n) 713 (91.41%) 317 (90.571%) 396 (92.093%)

  Split liver (n) 36 (4.615%) 15 (4.286%) 21 (4.884%)

  Standard (n) 31 (3.974%) 18 (5.143%) 13 (3.023%)

Intraoperative fluid and transfusion

 Crystalloid (ml) 2618.423 (2240.489) 2775.575 (2366.817) 2490.944 (2126.798) 0.094

 Colloid (ml) 124.26 (427.879) 153.448 (424.742) 100.583 (429.443) 0.006

 Albumin (ml) 218.295 (116.74) 222.629 (111.083) 214.779 (121.15) 0.483

 Transfusion

  RBC (ml) 1500.39 (1318.45) 1279.989 (1333.507) 1679.177 (1280.024)  < 0.001

  Plasma (ml) 1862.806 (1613.71) 1725.862 (1376.393) 1973.893 (1777.029) 0.063

  Cryoprecipitate (U) 30.276 (15.83) 27.359 (14.9) 32.653 (16.182)  < 0.001

 EBL (ml) 2051.489 (2027.519) 1679.857 (1890.832) 2354.685 (2086.165)  < 0.001

 Urine output (ml·kg−1
·h−1) 3.104 (2.146) 3.708 (2.219) 2.613 (1.954)  < 0.001

 Ascites removal (ml) 959.665 (1889.757) 947.011 (1997.938) 969.93 (1799.531) 0.196

Intraoperative medication

 rFVIIa (mg) 0.346 (1.127) 0.211 (1.03) 0.455 (1.19)  < 0.001

 Prothrombin complex concentrate (IU) 587.692 (433.693) 554.857 (434.497) 614.419 (431.7) 0.043

 Fibrinogen (g) 0.404 (1.293) 0.342 (0.735) 0.453 (1.609) 0.567

 Terlipressin (mg) 0.322 (0.551) 0.195 (0.447) 0.426 (0.604)  < 0.001

 Norepinephrine, bolus (mg) 0.008 (0.022) 0.006 (0.018) 0.009 (0.024) 0.353

 Epinephrine, bolus (mg) 0.028 (0.299) 0.011 (0.161) 0.042 (0.376) 0.785

 Dopamine, bolus (mg) 12.0 (1.538%) 4.0 (1.143%) 8.0 (1.86%) 0.874
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and ABO incompatibility were also significantly higher 

in AKI group.

During LT, AKI group tended to suffer from greater 

blood loss and required higher volume of blood transfu-

sion, higher dose of terlipressin, sodium bicarbonate and 

hemostatic medications. Consistently, the average intra-

operative urine output of AKI group was significantly 

lower (mean 2.61 vs. 3.70 ml·kg−1
·h−1, p < 0.001).

A great majority of AKI cases (n = 288, 66.97%) were 

diagnosed within 24 h after LT (Table 1), that is, prior to 

the introduction of Tacrolimus. Although we collected 

data of post-operative medications prior to the appear-

ance of diagnostic SCr (for AKI group) or prior to the 

record of maximum SCr (for Non-AKI group) (Addi-

tional file 3: Appendix S3, Table S3), the heterogeneity in 

the timing of diagnosis made them unsuitable as predic-

tors in our model.

�e 6-month, 1-year and 2-year survival of patients in 

AKI group were respectively 89.34%, 86.88% and 83.85%, 

which was significantly lower compared to Non-AKI 

group (95.50%, 91.25% and 86.82%) (Fig. 1) ( 5: ).

Internal validation performance

Finally 14 predictors were selected (Additional file  1: 

Appendix S1, Table  S4) and used in each classifier to 

predict AKI. In the internal validation  set, GBM model 

achieved the greatest AUC (0.76, CI 0.70 to 0.82), a high-

est F1-score (0.73, CI 0.66 to 0.78) that tied with ADA, 

and relatively balanced sensitivity (0.74, CI 0.66 to 0.8) 

and specificity (0.65, CI 0.55 to 0.73) (Fig. 2). Since GBM 

algorithm is more robust to outliers compared to ADA, 

we eventually chose GBM model for further analysis and 

application.

