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Abstract: We investigate systematically dimension-9 operators in the standard model
effective field theory which contains only standard model fields and respects its gauge sym-
metry. With the help of the Hilbert series approach to classifying operators according to
their lepton and baryon numbers and their field contents, we construct the basis of op-
erators explicitly. We remove redundant operators by employing various kinematic and
algebraic relations including integration by parts, equations of motion, Schouten identities,
Dirac matrix and Fierz identities, and Bianchi identities. We confirm counting of indepen-
dent operators by analyzing their flavor symmetry relations. All operators violate lepton
or baryon number or both, and are thus non-Hermitian. Including Hermitian conjugated
operators there are 384|∆L=±2

∆B=0 +10|∆L=0
∆B=±2 +4|∆L=±3

∆B=±1 +236|∆L=∓1
∆B=±1 operators without refer-

ring to fermion generations, and 44874|∆L=±2
∆B=0 + 2862|∆L=0

∆B=±2 + 486|∆L=±3
∆B=±1 + 42234|∆L=±1

∆B=∓1
operators when three generations of fermions are referred to, where ∆L, ∆B denote the
net lepton and baryon numbers of the operators. Our result provides a starting point for
consistent phenomenological studies associated with dimension-9 operators.

Keywords: Beyond Standard Model, Effective Field Theories, Neutrino Physics

ArXiv ePrint: 2007.08125

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2020)152

mailto:liaoy@nankai.edu.cn
mailto:maxid@phys.ntu.edu.tw
https://arxiv.org/abs/2007.08125
https://doi.org/10.1007/JHEP11(2020)152


J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Contents

1 Introduction 1

2 Preliminaries 3

3 Operator reduction and operator basis at dimension nine in the SMEFT 5
3.1 Classes ψ2ϕ6, ψ2ϕ4X, and ψ2ϕ2X2 6
3.2 Classes ψ4ϕX and ψ4ϕ3 7
3.3 Class ψ6 8
3.4 Classes ψ2ϕ5D and ψ2ϕ3XD 10
3.5 Class ψ4ϕ2D 10
3.6 Class ψ4XD 11
3.7 Class ψ2ϕ4D2 12
3.8 Class ψ2ϕ2XD2 12
3.9 Class ψ4ϕD2 14
3.10 Class ψ2ϕ3D3 15
3.11 Class ψ4D3 15
3.12 Class ψ2ϕ2D4 16

4 Conclusion 17

A Flavor relations 18

1 Introduction

The standard model has been verified to be a good effective field theory that works suc-
cessfully below the electroweak scale ΛEW of a few hundreds GeV. The null result in
searching for new particles implies that new physics which presumably holds the key to
tiny neutrino masses and fundamental issues such as origin of spontaneous symmetry break-
ing should exist at a scale ΛNP significantly higher than ΛEW. In this circumstance the
new physics effects in currently available experiments may be comfortably described by
an effective field theory defined between the above two scales. This effective field theory,
termed the standard model effective field theory (SMEFT), contains exclusively the dy-
namical degrees of freedom in the standard model (SM) and respects its gauge symmetry
SU(3)C × SU(2)L ×U(1)Y . While the SM interactions are dominant, effective interactions
originating from new physics are important and interesting — they could modify SM pre-
dictions in precision measurements or induce new physical effects that break accidental
symmetries in SM such as baryon and lepton number conservation. They therefore deserve
a persistent and systematic investigation.
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The effective interactions appear as higher-dimensional operators with effective cou-
plings called Wilson coefficients. While the higher-dimensional operators in SMEFT are
determined in terms of the SM fields and gauge symmetry, their Wilson coefficients are
completely unknown and encode the information of new physics lying at a high scale ΛNP.
To bridge the measurements at low energies to new physics at a high scale, an important
task is to establish a basis of operators at each dimension and analyze their renormal-
ization group evolution between the two scales. While the unique dimension-5 (dim-5)
operator [1] has been known for a long time, the bases for even higher dimensional opera-
tors have only been established in recent years. At dimension 6, there are 63 independent
operators without counting fermion flavors [2–4], among which 59 conserve both lepton
and baryon numbers and the other 4 violate both by one unit (∆L = ∆B = ±1). At
dimension 7 it turns out that there are 12 operators that violate lepton number by two
units (∆L = ±2) and 6 operators that violate both lepton and baryon numbers by one
unit (−∆L = ∆B = ±1) [5, 6]. For the first time the flavor relations among effective
operators start to become nontrivial making counting of independent operators compli-
cated. As the dimension increases further, even counting of complete and independent
operators becomes difficult. Fortunately, there is an approach based on the Hilbert se-
ries (HS) [7, 8] that can be used to enumerate the total number of independent operators
for a given configuration of fields at each dimension [9–12]; automatic tools based on the
HS have been developed [11], see refs. [13–17] for recent efforts. Although the HS does
not tell the concrete forms of operators, it is very helpful for us to exhaust all possible
forms and confirm their independency as we saw in the construction of dim-7 operators [6]
and very recently of dim-8 operators [18, 19]. If there are new light particles beyond the
SM that are most likely a SM singlet such as light sterile neutrinos, they must be in-
corporated into the framework of effective field theory thus extending the regime of the
SMEFT [20–23].

Our goal in this work is to push this endeavor one step further by constructing a
basis of dim-9 operators in SMEFT. Some small subsets of dim-9 operators have previ-
ously appeared in the literature focusing on processes of specific interest, including the
operators related to Majorana neutrino mass and nuclear neutrinoless double beta de-
cays (0νββ) [24–27], the operators contributing to neutron-antineutron (n − n̄) oscilla-
tion [28–30], and those relevant to rare nucleon decays [31–33]. This work provides the
first systematic investigation on the basis of complete and independent dim-9 operators,
and would serve as the starting point for further physical analysis.

This paper is organized as follows. In section 2, we will set up our notations and
conventions, and summarize various identities to be used for the reduction of redundant
operators. In section 3, we will establish the basis for dim-9 operators in SMEFT. We
will illustrate class by class as shown in table 1 how to perform the reduction to reach the
final basis given in tables 2–9. We summarize our main results and mention very briefly
possible phenomenology related to dim-9 operators in section 4. For operators with flavor
symmetries we summarize their flavor relations in appendix A, which have helped us count
operators independently of the HS approach and thus confirm our basis.
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2 Preliminaries

We start with some notations and conventions. The SMEFT is an effective field theory
above the electroweak scale ΛEW but far below some new physics scale ΛNP. It inherits
the SM gauge group SU(3)C ⊗SU(2)L⊗U(1)Y and field contents: the nf (= 3) generations
of left-handed lepton and quark doublet fields L(1, 2,−1/2), Q(3, 2, 1/6) and right-handed
up-type quark, down-type quark and charged lepton singlet fields u(3, 1, 2/3), d(3, 1,−1/3),
e(1, 1,−1), and the Higgs doublet H(1, 2, 1/2). Its effective Lagrangian contains the SM
Lagrangian as the leading terms that is augmented by effective interactions involving oper-
ators of higher and higher dimensions. To set up our notations and conventions, we write
down the SM Lagrangian:

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+ (DµH)†(DµH)− λ
(
H†H − 1

2v
2
)2

+
∑

ψ=Q,L,u,d,e
ψi /Dψ −

[
LYeeH +QYuuH̃ +QYddH + h.c.

]
. (2.1)

Here the superscripts A and I count the generators of the gauge groups SU(3)C and SU(2)L
respectively, Yu, Yd, Ye are the Yukawa couplings which are complex matrices in the flavor
space, and H̃ = iτ2H

∗. For nf generations of fermions, we label the fermion fields by the
subscript Latin letters (p, r, s, t, v, w); for instance, Lp is the p-th generation left-handed
lepton doublet. The covariant derivative is defined by

Dµ = ∂µ − ig3T
AGAµ − ig2T

IW I
µ − ig1Y Bµ, (2.2)

where g1,2,3 are the gauge couplings, and Y, T I , TA are the generators appropriate for
the fields to be acted on. We use the superscript Latin letters (i, j, k, l,m, n) and Greek
letters (α, β, γ, ρ, σ, τ ) to denote field components in the fundamental representations of
SU(2)L and SU(3)C respectively. We define the following shortcuts for better presentation
of operators:

Wµν ≡W Iµντ I , (εW µν)ij ≡ εikWµν
kj = εik(τ I)kjW Iµν ,

Gµν ≡ GAµνλA , (εGµν)αβγ ≡ εαβτGµντγ = εαβτ (λA)τγGAµν , (2.3)

where τ I and λA are the Pauli and Gell-Mann matrices, respectively. The dual field tensor
is defined to be X̃µν = εµνρσXρσ/2 with X = B, W, G.