Since Kalisvaart’s AKI prediction score was built 

upon exclusion of patients requiring preoperative 

CRRT [5], we validated and compared the performance 

of this score and our GBM-based predictor in the com-

plete internal validation set first, then further com-

pared them in a subset excluding patients that received 

preoperative CRRT. It turned out that the AKI predic-

tion score presented in our internal validation set an 

absolutely high specificity (1.0, CI 1.0 to 1.0) with the 

lowest AUC (0.52, CI 0.45 to 0.6), F1-score (0.03, CI 

0.0 to 0.08) and sensitivity (0.02, CI 0.00 to 0.04). �ese 

metrics were not improved even in the subset exclud-

ing patients receiving preoperative CRRT. Meanwhile, 

GBM model also demonstrated higher AUC (0.74, CI 

0.67 to 0.8), acceptable specificity (0.68, CI 0.59 to 0.77) 

Table 1 (continued)

All (N = 780) Non-AKI (n = 350) AKI(n = 430) P value

 Bicarbonate (ml) 127.006 (234.266) 89.429 (221.225) 157.593 (240.316)  < 0.001

 Use of norepinephrine, continuous (n) 649.0 (83.205%) 301.0 (86.0%) 348.0 (80.93%) 0.074

 Use of epinephrine, continuous (n) 553.0 (70.897%) 250.0 (71.429%) 303.0 (70.465%) 0.829

 Use of dopamine, continuous (n) 245.0 (31.41%) 106.0 (30.286%) 139.0 (32.326%) 0.594

 Use of aramine (n) 34.0 (4.359%) 7.0 (2.0%) 27.0(6.279%) 0.006

Intraoperative incident

 Cardiac arrest (n) 21.0 (2.692%) 3.0 (0.857%) 18.0(4.186%) 0.008

 Acidosis (n) 322.0 (41.282%) 133.0 (38.0%) 189.0 (43.953%) 0.108

 Hypotension (n) 649.0 (83.205%) 298.0 (85.143%) 351.0 (81.628%) 0.226

BMI, body mass index; LOS, length of stay; MELD, model for end stage liver disease. CRRT, continuous renal replacement therapy; ARDS, acute respiratory distress 

syndrome;ICU, intensive care unit; HCT, hematocrit; PLT, platelets; WBC, white blood cell; ALT, alanine transaminase; AST, aspartate transaminase; TBIL, total 

bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB, albumin; SCr, serum creatinine; BUN, blood urea nitrogen; PT, prothrombin time; APTT, activated partial 

thromboplastin time; FIB, �brinogen; INR, international normalized ratio; eGFR, estimated glomerular �ltration rate; DBD, donation after brain death; DCD, donation 

after circulatory death; DBCD, donation after brain death followed by circulatory death; GA, general anesthesia; RBC, red blood cell; EBL, estimated blood loss; rFVIIa, 

recombinant activated factor VII

Fig. 1 Postoperative survival associated with AKI. Patients with 

post-LT AKI demonstrated significantly lower survival, especially 

during the first 6 months after surgery
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and sensitivity (0.64, CI 0.56 to 0.73) after exclusion of 

patients requiring pre-LT dialysis.

Temporal external validation

�e external validation set also consisted of a majority of 

male (87.69%) with a mean age of 47 years old (Table 2). 

�e percentage of graft steatosis graded NASH CRN 1 or 

above was significantly higher in the external validation 

set (43.59% vs 26.92%, p = 0.001) compared to that of the 

development set. On the other hand, time under general 

anesthesia, estimated blood loss, use of colloid and cryo-

precipitate were significantly lower in the external valida-

tion set. In this temporal validation set, the incidence of 

AKI was 50.26%, and GBM model achieved a comparable 

AUC (0.75, CI 0.67 to 0.81) to that of the internal valida-

tion set (Fig. 3).

Feature importance evaluated by SHAP values

�e baseline for the Shapley value in our study is the 

average of all predicted AKI incidence in the internal val-

idation set, which was 52.08%. In our internal validation 

set with 234 cases, 163 cases were correctly classified. 

�e SHAP summary plot demonstrated that preopera-

tive IBIL, intraoperative urine output, time under general 

anesthesia, preoperative PLT and graft steatosis ranked 

the top 5 important features (Fig.  4A). Both kinds of 

SHAP plot revealed that higher IBIL, lower urine out-

put, lower PLT, longer anesthesia time and graft steatosis 

above NASH CRN 1 were associated with higher SHAP 

value output in GBM model, indicating higher probabil-

ity of post-LT AKI (Fig. 4). �e SHAP summary plot of 

the rest of the four ML models also demonstrated that 

IBIl and urine output ranked among the top 3 important 

features respectively in each model (Additional file  2: 

Appendix S2, Figure S2).

Four examples of correctly classified cases (Patient No. 