We will systematically classify and construct all dim-9 operators in the next section.
To construct a basis for the operators, we first generate all possible field configurations from
the HS [11], i.e., all subsets of ingredients (fermion and scalar fields, covariant derivative,
and gauge field strength tensors) including the number of each ingredient that together can
form a gauge and Lorentz invariant dim-9 operator. Then, for each field configuration we
construct explicitly complete and independent operators whose total number is consistent
with the HS counting. This counting of operators is further confirmed independently by
employing flavor relations described in appendix A. The construction of operators and
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removal of all redundant ones is highly nontrivial because with so many ingredients which
have rich Lorentz and gauge group properties one could make many apparently different
but actually related contractions in Lorentz and gauge group indices. We will utilize
all kinematical and algebraic weapons in our arsenal to reach the goal, which include
integration by parts relations (IBP), the SM equations of motion (EoM), various Schouten
identities (SI) for totally antisymmetric rank-n tensors (with n = 2, 3, 4), Dirac gamma
matrix identities (GI), generalized Fierz identities (FI), and the Bianchi identity (BI) for
gauge fields. In the rest of this section we summarize these relations and identities.

Let us start with Schouten identities which are useful in relating various Lorentz and
gauge contractions involving totally antisymmetric constant tensors that would look inde-
pendent. For the SU(2) group, we have the SIs involving the rank-2 tensor εij ,

δijεkl + δikεlj + δilεjk = 0 , εijεkl + εikεlj + εilεjk = 0 . (2.4)

For the SU(3) group, we obtain the following SIs involving the rank-3 tensor εαβγ ,

δαβερστ − δαρεστβ + δασετβρ − δατ εβρσ = 0 ,
εαβγερστ − εαβρεστγ + εαβσετγρ − εαβτ εγρσ = 0 ,

(εαβγερστ + εαβσερτγ + εαβτ εργσ) + (εαστ ερβγ + εατγερβσ + εαγσερβτ ) = 0 . (2.5)

For the Lorentz group we will need the following SI involving the rank-4 tensor ερστη,

gµνερστη + gµρεστην + gµσετηνρ + gµτ εηνρσ + gµηενρστ = 0 . (2.6)

Besides the above standard SIs, we will also require identities that involve generators in
the fundamental representations of SU(2) and SU(3):

εik(τ I)kj = εjk(τ I)ki , εαβτ (λA)τγ + εβγτ (λA)τα + εγατ (λA)τβ = 0 , (2.7)

which imply that

(εW µν)ij = (εW µν)ji, (εGµν)αβγ + (εGµν)βγα + (εGµν)γαβ = 0. (2.8)

Now we collect some identities for Dirac gamma matrices which will be used to simplify
fermion structures:

σµν = iγµγν − igµν ,
εµνρσγσP± = ±i(γµγργν − gµργν − gρνγµ + gµνγρ)P± ,
εµνρσσρσP± = ∓2iσµνP± ,
εµνρησσηP± = ±i(gνσσµρ − gµσσνρ − gρσσµν)P± , (2.9)

with the chiral projectors P± = (1±γ5)/2. The above are straightforward to derive; see, for
instance ref. [34]. These seemingly trivial identities will be applied judiciously together with
the Fierz identities that we now describe. The Fierz identities are essentially identities for
direct products of Dirac matrices, and become identities for products of fermion bilinears
when combined with Dirac spinors. We will sometimes denote (ψ1Γ1ψ2)(ψ3Γ2ψ4) as Γ1⊗Γ2
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and its Fierz transformed partner (ψ1Γ1ψ4)(ψ3Γ2ψ2) as Γ1�Γ2. In applying Fierz identities
for operators it is necessary to include a minus sign when interchanging the order of two
fermion fields.

Our first set of Fierz identities are the standard completely contracted products of two
bilinears:

(ψ1γ
µP±ψ2)(ψ3γµP∓ψ4) = −2(ψ1P∓ψ4)(ψ3P±ψ2) ,

(ψ1γ
µP±ψ2)(ψ3γµP±ψ4) = +2(ψ1P∓ψ

C
3)(ψC

4P±ψ2) ,
(ψ1σ

µνP±ψ2)(ψ3σµνP∓ψ4) = 0 ,
(ψ1σµνP±ψ2)(ψ3σ

µνP±ψ4) = −4(ψ1P±ψ2)(ψ3P±ψ4)− 8(ψ1P±ψ4)(ψ3P±ψ2) . (2.10)

The point here is that contracted vector and tensor products are expressed exclusively in
terms of products of scalar bilinears. For charge conjugation of chiral fields, we denote
ψC
± ≡ (ψ±)C = Cψ±

T, where the charge conjugation matrix C satisfies CT = C† = −C and
C2 = −1 so that ψ± = (ψC

±)C. And for brevity we also denote Dµψ
C,iα
p = (Dµψp)C,iα with

the superscript x being the weak isospin index i and/or color index α and the subscript p
the generation index. Our second set of FIs are,

(ψ1P±ψ2)(ψ3P±ψ4) = −(ψ1P±ψ
C
3)(ψC

2P±ψ4)− (ψ1P±ψ4)(ψ3P±ψ2) ,

(ψ1γ
µP±ψ2)(ψ3P±ψ4) = −(ψ1γ

µP±ψ
C
3)(ψC

2P±ψ4)− (ψ1γ
µP±ψ4)(ψ3P±ψ2) ,

(ψ1σ
µνP±ψ2)(ψ3P±ψ4) = −(ψ1σ

µνP±ψ
C
3)(ψC

2P±ψ4)− (ψ1σ
µνP±ψ4)(ψ3P±ψ2) . (2.11)

One can see the second and third ones can be obtained from the first by replacing ψ1
by ψ1γ

µ and ψ1σ
µν , respectively. Such a replacement is also valid for any other field in

equations (2.10) and (2.11), including the case when ψi is a charge conjugated field ψC.
Finally, we will need the Bianchi identity for gauge fields. For a field strength tensor

Xµν , the BI means

DµXνρ +DνXρµ +DρXµν = 0 , or DνX̃
µν = 0 . (2.12)

This will be useful in reducing operators containing both field strength tensors and covariant
derivatives.

3 Operator reduction and operator basis at dimension nine in the
SMEFT

To begin with, we first run the Mathematica code for the HS method [11] to obtain the field
configurations of dim-9 operators and to count the corresponding total number of indepen-
dent operators for each field configuration satisfying gauge and Lorentz invariance. Since
dim-9 operators necessarily violate baryon or lepton number or both in various ways [35],
they are non-Hermitian. These operators thus naturally fall into four sectors according
to the baryon and lepton numbers they carry, without counting hermitian conjugates.
We will discuss and list one half of them, and the other half is obtained by Hermitian
conjugation. The operators can also be classified by their field configurations. We will
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Sectors (∆B,∆L) = (0, 2) (∆B,∆L) = (1, 3) (∆B,∆L) = (2, 0) (∆B,∆L) = (1,−1)

# for nf = 3 21117 243 1431 22437

Classes

ψ2ϕ6, ψ2ϕ4X, ψ2ϕ2X2, ψ4ϕX(X), ψ4ϕ3(X), ψ6(X)

ψ2ϕ5D, ψ2ϕ3XD, ψ4ϕ2D(X), ψ4XD(X)

ψ2ϕ4D2, ψ2ϕ2XD2, ψ4ϕD2(X), ψ2ϕ3D3, ψ4D3(X), ψ2ϕ2D4

Table 1. Dim-9 operators fall into various sectors and classes according to their lepton and baryon
numbers and their field configurations, with the number of independent operators shown for each
sector with three generations of fermions. Hermitian conjugates of operators are not included.

use a generic fermion field ψ, scalar field ϕ and field strength tensor X to denote the SM
fermions {Q,L, u, d, e} and their conjugates, the Higgs {H,H∗} and gauge fields {B,W,G},
respectively. These sectors and classes are displayed in table 1, together with a count of
independent operators in each sector for three generations of fermions. A check mark fol-
lowing a class indicates that it contains baryon-number-violating operators. Our final basis
for dim-9 operators is summarised in tables 2, 3, 4, 5 and 6 for the sector (∆B,∆L) = (0, 2),
the upper part of table 7 for the sectors (∆B,∆L) = (1, 3), (2, 0), and the lower part of
table 7, tables 8 and 9 for the sector (∆B,∆L) = (1,−1), respectively. In all tables, we
also count the number of independent operators for nf generations of fermions, which helps
to confirm our results against the HS approach. We stress again that the complete basis
of dim-9 operators includes the Hermitian conjugates of all listed operators.

Here we make some comments on conventions. (1) Each gauge field strength is asso-
ciated with its gauge coupling, i.e., {g1B, g2W, g3G}. (2) An imaginary unit i is attached
to gauge covariant derivative D, field strength tensor X, and Dirac tensor σµν , in order
to avoid some superficial i factors in the calculation of renormalization group effects and
S-matrix elements. (3) Some obvious contractions of SU(2)L and SU(3)C indices by the
Kronecker deltas δij and δαβ are suppressed for brevity. In the following subsections we
will illustrate our construction steps and techniques of the operator basis class by class.
Our main strategy is that for field configurations involving four or six fermions we first
employ FIs to fix the fermion structures, then finish SU(2)L and SU(3)C contractions, and
finally exhaust insertions of covariant derivatives.

3.1 Classes ψ2ϕ6, ψ2ϕ4X, and ψ2ϕ2X2

The class ψ2ϕ6 has a single field configuration L2H4H∗2 which leads to the unique dim-9
neutrino mass operator shown in table 2. Such Majorana neutrino mass operators have
been systematically classified at any dimension in [36, 37]. The class ψ2ϕ4X also has a
single field configuration L2H3H∗X with field strength X = B, W . The operators are
straightforward generalizations of similar dim-7 operators in the class ψ2ϕ2X by a Higgs
pair H†H [5, 6]. They are also shown in table 2.

– 6 –
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The SM gauge symmetry restricts the field configuration in the class ψ2ϕ2X2 to be
L2H2X2 with X = B, W, G. The operators follow three types of Lorentz contractions:

(LL)HHXµν
1 X2µν , (LL)HHXµν

1 X̃2µν , (LσµνL)HHXµρ
1 Xν

2 ρ . (3.1)

Note that the tensor type with a dual field strength tensor is not independent by the last
GI in equation (2.9). In addition, the tensor operator vanishes for X1 = X2 by symmetry
arguments, but can survive with (X1, X2) = (B,W ). The final results are shown in table 2.
For the case with X1 = X2 = W , the following identities are used to reduce redundant
operators due to different SU(2)L contractions,

(εW µν)ij(εW µν)kl = (εW µν)ik(εW µν)jl − εilεjkW I
µνW

I,µν ,

(εW µν)ij(εW̃µν)kl = (εW µν)ik(εW̃µν)jl − εilεjkW I
µνW̃

I,µν . (3.2)

Their proofs are straightforward using the second SI in equation (2.4). The operators in the
class ψ2ϕ2X2 can contribute directly to the Majorana neutrino-photon scattering which
has been studied in ref. [38].

3.2 Classes ψ4ϕX and ψ4ϕ3

The operators in the class ψ4ϕX are first classified according to their fermion structures
which are a product of two bilinears. Since the field strength tensor has two Lorentz
indices, we have three possible structures: the scalar-tensor (ST ), vector-vector (V V ), and
tensor-tensor (TT ) ones, which can be generically parameterized as follows:

OST : (ψ1ψ2)(ψ3σµνψ4)Xµνϕ ,

OV V : (ψ1γµψ2)(ψ3γνψ4)Xµνϕ ,

OTT : (ψ1σµρψ2)(ψ3σ
ρ
νψ4)Xµνϕ . (3.3)

However, we find the last two can be transformed into the first one by the FIs:

(2γµP± ⊗ γνP∓)Xµν = i (σµνP∓ � P± − P∓ � σµνP±)Xµν ,

(σµρP± ⊗ σ ρ
ν P∓)Xµν = 0 ,

(σµρP± ⊗ σ ρ
ν P±)Xµν = i (σµνP± � P± − P± � σµνP±)Xµν . (3.4)

Therefore, we only need to consider OST . Note in addition that OST with a dual tensor
X̃ in place is equivalent to OST due to the third GI in equation (2.9). Taking the SM field
contents into consideration and from the HS output we can write down independent opera-
tors in each field configuration that are allowed by the SM gauge symmetry. For some field
configurations with multiple SU(2)L doublets there are many apparently independent ways
to perform SU(2)L contractions which would yield redundant operators. Those redundant
operators can be reduced by the SIs in equation (2.4) and the following derived identities
involving the SU(2)L field strength tensor W ,

εij(εW µν)kl = εil(εW µν)jk − εjl(εW µν)ik ,
δij(εW µν)kl = δik(εW µν)jl − (Wµν)ilεjk . (3.5)

– 7 –
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In addition, FIs in equation (2.11) and its generalizations (e.g., by replacing ψ2 by σµνψ2 in
the first identity in equation (2.11)) are also required to reduce redundant operators when
identical fermions are present. The final results are listed in table 2 for the (∆B,∆L) =
(0, 2) sector and table 7 for the (∆B,∆L) = (1,−1) sector. As an example of the above
manipulations, we consider the following operator from the field configuration Qd∗L2HB:

g1εikεjl(dpσµνLir)(Q
C,j
s Lkt )H lBµν

SI= +g1εilεjk(dpσµνLir)(Q
C,j
s Lkt )H lBµν +OprstdLQLHB3

FI= −g1εilεjk(dpσµνQjs)(L
C,i
r L

k
t )H lBµν +OprstdLQLHB3 +OptsrdLQLHB3

FI= −g1εilεjk(dpLir)(Q
C,j
s σµνL

k
t )H lBµν +OprstdLQLHB3 +OptsrdLQLHB3 +OptsrdLQLHB1

SI= +OprstdLQLHB3 +OptsrdLQLHB3 +OprstdLQLHB1 +OptsrdLQLHB1 −O
prst
dLQLHB2 , (3.6)

where the first FI refers to the third FI in equation (2.11) and the second FI is obtained
by treating σµνQjs as ψ2 in the first FI in equation (2.11).

The four-fermion part in the class ψ4ϕ3 can always be written as a product of two
scalar bilinears by FIs summarised in equation (2.10). Taking the SM field contents into
consideration and from the HS output, we can readily write down the operators for each
allowed field configuration. The final results are shown in table 3 for the (∆B,∆L) = (0, 2)
sector and table 7 for the (∆B,∆L) = (1,−1) sector, respectively. In obtaining the basis,
SIs in equation (2.4) should be repeatedly implemented to reduce redundant operators
arising from various SU(2)L contractions among multiple SU(2)L doublets. One can show
that any other operators in this class can be expressed as linear combinations of the listed
operators with the aid of FIs in equations (2.10)–(2.11) and SIs in equation (2.4).

3.3 Class ψ6

We first show that all operators in this class can be written as a product of three scalar
fermion bilinears (SSS). This is realized by the following FIs applied to three bilinears:

(σµρP± ⊗ σ ν
ρ P∓)⊗ σµνP± = 0,

(σµρP± ⊗ σ ν
ρ P±)⊗ σµνP± = i (σµνP± � P± − P± � σµνP±)⊗ σµνP±,

2(γµP± ⊗ γνP∓)⊗ σµνP± = i (σµνP∓ � P± − P∓ � σµνP±)⊗ σµνP±,
γµP± ⊗ (γνP± ⊗ σµνP±) = iγµP± ⊗ (γµP± ⊗ P± + 2γµP± � P±) ,
γµP± ⊗ (γνP± ⊗ σµνP∓) = −iγµP± ⊗ (γµP± ⊗ P∓ + 2P∓ � γµP±) . (3.7)

The terms on the right-hand side only involve V V S or TTS bilinears which can be fur-
ther transformed into SSS structures by FIs in equation (2.10). We therefore conclude
that all possible dim-9 six-fermion operators can be written as a pure SSS bilinear form.
Nevertheless, in the sector (∆B,∆L) = (0, 2) for operators involving four quarks and two
leptons, we do not fully follow this convention, but prefer to parameterize operators as a
quark-lepton separated form in order to compare easily with the results in the literature
(see table 4). For other sectors with baryon number violation we parameterize operators
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in the pure scalar form as shown in table 7 for the (∆B,∆L) = (2, 0) and (1, 3) sectors
and table 8 for the (∆B,∆L) = (1,−1) sector (except for the two operators OLLeudd and
OLQdddu which have an STT structure). Due to the complexity of operators in the ψ6

class, we analyze each sector separately to confirm our results.