104, No. 208, No. 224 and No. 229) were demonstrated 

as SHAP decision plot and force plot in Fig. 5. �e SHAP 

decision plots simulated the path of decision along which 

each feature was given in a sequence according to their 

availability in EMRs. �e force plot mainly presented the 

major factors that contribute to the final model output 

Fig. 2 Performance of machine learning models and AKI prediction score. A Performance of all predicting models in the internal validation set, 

which included patients requiring preoperative CRRT. B Performance of GBM model and AKI prediction score in a subset that excluded patients 

requiring preoperative CRRT, to conform to the exclusion criteria in Kalisvaart’s study when they designed this score
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Table 2 Comparison of development set and the temporal validation set

AKI, acute kidney injury’; IBIL, indirect bilirubin; UO, urine output; GA, general anesthesia; PLT, platelets; LOS, length of stay; EBL, estimated blood loss; ALB, albumin; 

HE, hepatic encephalopathy; ALT, alanine transaminase; HM, hepatic malignancy

Characteristics Development set (n = 546) Temporal validation set (n = 195) P values

Diagnosis of post-LT AKI 301 (55.13%) 98 (50.26%) 0.867

Demographics

 Gender (male, n) 472 (86.45%) 171 (87.69%) 1

 Age (y) 50.61 (10.76) 47.02 (10.07)  < 0.001

 Height (cm) 167.77 (9.55) 168.55 (6.42) 0.292

 Weight (kg) 64.25 (11.42) 65.13 (11.14) 0.35

 BMI 22.71 (3.33) 23.09 (3.06) 0.164

Predicting variables

 IBIL (μmol/L) 90.34 (97.04) 96.91 (109.27) 0.433

 UO (ml/(kg*h)) 3.09 (2.2) 3.03 (1.99) 0.73

 Time under GA(min) 543.0 (121.0) 498.86 (111.18)  < 0.001

 PLT(109/L) 94.45 (80.83) 93.89 (76.62) 0.932

 Steatosis grade ≥ 1 147 (26.92%) 85 (43.59%) 0.001

 Preoperative LOS (d) 18.23 (21.82) 15.78 (21.13) 0.175

 EBL (ml) 2066.38 (1906.18) 1559.1 (1918.04) 0.002

 ALB (g/L) 35.56 (4.89) 34.74 (6.96) 0.133

 Bicarbonate (ml) 124.04 (211.47) 169.92 (203.77) 0.009

 Colloid (ml) 111.24 (301.53) 32.31 (117.68)  < 0.001

 Pre-operative HE (n) 129 (23.63%) 37 (18.97%) 0.899

 Cryoprecipitate(U) 30.46 (16.03) 26.53 (15.13) 0.003

 ALT (U/L) 131.08 (433.19) 72.26 (211.4) 0.069

 Pre-operative HM (n) 209 (38.28%) 91 (46.67%) 0.249

Fig. 3 Performance of external validation. A Performance of GBM model on the internal validation set and on the external validation set. B 

Calibration plot of current external validation
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in a certain individual. �ese plots increased the trans-

parency of the prediction made by GBM algorithm. An 

online risk calculator to further facilitate external valida-

tion can be visited at http:// wb. aidcl oud. cn/ zssy/ aki. html 

(Fig. 6).

Discussion
Interpretation

�e cause of post-LT AKI is multifaceted. Patients with 

end-stage liver disease tend to have preoperative intra-

vascular volume depletion and coagulation deficiency 

that predispose them to greater intraoperative blood loss 

and low renal perfusion [25]. Besides, the technique of 

LT involves partial or side cross-clamping of venous flow 

above the renal vein during anhepatic phase, which con-

tributes to renal congestion and impairs urine output. 

�e 14 predictors incorporated in our model are mainly 

indicators of preoperative liver dysfunction, intraopera-

tive volume depletion, graft quality and difficulty of the 

surgery, which were carefully selected by univariate test 

and subsequent LASSO regression analysis from a series 

of variables that had been documented as potential risk 

factors associated with AKI. Moreover, their correlation 

with AKI were further demonstrated by SHAP summary 

plot and dependence plot, in which their distribution in 

relation to the AKI diagnosis were in line with the patho-

physiology mentioned above, adding clinical credibility 

to our model.