� (∆B,∆L) = (0, 2) sector.

From the HS output the field configurations in this sector can be further divided into three
cases: operators with six leptons, operators with two quarks and four leptons, and opera-
tors with four quarks and two leptons, which are separated by thick lines in table 3. For
operators with six leptons the only field configuration is L4ee∗ which leads to the unique
scalar-type operator shown in table 3. For operators with two quarks and four leptons, there
are four field configurations all of which are written as a scalar. Finally, for operators with
four quarks and two leptons, we parameterize them as a quark-lepton separated form except
for the configuration u2d∗2e2. The completeness and independence of the operators for each
allowed field configuration is guaranteed by FIs in equations (2.10), (2.11), (3.7), (3.9) and
SIs in equation (2.4). In ref. [24], Babu and Leung listed 12 six-fermion field configurations
that violate lepton number by two units but missed u2d∗2e2. For the field configuration
Qd∗L3e∗, we find two independent operators instead of one as given in that reference. For
the configuration Q∗2u2L2, ref. [24] claims 4 operators after considering two different color
contractions in the four-quark part, but we only obtain 2 independent operators. In addi-
tion, refs. [26, 39] list part of operators contributing to the nuclear and kaon neutrinoless
double beta decays, respectively.

� (∆B,∆L) = (2, 0) sector.

The SM gauge symmetry restricts the field configurations in this sector to be d2Q4, d3Q2u,
and d6u2. One first uses FIs to fix the scalar structures, and then performs the SU(2)L
contractions. Finally, the color contractions have to be considered carefully due to SIs
involving two totally antisymmetric tensors in equation (2.6). We find there are 5 operators
after considering all algebraic identities which are given at the top of table 7. In appendix A,
we derive flavor relations for each operator to confirm our counting of operators for the
nf -generation case. Restricting ourselves to the first generation of fermions, there are 4
operators which contribute potentially to the neutron-antineutron oscillation as considered
previously in [28, 29].

� (∆B,∆L) = (1, 3) sector.

There are only two field configurations L3Qu2 and L2eu3 by the SM gauge symmetry, and
each of them fits into one scalar structure shown in table 7. One can see these operators
vanish for one generation of fermions, as had been remarked by Weinberg in ref. [31].

� (∆B,∆L) = (1,−1) sector.

The field configurations in this sector are divided into two cases with either three quarks
plus three leptons or five quarks plus one lepton as separated by a thick line in table 8. For
the former case, there are six field configurations which are completely covered by seven
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generic operators. In ref. [33] however, the authors listed sixteen operators, many of which
we find to be redundant by the use of the first FI in equation (2.11). For the latter case, we
have to consider the first SI in equation (2.5) to exclude redundant operators due to various
color contractions. With the compact operator basis given in table 8, any other operators
formed for each field configuration can be transformed into the list by FIs and SIs.

3.4 Classes ψ2ϕ5D and ψ2ϕ3XD

The SM gauge symmetry only allows the field configuration LeH4H∗D in the class ψ2ϕ5D

which yields a unique operator, while it singles out the field configuration eLH3XD in
the class ψ2ϕ3XD with X being either B or W . These operators are shown in table 3.
Caution must be practised when constructing operators with X = W as it is necessary to
remove redundancy by the identity in equation (3.5).

3.5 Class ψ4ϕ2D

Lorentz invariance apparently requires the four-fermion part to be either a scalar-vector or
a tensor-vector combination:

OSV : (ψ1ψ2)(ψ3γµψ4)ϕ2Dµ , OTV : (ψ1σµνψ2)(ψ3γ
µψ4)ϕ2Dν . (3.8)

However, the structure OTV can be transformed into OSV by the following FIs,

iσµνP∓ ⊗ γνP± = P∓ ⊗ γµP± + 2γµP± � P∓,
iσνµP± ⊗ γνP± = P± ⊗ γµP± + 2P± � γµP±. (3.9)

It is thus sufficient to focus on the structure OSV . Now we attach the covariant derivative
Dµ to an appropriate field. With IBP we choose ψ1 to be derivative free, and with EoM
we avoid associating Dµ with the vector current, so that it acts on either ψ2 or the scalar
field. The final operators in this class are listed in table 4 for the (∆B,∆L) = (0, 2) sector
and table 8 for the (∆B,∆L) = (1,−1) sector. In reaching the listed operators for each
field configuration, we have employed FIs in equation (2.11) and their variants to remove
redundant operators arising from the exchange of fermions in the two bilinears. In addition,
the SI for the rank-2 totally antisymmetric tensor in equation (2.4) is also useful to reduce
operators due to apparently different SU(2)L contractions.

We take the field configuration L2ee∗H2D in the (∆B,∆L) = (0, 2) sector to illustrate
our main points outlined above. Before attaching Dµ to a specific field, the structure OSV
appears as,

εikεjl(eLi)(eCγµL
j)HkH lDµ. (3.10)

In this example the SU(2)L contraction is unique, and the other operator with two Ls in the
same bilinear can be transformed into the above one by the FIs shown in equation (2.11)
and equation (3.9). Now we attach Dµ to a field. By excluding EoM terms and considering
IBP relations, we can act Dµ onHk, H l or Li. The former two cases lead directly to the two
operators shown in table 4. The latter case can be recast by the second FI in equation (2.11)
into a symmetric form with the two Ls in the same bilinear. We thus obtain three operators
for this field configuration in the general flavor case. In a similar fashion we can work out
all other field configurations.
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3.6 Class ψ4XD

By Lorentz invariance the four-fermion part can be a vector-scalar or vector-tensor combi-
nation, so that we have the following four possible structures:

OV S : (ψ1γµψ2)(ψC
3ψ4)XµνDν , OV Ta : (ψ1γµψ2)(ψC

3σνρψ4)XνρDµ ,

OV Tb : (ψ1γµψ2)(ψC
3σνρψ4)XµρDν , OV Tc : (ψ1γµψ2)(ψC

3σ
µρψ4)XνρD

ν . (3.11)

The field strength tensor X can also be its dual X̃ for OV S , while for OV Ta,b,c the dual
case is reducible to the above four structures by GIs in equation (2.9). As a matter of fact,
we will show below that all structures OV Ta,b,c can be reduced to the structure OV S .

We start withOV Tc, which is easily reduced to the V S structure by FI in equation (3.9).
For OV Ta,b, we assume that ψ2,3,4 have the same chirality; if this is not the case, we rewrite
(ψ1γµψ2) = −(ψC

2γµψ
C
1) so that ψC

1 has the same chirality as ψ3,4. It is easy to see that
there are two operators for OV Ta that are free of EoM and IBP relations,

OV Ta1 = (ψ1γµψ2)(DµψC
3σνρψ4)Xνρ , OV Ta2 = (ψ1γµψ2)(ψC

3σνρD
µψ4)Xνρ . (3.12)

By a generalized FI as in equation (2.11), OV Ta1 can be recast as

OV Ta1 = −(ψ1γµD
µψ3)(ψC

2σνρψ4)Xνρ − (ψ1γµσνρψ4)(ψC
2D

µψ3)Xνρ , (3.13)

where the first term reduces to EoM operators and the second to V S operators by the
GI involving three gamma matrices in equation (2.9). A similar manipulation applies to
OV Ta2. For OV Tb, when Dν acts on ψ3,4 it reduces to scalar structures and EoM operators
by the GIs in equation (2.9). Therefore, with IBP relations, there are also two possible
operators,

OV Tb1 = (ψ1γµD
νψ2)(ψC

3σνρψ4)Xµρ , OV Tb2 = (ψ1γµψ2)(ψC
3σνρψ4)DνXµρ . (3.14)

However, after the use of BI in equation (2.12) that is followed by the IBP and EoM
procedure, OV Tb2 actually reduces to OV Ta1,a2 which are themselves reducible. For OV Tb1,
the reduction to the V S structure is similar to OV Ta1,a2. This establishes our claim that
all operators in this class are covered by the V S structure OV S .

We now consider the insertion of a covariant derivative in OV S . Upon excluding EoM
operators and making ψ4 derivative free by IBP, we obtain six possible operators,

OV S1 = (Dνψ1γµψ2)(ψC
3ψ4)Xµν , OV S2 = (ψ1γµDνψ2)(ψC

3ψ4)Xµν ,

OV S3 = (ψ1γµψ2)(DνψC
3ψ4)Xµν , OV S4 = (Dνψ1γµψ2)(ψC

3ψ4)X̃µν ,

OV S5 = (ψ1γµDνψ2)(ψC
3ψ4)X̃µν , OV S6 = (ψ1γµψ2)(DνψC

3ψ4)X̃µν . (3.15)

The operators OV S4,5 are reducible due to the second GI in equation (2.9) and by the
use of the EoMs of ψ1,2. This leaves us with the operators OV S1,2,3,6 which may have
the field configurations ud∗L2XD, d3e∗XD, and Qd2L∗XD. To obtain the minimal set of
independent operators, it is necessary to employ the FI in equation (2.11) and the SI in
equation (2.4). Our final results are shown in table 5 for (∆B,∆L) = (0, 2) and table 9 for
(∆B,∆L) = (1,−1) sectors respectively.
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3.7 Class ψ2ϕ4D2

Gauge invariance requires the field configurations in this class to be either e2H4D2 or
L2H∗H3D2. For e2H4D2, one readily gets a unique operator as shown in table 5.
For L2H∗H3D2, we first consider SU(2)L contractions which take the unique form
εikεjl(H†H)LiLjHkH lD2 before inserting covariant derivatives into proper positions. Next,
we consider the fermion bilinear which can take either a scalar or a tensor type:

εikεjl(H†H)(LC,iLj)HkH lDµDµ , εikεjl(H†H)(LC,iσµνL
j)HkH lDµDν . (3.16)

Now we attach covariant derivatives to fields to form specific operators. For the tensor
type, the operators with a derivative acting on the lepton field L can be reduced to the
scalar ones or EoM operators by the first GI in equation (2.9) which gives the relation
iσµνD

µL = (Dν − γν /D)L, and can therefore be discarded. By IBP we can arrange H∗ to
be derivative free, so that we have two possible non-trivial tensor-type operators,

OT1 = εikεjl(H†DµH)(LC,iσµνL
j)DνHkH l ,

OT2 = εikεjl(H†H)(LC,iσµνL
j)DµH

kDνH
l . (3.17)

However, by successive application of SIs in equation (2.4) one finds OprT2 =−(OprT1+p↔ r)
so that only OT1 remains as a tensor operator. For the scalar-type operators, after consid-
eration of IBP (again with H∗ to be derivative free), EoM and identical fields, we find five
independent operators. All of these six operators for this field configuration are also given
in table 5.

3.8 Class ψ2ϕ2XD2

Gauge invariance requires the field configuration to be L2H2XD2 with the field strength
tensor X = B, W . Before attaching covariant derivatives to specific fields, we have the
following three types of possibly independent structures in terms of fermion bilinears and
Lorentz contractions:

OS : εik(εXµν)jl(LC,iLj)HkH lDµDν ,

OTa : εik(εXµν)jl(LC,iσµνLj)HkH lDαD
α ,

OTb : εik(εXµρ)jl(LC,iσ ρ
ν L

j)HkH lDµDν , (3.18)

with (εBµρ)jl = Bµρεjl. All other SU(2)L contractions can be transformed into the above
ones by SIs in equation (2.4). For the scalar structure OS , the field strength tensor can also
be its dual X̃µν , while for the tensor structures OTa,b the cases with a dual field strength
tensor can be transformed into OTa,b by GIs involving εµνρσ in equation (2.9). In the
following we try to keep operators in the scalar structure as many as possible by reducing
operators in tensor structures.

We start with OTb. With either Dµ or Dν acting on a lepton field it can be reduced
into OS and/or OTa1. This is obvious for Dν via the first GI in equation (2.9) and the
EoM for the lepton field. For Dµ acting on a lepton field, we rewrite Xµρ = −εµραβX̃αβ/2
and then apply the last and first GIs in equation (2.9) and the EoM for the lepton field.

– 12 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Furthermore, when either Dµ or Dν acts on Xµρ it can be shifted away by the EoM or the
BI in equation (2.12) followed by IBP to reduce to the structure OTa. In this way, after
IBP and EoM we obtain one operator in OTb with each Higgs field being acted upon by
one covariant derivative,

OTb1 = εik(εXµρ)jl(LC,iσ ρ
ν L

j)DµHkDνH l . (3.19)

Note that when Xµρ = Bµρ, OTb1 is antisymmetric under the exchange of the two leptons
up to EoM operators and operators covered in OS and OTa. Next we consider OTa. Modulo
IBP (with Xµν to be derivative free) and EoM, we have the following six operators in OTa:

OTa1 = εik(εXµν)jl(DαLC,iσµνL
j)DαHkH l ,

OTa2 = εik(εXµν)jl(DαLC,iσµνLj)HkDαH l ,

OTa3 = εik(εXµν)jl(LC,iσµνDαL
j)DαHkH l ,

OTa4 = εik(εXµν)jl(LC,iσµνDαL
j)HkDαH l ,

OTa5 = εik(εXµν)jl(LC,iσµνLj)DαH
kDαH l ,

OTa6 = εik(εXµν)jl(DαLC,iσµνDαLj)HkH l . (3.20)

Since
∑
iOTai contains only EoM terms, OTa5 can be excluded. Furthermore, by rewriting

Xµν = −εµνρσX̃ρσ/2, OTa6 can be transformed into OS plus EoM operators by the SI in
equation (2.6) and the first GI in equation (2.9). For the remaining four operators, one
can easily figure out that only OTa1,2 are independent for Xµν = Bµν , while there are three
independent operators for Xµν = Wµν that may be chosen as OTa1,2,3 with OTa4 being
related to OTa1,2,3 by the SI identity εik(εWµν)jl + εjl(εWµν)ik = εil(εWµν)jk + εjk(εWµν)il
derived from equation (3.5).

At last we consider the scalar structure OS . Upon applying IBP (with Li being deriva-
tive free) and EoM, one obtains three operators,

OS1 = εik(εXµν)jl(LC,iDµLj)DνHkH l ,

OS2 = εik(εXµν)jl(LC,iDµLj)HkDνH l ,

OS3 = εik(εXµν)jl(LC,iLj)DµHkDνH l , (3.21)

plus three more with Xµν being replaced by its dual. For Xµν = Bµν , OS1 can be expressed
as a sum of OS2,3 up to EoM operators by IBP manipulation, while for Xµν = Wµν the
operator OS3 can be expressed as a sum of OS1,2 up to EoM operators by IBP and the
above SI manipulation. In summary, we have the independent operators OS2,3 plus their
dual cases, OTa1,2, and OTb1 for the field configuration L2H2BD2, and OS1,2 plus their
dual cases, OTa1,2,3, and OTb1 for L2H2WD2. All of these operators are listed in table 5
with fermion flavors counted.
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3.9 Class ψ4ϕD2

For operators in this class one first exploits the Fierz identities to arrange the two fermion
bilinears to be in the scalar or tensor form, so that there are four structures to begin with,

OSS : (ψ1ψ2)(ψC
3ψ4)ϕDµDµ , OTS : (ψ1σµνψ2)(ψC

3ψ4)ϕDµDν ,

OST : (ψ1ψ2)(ψC
3σµνψ4)ϕDµDν , OTT : (ψ1σµρψ2)(ψC

3σ
ρ
ν ψ4)ϕDµDν , (3.22)

where we use ψC
3 instead of ψ3 because all operators violate lepton or baryon number or

both. Next we attach derivatives to fields to form possible operators. To do that, we note
that the tensor-tensor structure can be reduced into others and EoM operators by the
following identities

σµρP± ⊗ σ ρ
ν P∓ − µ↔ ν = 0,

σµρP± ⊗ σ ρ
ν P± + µ↔ ν = −2gµνσρσP± ⊗ σρσP± = 8gµν(P± ⊗ P± + 2P± � P±), (3.23)

together with IBP (with ϕ to be derivative free), EoMs (for instance, ψ1iσµρD
ρψ2 =

ψ1Dµψ2−ψ1γµ /Dψ2). Therefore, we only need to consider OSS ,OTS ,OST in the following.
For the scalar-tensor structures OTS and OST , taking into account IBP (again with ϕ

being derivative free) and EoM, we arrive at the following unique forms

OXYTS = (ψ1σµνPXψ2)(DµψC
3D

νPY ψ4)ϕ ,

OXYST = (Dµψ1DνPXψ2)(ψC
3σ

µνPY ψ4)ϕ , (3.24)

where we make chiral projectors PX withX = ±manifest for convenience. If ψ2,3,4 have the
same chirality, the operators OXXTS , OXXST can be reduced into the scalar-scalar operators
OSS and EoM operators by the FIs in equation (2.11); for example, for O±±ST , we have

(Dµψ1DνP±ψ2)(ψC
3σ

µνP±ψ4)ϕ

= −(Dµψ1σ
µνP±ψ4)(ψC

3DνP±ψ2)ϕ− (Dµψ1P±ψ3)(DνψC
2σ

µνP±ψ4)ϕ , (3.25)

where the tensor currents can be reduced into scalar and EoM terms as we illustrated
above. The similar manipulation also applies to O±±TS with ψ2,3,4 having the same chirality.
Thus for the scalar-tensor structures only O±∓TS and O±∓TS survive.