We can also tell from these correlations uncovered by 

ML algorithm that optimization of potentially modifiable 

variables exerting high importance in predicting AKI, 

such as intraoperative urine output, preoperative PLT 

and time under anesthesia, should be given higher prior-

ity pre- and intra-operatively. For instance, higher senti-

nel level of urine output might be considered in patients 

receiving LT. As has been shown in the SHAP depend-

ence plot, SHAP values distribution tend to be divided 

around an average urine output of 2.2  ml/(kg·h), which 

indicates that this might be a potential threshold for phy-

sicians to intervene. On the other hand, the criteria in 

KDIGO guideline requires merely an urine output below 

0.5 ml/(kg·h) for at least 6 h to diagnose AKI. Although 

we did not use this criteria in our research since serum 

SCr was a more sensitive biomarker to diagnose post-

LT AKI in the regimen we adopted, the correlation 

recognized by ML algorithms illuminate that a higher 

cut-off point of intraoperative urine output may serve to 

remind the physicians of renal-protective intervention in 

advance.

Similarly, our results also indicate that higher PLT 

transfusion threshold and early extubation shall be pre-

ferred in patients receiving LT. Moreover, while graft ste-

atosis of NASH CRN 1 (steatosis involving 5% to 33% of 

hepatocytes) is accepted in non-urgent LT due to world-

wide scarcity of organ donation, it has been identified 

as a risk predictor of moderate importance by ML algo-

rithms. More strict preliminary graft assessment or lower 

tolerance in steatosis threshold may be evaluated in the 

upcoming studies.

Attempts to predict AKI after LT have been made by 

implementing either novel ML algorithms or conven-

tional statistical technique [5, 6, 9], yet one commonly 

recognized state-of-the-art prediction system specifically 

for post-LT AKI setting is currently lacking. Lee, H et al. 

used a total of 72 pre- and intra-operative variables and 

also demonstrated that GBM-based model showed best 

statistical performance to predict post-LT AKI [9]. Nev-

ertheless, the disparities in techniques like use of veno-

venous bypass and femoral artery pressure make it hard 

to use our data set to externally validate this model. Yin 

Z. et al. identified that CIT (> 7 h), donor WIT (> 10 min), 

blood loss (> 2500  ml), SCr (> 354  μmol/L), treatment 

period with dopamine (> 6 days) and overexposure to cal-

cineurin inhibitor (CNI) may be potential risk factors of 

AKI in Chinese liver transplantation cohort [6]. Never-

theless, in our cohort we discovered that the majority of 

post-LT AKI cases were diagnosed during the first 24 h 

postoperatively even with delayed Tacrolimus introduc-

tion. Meanwhile, a growing proportion of DBD donors 

without donor WIT has altered the graft characteristics 

of the cohort. �erefore the power in risk stratification of 

these factors should be reconsidered and re-analyzed.

Finally we decided to use Kalisvaart’ s AKI prediction 

score as a benchmark because of our similarity in statisti-

cal performance and immunosuppression therapy [5]. As 

a result, our GBM-based predictor demonstrated higher 

(See figure on next page.)

Fig. 4 SHAP summary plot and dependence plot. A The SHAP summary plot demonstrated the general importance of each feature in GBM model. 

The color bar on the right indicates the relative value of a feature in each case. Red dots indicate high values and blue dots indicate low values. 

The violin graph lining up on the midline is the aggregation of dots representing each case in the internal validation set. The distance between 

the upper and lower margin of the violin graph represents the amount of the cases that end up with the same SHAP values offered by this feature. 

Categorical features including preoperative HE and HM and steatosis ≥ 1 were represented by 0 and 1, while “0” means “No” and “1” means “Yes”. B 

SHAP dependence plot demonstrated the distribution of SHAP output value of a single feature. In our GBM prediction model, higher IBIL, lower 

intraoperative urine output, longer time under anesthesia and lower preoperative PLT are correlated with higher SHAP values, representing higher 

probability of a prediction that favors the diagnosis of AKI

http://wb.aidcloud.cn/zssy/aki.html
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Fig. 4 (See legend on previous page.)
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AUC and F1-score compared to AKI prediction score, 

either in our original internal validation set or the sub-

set conforming to their criteria that excluded patients 

requiring preoperative CRRT. We agreed to include 

patients with preoperative renal injury because these 

patients have a high possibility of renal recovery after 

transplantation [20], and are likely to be elevated in the 

waiting list. Early identification of deterioration in renal 

function in these patients would be of greater value com-

pared to patients without preoperative renal injury. Con-

sidering the preciousness of liver graft and detrimental 

outcomes associated with AKI, we valued model sensitiv-

ity, that is, the ability to find out as much as possible the 

occurrence of AKI, over model specificity. Comparing 

to other ML models, boosting algorithms like GBM and 

ADA achieved generally highest precision and sensitivity, 

which is consistent with their performance of other stud-

ies [26, 27].