Now we come to the scalar-scalar structure OSS . In this case we can choose to make
ψ1 free of derivatives by IBP, then there are generally six ways to distribute two derivatives
among the four fields (ψ2,3,4 and ϕ). But one of the six is still redundant by IBP and EoM.
(In the on-shell language this redundancy comes from the momentum relation (p2 + p3 +
p4 + pϕ)2 = p2

1 = m2
1.) Therefore, we obtain five possible independent forms which can be

chosen to be

OSS1 = (ψ1Dµψ2)(DµψC
3ψ4)ϕ ,

OSS2 = (ψ1Dµψ2)(ψC
3D

µψ4)ϕ , OSS3 = (ψ1Dµψ2)(ψC
3ψ4)Dµϕ ,

OSS4 = (ψ1ψ2)(DµψC
3ψ4)Dµϕ , OSS5 = (ψ1ψ2)(ψC

3Dµψ4)Dµϕ . (3.26)
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If there are identical fields among ψ2,3,4, the above five forms could be not completely
independent and the redundant ones can be easily identified at this stage. At last by com-
bining the field configurations in this class from the HS output with the above analysis of
structures, we obtain the final operator basis as shown in table 6 for the (∆B,∆L) = (0, 2)
sector and in table 9 for the (∆B,∆L) = (1,−1) sector. One should be careful with
the operators with multiple SU(2)L fields in table 6, since the SIs in equation (2.4) have
to be used to reduce any redundant operators coming from apparently different SU(2)L
contractions.

3.10 Class ψ2ϕ3D3

The only possible field configuration is eLH3D3 with a vector fermion bilinear by
Lorentz invariance. With four Lorentz vector indices at hand, they either contract
with the tensor εµνρσ or self-contract in pair. The former yields the unique term
εµνρσεijεkl(eCγµL

i)DνH
jDρH

kDσH
l which vanishes by SI. In the latter case, all possible

operators are constructed by attaching a pair of contracted derivatives to Lorentz scalar
operators formed by eLH3D. The latter has the unique form, εijεkl(eCγµL

i)HjDµHkH l.
Modulo the IBP (with the e chosen to be derivative free) and EoM terms, we have the
following six possible operators,

O1 = εijεkl(eCγµDνL
i)DνHjDµHkH l , O2 = εijεkl(eCγµDνL

i)HjDνDµHkH l ,

O3 = εijεkl(eCγµDνL
i)HjDµHkDνH l , O4 = εijεkl(eCγµL

i)DνH
jDνDµHkH l ,

O5 = εijεkl(eCγµL
i)DνH

jDµHkDνH l , O6 = εijεkl(eCγµL
i)HjDνD

µHkDνH l . (3.27)

Since they sum to EoM terms, we choose to discard O6 as redundant. Furthermore, O2,4
can be reduced as linear combinations of O1,3,5 by IBP of Dµ and SIs in equation (2.4).
Therefore we only have three independent operators in this class which are listed in table 6.

3.11 Class ψ4D3

The two fermion bilinears in this class can be a vector-scalar or vector-tensor type:

OV S : (ψ1γµψ2)(ψC
3ψ4)DµD2 ,

OV T1 : (ψ1γ
µψ2)(ψC

3σµνψ4)DνD2 ,

OV T2 : (ψ1γµψ2)(ψC
3σνρψ4)DµDνDρ . (3.28)

One can show that the vector-tensor types may be transformed into the vector-scalar type
and EoM operators with the aid of FIs in equation (2.11), GIs in equation (2.9), IBP, and
EoMs. Modulo IBP (with ψ1 being derivative free) and EoM terms, we have the following
possible independent operators of the vector-scalar type,

OV S1 = (ψ1γµDνψ2)(DνψC
3D

µψ4) , OV S2 = (ψ1γµDνψ2)(DµψC
3D

νψ4) . (3.29)

Taking into account the SM field contents and gauge symmetry, we find that the above
two actually condense to a single one for each field configuration. Our results are included
in table 6 for the (∆B,∆L) = (0, 2) sector and table 9 for the (∆B,∆L) = (1,−1) sector,
respectively.
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3.12 Class ψ2ϕ2D4

In this class the field configuration can only be L2H2D4, in which the lepton bilinear can
be a scalar or tensor, with the unique SU(2)L contractions:

OS : εikεjl(LC,iLj)HkH lD2D2 , OT : εikεjl(LC,iσµνL
j)HkH lDµDνD2 . (3.30)

Upon insertion of derivatives one can easily show that the tensor structure is redundant by
IBP, the first GI in equation (2.9) and EoM for the lepton field. For the scalar type OS ,
the two pairs of covariant derivatives can be distributed uniformly among the four fields
with proper Lorentz contractions. After excluding IBP and EoM operators, we obtain the
three operators shown in table 6.

At the end of this section, we compare our results to those available in the literature
and discuss briefly their possible phenomenological consequences. All dim-9 operators in
the SMEFT satisfy |∆B − ∆L| = 2 with |∆B| ≤ 2 and |∆L| ≤ 3. We discuss them
sector by sector according to the values of (∆B,∆L). In the sector (∆B,∆L) = (0, 2),
refs. [24–26] listed the subsets of dim-9 operators without involving a covariant derivative
Dµ or gauge field strength tensor Xµν , and considered their implications for the generation
of neutrino mass and nuclear 0νββ decays. Here we provide a basis of complete and
independent operators by removing redundant operators in the literature and including
additional operators containing a Dµ or Xµν . The latter operators may induce neutrino
mass in a novel manner and deserve further investigation. For instance, the operators
OLLH2G21 in the class ψ2ϕ2X2 and OdLQLHG1, OdQLLHG, OQuLLHG1,2 in the class ψ4ϕX

may induce neutrino mass via the QCD condensations, 〈Ω|GµνGµν |Ω〉 and 〈Ω|q̄Gµνσµνq|Ω〉
with q being the up or down quark and Ω the QCD vacuum. As another example, ref. [27]
recently studied the generation of neutrino mass through the operator OeeH4D2 in the class
D2ψ2ϕ4.

There is a controversy in the literature concerning the matching of effective interactions
of dim-9 operators in the SMEFT to those of dim-9 operators in the low-energy effective
field theory (LEFT) that contribute to nuclear 0νββ decays. There are 24 such operators
in the LEFT that respect the SU(3)C×U(1)EM gauge symmetry [26, 40–42]. While ref. [26]
claimed that only 11 of them can be generated from dim-9 operators in the class ψ6 of the
SMEFT and the remaining 13 operators have to be first generated at dimension 11 and 13,
ref. [43] found that 8 more operators can also be generated at dimension 9. We confirmed
the latter finding. In our basis, the operators that contribute by a tree-level matching to
the 19 dim-9 operators in the LEFT are,

(a) : O†ddueue ,O
†
dQdueL1,2 ,O

†
QudueL1,2 ,O

†
dQdQeL1,2 ,O

†
dQQuLL1,2 ,O

†
QuQuLL1,2 ;

(b) : O†LLH4W1 ,O
†
deueH2D ,O

†
dLuLH2D2 ,O

†
duLLH2D ,O

†
dQLeH2D2 ,O

†
dLQeH2D1 ,

O†deQLH2D ,O
†
QueLH2D2 ,O

†
QeuLH2D2 ,O

†
QLQLH2D2,5 ,O

†
QQLLH2D2 ,

O†eeH4D2 ,O†LLH4D23,4 . (3.31)

The 11 operators in the group (a) are those already pointed out in [26] which generate
the 11 operators in the LEFT, while the operators in the group (b) all involve a Dµ or
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Xµν and yield the 8 additional operators in the LEFT as found in [43]. We note in
passing that the operators with a Dµ or Xµν can also lead to a neutrinoless final state
in nuclei with 3 electrons and 1 positron, i.e., 0ν3e−1e+. Besides nuclear 0νββ decays,
the µ− → e+ conversion in nuclei gets more attention in recent years [44–46] and will
be explored in the future Mu2e experiment [47]. Our basis of complete and independent
operators complements the work in [46] and provides a starting point for the investigation
of all these processes as well as the lepton-number-violating decays of the mesons, baryons,
and the τ lepton.

In the sector with (∆B,∆L) = (2, 0) we confirm that there are 4 operators contribut-
ing to the n − n̄ oscillation [29]. We note that these operators also contribute to the
dinucleon transitions in nuclei, nn → P+

1 P
−
2 , P

0
1P

0
2 , `

+`−, νν̄, γγ, pp → P+
1 P

+
2 , and

np → P+
1 P

0
2 , `

+ν, where P1,2 are the lightest pseudoscalar mesons (π,K) and ` = e, µ.
Such processes have clear experimental signatures, and some of them have been constrained
by the earlier Frejus and IMB-3 experiments [48, 49] and the recent Super-K result [50].
These operators can also induce the oscillation of neutral baryons and antibaryons that
involve heavier s, c, b quarks. The operators with (∆B,∆L) = (1, 3) first appear at dimen-
sion 9 in the SMEFT. As was found long ago [31], there are only two operators, but they
disappear with one generation of up-type quarks and thus cannot contribute to novel pro-
ton decays such as p→ `+ν̄ν̄. Nevertheless, they contribute to exotic heavy baryon decays
like Λ+

c /Σ+
c → `+ν̄1ν̄2 and Σ++

c → `+1 `
+
2 ν̄. The nucleon decays with (∆B,∆L) = (1,−1)

have been studied previously in refs. [33, 51] from operators in the ψ4ϕ3 and ψ6 classes.
We reduce their operators to a minimal set and in addition include the operators with a
Dµ or Xµν . For instance, we observe that the novel decay mode n→ νγ, also constrained
by the Super-K experiment [52], can be mediated locally at leading order by the operators
OLdudHB,W , OLuddHB,W , and OLdQQHB,W that were missed in previous analyses. Fur-
thermore, the five-body decays p→ 2ν`+1 `

+
2 `
−
3 and n→ ν`+1 `

+
2 `
−
3 `
−
4 also first appear from

those operators containing a Dµ or Xµν . It would be interesting to investigate these novel
processes systematically in the EFT framework to search for imprint of new physics.

4 Conclusion

We have investigated systematically dim-9 operators in the standard model effective field
theory thus pushing the frontier in this direction one step further. Due to the complexity
of the issue we have employed two approaches for crosschecks. We applied the Hilbert
series to generate the field configurations allowed by Lorentz and gauge symmetries and
to count the total number of independent operators that can be formed for each configu-
ration. We then constructed all possible operators explicitly for each field configuration,
and made use of all available kinematic and algebraic relations to remove redundant oper-
ators. The relations include integration by parts, equations of motion, Schouten identities,
Dirac gamma matrix relations and Fierz identities, and Bianchi identities. We analyzed
flavor symmetry relations among operators that are applied to remove redundant opera-
tors and count complete and independent operators independently of the Hilbert series.
The two approaches yield a consistent answer. The basis of dim-9 operators is shown in
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tables 2–9, and can be summarized as follows. All dim-9 operators violate lepton and
baryon numbers in various combinations and are thus non-Hermitian. Without count-
ing flavor or generation there are 384|∆L=±2

∆B=0 + 10|∆L=0
∆B=±2 + 4|∆L=±3

∆B=±1 + 236|∆L=∓1
∆B=±1 dim-9

operators; if three generations of fermions in SM are taken into account, there are then
44874|∆L=±2

∆B=0 + 2862|∆L=0
∆B=±2 + 486|∆L=±3

∆B=±1 + 42234|∆L=±1
∆B=∓1 operators. Our result provides a

solid starting point for phenomenological analysis. Compared to lower dimensional opera-
tors, dim-9 operators can also violate lepton and baryon numbers in the new combinations
∆L = 0, ∆B = ±2 and ∆L = ±3, ∆B = ±1. The first combination results in the
n− n̄ oscillation as studied in refs. [28–30], while the second one can cause unusual baryon
decays. We hope to come back to this phenomenological aspect of the issue in the future.
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A Flavor relations

In this appendix we give the flavor relations for the operators with symmetries in the
basis. These relations further confirm our counting of independent operators when fermion
flavors are taken into account as in the HS approach. We denote fermion flavors by the
Latin letters (p, r, s, t, v, w) of an operator in the same order that fermion fields appear in
the operator. The results are summarized first in sectors and then class by class.

� (∆B,∆L) = (0, 2) sector.

Class ψ2ϕ6:

OprLLH6 − p↔ r = 0 . (A.1)

Class ψ2ϕ4X:

OprLLH4B + p↔ r = 0 , OprLLH4W2 + p↔ r = 0 . (A.2)

Class ψ2ϕ2X2 (x = 1, 2 and y = 1, . . . , 5):

OprLLH2B2x − p↔ r = 0 , OprLLH2W 2y − p↔ r = 0 ,

OprLLH2W 26 + p↔ r = 0 , OprLLH2G2x − p↔ r = 0 . (A.3)
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Class ψ4ϕX:

OprsteLLLHW2 + s→ t = 0 , OprstdQLLHW2 + s→ t = 0 ,

OprstQuLLHW2 − s→ t = 0 , OprstQuLLHW4 + s→ t = 0 . (A.4)

Class ψ4ϕ3:

OprstLeLLH3 − s↔ t = 0 , OprstQuLLH32 − s↔ t = 0 , OprstQdLLH3 − s↔ t = 0 . (A.5)

Class ψ6 (x = 1, 2 and y = 1, 2, 4):

OprstvweLeLLL−O
stprwv
eLeLLL = 0 ,

(
OprstvweLeLLL+t↔ v

)
−t↔w= 0 ,(

OprstvweLeLLL+r↔w
)
−r↔ v= 0 ,

(
OprstvwLudLLL+t↔ v

)
−t↔w= 0 ,(

OprstvwdQeLLL+t↔ v
)
−t↔w= 0 ,

(
OprstvwQueLLL+t↔ v

)
−t↔w= 0 ,

Oprstvwddueue−O
rpvwst
ddueue = 0 , OprstvwduddLL1+v↔w= 0 , OprstvwduddLL2−v↔w= 0 ,

OprstvwduuuLL1+v↔w= 0 , OprstvwduuuLL2−v↔w= 0 ,
OprstvwdQdQLLy−O

stprwv
dQdQLLy = 0 , OprstvwQuQuLLx−O

stprwv
QuQuLLx = 0 . (A.6)

Class ψ4ϕ2D:

OprsteeLLH2D + s↔ t = 0 ,
(
OprstLLLLH2D2 + r ↔ s

)
− r ↔ t = 0 ,

OprstLLLLH2D3 + s↔ t = 0 , OprstddLLH2D + s↔ t = 0 ,
OprstuuLLH2D + s↔ t = 0 , OprstQQLLH2D + s↔ t = 0 . (A.7)

Class ψ4XD:

OprstduLLBD − s↔ t = 0 , OprstduLLWD + s↔ t = 0 , OprstduLLGD − s↔ t = 0 . (A.8)

Class ψ2ϕ4D2:

OpreeH4D2 − p↔ r = 0 , OprLLH4D23 − p↔ r = 0 . (A.9)

Class ψ2ϕ2XD2 (x = 2, 4):

OprLLH2D2Bx + p↔ r = 0 , OprLLH2D2B7 + p↔ r = EoM +OLLH2D2B1−6 terms , (A.10)

where EoM stands for operators produced via the use of EoM that are already covered
in the basis of dim-9 or lower dimensional operators.

Class ψ4ϕD2:

OprsteLLLH24 +OpsrteLLLH24 +OptrseLLLH24 = EoM +OeLLLH21−3 terms . (A.11)

Class ψ2ϕ2D4 (x = 1, 2, 3):

OprLLH2D4x − p↔ r = 0 . (A.12)
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� (∆B,∆L) = (2, 0) sector.