Limitations
One limitation of the current study is that it is a single 

center study. Liver transplantation is a highly special-

ized and complicated technique. Only by joint effort 

made by multiple centers can we build a larger data set. 

However, multi-center validation calls for unification in 

feature availability and standardized perioperative treat-

ment. Nevertheless, we utilized the data of a temporally 

independent cohort to validate our model. Temporal 

validation is a type of external validation in which data 

of new cases, though are from the same institution as 

in the development sample, come in a different (prefer-

ably later) time period. And it is considered to be a kind 

of arguable but acceptable external validation in the 

TRIPOD statement (Type2b), an intermediary between 

internal and external validation [19]. It was worth noting 

that our development set and the temporal validation set 

demonstrated a bit of heterogeneity in several predictors, 

such as steatosis grade of donor liver, time under general 

anesthesia, estimated blood loss, use of colloid, bicar-

bonate and cryoprecipitate. �ese changes mainly arose 

from the improvement of surgical techniques and aggra-

vated scarcity of non-steatotic donors. �e incidence of 

AKI tended to be lower but the drop was not significant. 

We believe that these significant differences to some 

extent reflect the effectiveness of our temporal external 

validation result, as well as the robustness of our model. 

On the other hand, as for geographical external valida-

tion, the features utilized in our model are all regularly 

recorded or tested in OLT cases in most transplant cent-

ers, and multicenter cooperation can be achieved once 

authorization of data usage is approved.

Another possible limitation is that the statistical met-

rics of our model might not be as high as those presented 

in similar researches [9, 28]. However, many of these 

studies built their ML models upon high dimensional 

features, running the risk of over-fitting. After careful 

feature elimination, we built our predicting model with 

merely 14 features, aiming for practical external valida-

tion in the future. In this way it was worthy trading sta-

tistical accuracy for model applicability. Moreover, the 

path of decision made by our model in each individual 

can be illustrated as SHAP decision plot, offering richer 

information in feature importance or even in potential 

drawbacks of the model. With such visualized explana-

tion, physicians can interpret the model output easily and 

timely adjust their decisions.

Implications

Our research is a solid and generalizable work to build an 

applicable predictor of post-LT AKI with supervised ML, 

which covers the prediction of AKI in patients requiring 

preoperative renal replacement therapy. �e GBM-based 

model we developed consists of variables with high clini-

cal credibility that are interoperable across institutions, 

and demonstrates satisfactory statistical validity and 

reasonable relational interpretability revealed by SHAP 

method.

As an emerging tool of explanatory AI, SHAP method 

can facilitate both local and global interpretations [12, 

29]. For local interpretation, each case has its own set 

of SHAP values. So it can explain how each feature con-

tributes to the prediction of a certain case, as has been 

illustrated in our SHAP decision plot and force plot, 

which increases transparency and helps clinicians ana-

lyze the credibility of the prediction model. For global 

interpretability, the aggregate value of SHAP shows the 

importance of each predicting variable. Compared with 

traditional methods to evaluate feature importance 

such as the weight of RF, the SHAP value holds better 

Fig. 5 SHAP decision plot and force plot. A SHAP force plots of 4 examples of patients, including patient No. 104, No 208, No. 224 and No.229. 

The features shown in red push the AKI probability towards the right, while the features shown in blue push the probability towards the left. This 

plot helps physicians to identify easily the major features with high decision power in the model on individual level. B SHAP decision plot of the 

4 patients in A. This plot is a better visualization of the feature importance of all predictors in each individual. The decision path tended to make 

drastic turns at feature with high importance and reached the estimated probability of AKI. Physicians can interpret the navigation made by the 

features and make a personal decision on the credibility of the output

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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consistency and can present the positive or negative 

relationship of each predictor.

�e potential application of this model lies in its 

integration with the EMRs system to guide early diag-

nosis and interventions after LT. Since the features we 

selected are all easily accessible right at the end of the 

surgery, this GBM-based predictor of post-transplant 

AKI would be a convenient predicting tool that can 

maintain transparency of the decision-making process 

to clinical physicians, enabling them to adjust the final 

decision according to their own experience.
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Fig. 6 A demo prediction of patient No.104 by online GBM-based predictor of post-LT AKI. A demo prediction of patient No. 104 made by the 

online GBM-based predictor of post-LT AKI is shown. To increase clinical applicability, intraoperative average urine output and time of anesthesia 

were substituted by direct input of weight, total urine output and the time of initiation and terminal of anesthesia. The prediction output for patient 

No. 104 was “0” with a probability of 97%, that is, the probability of this patient developing post-LT AKI was merely 3%
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