OprstvwddQQQQ1 +OprvwstddQQQQ1 = 0 , OprstvwddQQQQ1 +OrptswvddQQQQ1 = 0 ,

OprstvwddQQQQ2 +OprwvtsddQQQQ2 = 0 , OprstvwddQQQQ2 +OrptswvddQQQQ2 = 0 ,(
OprstvwddQQQQ1 + t↔ w

)
− s↔ v = 0 ,(

OprstvwddQQQQ2 + s↔ w
)
− t↔ v = 2OprwtsvddQQQQ1 ,(

OprstvwddQQQQ2 +OprsvwtddQQQQ2 −O
prswvt
ddQQQQ2

)
− p↔ r =

(
OprstvwddQQQQ1 + t↔ v

)
− p↔ r ,[(

OprstvwudddQQ + r ↔ s
)
− s↔ t

]
− v ↔ w = 0 ,

Oprstvwududdd1 +Ostprvwududdd1 = 0 , Oprstvwududdd2 +Ostprwvududdd2 = 0(
Oprstvwududdd1 +Optswvrududdd1 +Opwsrvtududdd1

)
− r ↔ t = 0 ,(

Oprstvwududdd1 +Opvstrwududdd1 +Oprsvtwududdd1
)
− v ↔ w = 0 ,(

Oprstvwududdd2 + t↔ w
)
− t↔ v =

(
Oprsvwtududdd1 + v ↔ w

)
− t↔ v , (A.13)

� (∆B,∆L) = (1, 3) sector.(
OprstvwLLLQuu + r ↔ s

)
− p↔ s = 0 , OprstvwLLLQuu + v ↔ w = 0 ,

OprstvwLLeuuu + p↔ r = 0 , OprstvwLLeuuu + v ↔ w = 0 ,
OprstvwLLeuuu +OprsvwtLLeuuu +OprswtvLLeuuu = 0 . (A.14)

� (∆B,∆L) = (1,−1) sector.
Class ψ4ϕX:

OprstLdddHB − s↔ t = 0 , OprstLdddHW − s↔ t = 0 ,
OprstLuddHB − s↔ t = 0 , OprstLuddHW − s↔ t = 0 ,
OprsteQddHB1 + s↔ t = 0 , OprsteQddHB2 − s↔ t = 0 ,

OprsteQddHW1 + s↔ t = 0 , OprsteQddHW2 − s↔ t = 0 ,

OprstLdQQHW2 + s↔ t = 0 , OprstLdQQHW4 − s↔ t = 0 . (A.15)

Class ψ4ϕ3:

OprstLdddH3 +s↔ t= 0 , OprstLdddH3 +OpstrLdddH3 +OptrsLdddH3 = 0 ,
OprsteQddH3 +s↔ t= 0 , OprstLdQQH32+s↔ t= 0 , OprstLuQQH3 +s↔ t= 0 ,

OprsteQQQH3 +s↔ t= 0 , OprsteQQQH3 +OpstreQQQH3 +OptrseQQQH3 = 0 . (A.16)

Class ψ6:

Oprstvweeeddd − p↔ r = 0 , Oprstvweeeddd + v ↔ w = 0 ,
Oprstvweeeddd +Oprsvwteeeddd +Oprswtveeeddd = 0 , OprstvweLLddd + v ↔ w = 0 ,
OprstvweLLddd +OprsvwteLLddd +OprswtveLLddd = 0 , OprstvwLLeudd − p↔ r = 0 ,

OprstvwLLeudd − v ↔ w = 0 , Oprstvweddddd + v ↔ w = 0 ,
Oprstvweddddd −O

prtsvw
eddddd +Oprvwsteddddd −O

prwvst
eddddd = 0 , Oprstvweddddd +Oprsvwteddddd +Oprswtveddddd = 0 ,

OprstvwLQdddu − t↔ v = 0 , OprstvweQuQdd1 + v ↔ w = 0 . (A.17)
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Class ψ4ϕ2D:

OprstedddH2D1 +OpstredddH2D1 +OptrsedddH2D1 = 0 , OprstedddH2D1 + s↔ t = 0 ,
OprstedddH2D2 − s↔ t = 0 , OprstLQddH2D1 − s↔ t = 0 ,

OprstLQddH2D2 − s↔ t = 0 , OprstedQQH2D − s↔ t = 0 ,(
OprstLQQQH2D2 − r ↔ s

)
+ r ↔ t = 0 , OprstLQQQH2D3 − s↔ t = 0 . (A.18)

Class ψ4XD:

OprstedddBD2 − r ↔ s = EoM +OedddBD1 terms ,

OprstedddBD2 − s↔ t = EoM +OedddBD1 terms ,

OprstedddGD3 − r ↔ s = EoM +OedddGD1−2 terms ,

OprstedddGD3 +OpstredddGD3 +OptrsedddGD3 = EoM +OedddGD1−2 terms ,
OprstLQddBD − s↔ t = 0 , OprstLQddWD − s↔ t = 0 . (A.19)

Class ψ4ϕD2:(
OprstLdddHD22 + r ↔ t

)
− s↔ t = EoM +OLdddHD21 terms ,

OprsteQddHD22 + s↔ t = 0 , OprsteQddHD24 − s↔ t = 0 , OprsteQddHD25 − s↔ t = 0 . (A.20)

Class ψ4D3:

OprstedddD3 +OprtsedddD3 +OptrsedddD3 = EoM . (A.21)
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Classes Configurations Operators # with nf

(∆B,∆L) = (0, 2)

ψ2ϕ6 L2H4H∗2 OLLH6 = εikεjl(LC,iLj)HkH l(H†H)2 1
2nf (nf + 1)

ψ2ϕ4X

L2H3H∗B OLLH4B = g1εikεjl(LC,iσµνL
j)HkH lBµν(H†H) 1

2nf (nf − 1)

L2H3H∗W
OLLH4W1 = g2εik(εW µν)jl(LC,iσµνL

j)HkH l(H†H) n2
f

OLLH4W2 = g2εikεjl(LC,iσµνL
j)HkH l(H†WµνH) 1

2nf (nf − 1)

ψ2ϕ2X2

L2H2B2 OLLH2B21 = α1εikεjl(LC,iLj)HkH lBµνB
µν 1

2nf (nf + 1)

OLLH2B22 = α1εikεjl(LC,iLj)HkH lBµνB̃
µν 1

2nf (nf + 1)

L2H2BW

OLLH2BW1 = g1g2εik(εW µν)jl(LC,iLj)HkH lBµν n2
f

OLLH2BW2 = g1g2εik(εW µν)jl(LC,iLj)HkH lB̃µν n2
f

OLLH2BW3 = g1g2εik(εW µν)jl(LC,iσµρL
j)HkH lB ρ

ν n2
f

L2H2W 2

OLLH2W 21 = α2εikεjl(LC,iLj)HkH lW I
µνW

I,µν 1
2nf (nf + 1)

OLLH2W 22 = α2εikεjl(LC,iLj)HkH lW I
µνW̃

I,µν 1
2nf (nf + 1)

OLLH2W 23 = α2(εWµν)ik(εW µν)jl(LC,iLj)HkH l 1
2nf (nf + 1)

OLLH2W 24 = α2(εWµν)ik(εW̃µν)jl(LC,iLj)HkH l 1
2nf (nf + 1)

OLLH2W 25 = α2(εWµρ)ik(εW ρ
ν )jl(LC,iσµνLj)HkH l 1

2nf (nf + 1)

OLLH2W 26 = α2(εWµρ)ij(εW ρ
ν )kl(LC,iσµνLj)HkH l 1

2nf (nf − 1)

L2H2G2 OLLH2G21 = α3εikεjl(LC,iLj)HkH lGAµνG
Aµν 1

2nf (nf + 1)

OLLH2G22 = α3εikεjl(LC,iLj)HkH lGAµνG̃
Aµν 1

2nf (nf + 1)

ψ4ϕX

L3e∗HB OeLLLHB = g1εijεkl(eLi)(LC,jσµνL
k)H lBµν n4

f

L3e∗HW
OeLLLHW1 = g2(εW µν)ijεkl(eLi)(LC,jσµνL

k)H l n4
f

OeLLLHW2 = g2εil(εW µν)jk(eLi)(LC,jσµνL
k)H l 1

2n
3
f (nf − 1)

ud∗LeHB
OdLueHB1 = g1εij(dσµνLi)(uCe)HjBµν n4

f

OdLueHB2 = g1εij(dLi)(uCσµνe)HjBµν n4
f

ud∗LeHW
OdLueHW1 = g2(εW µν)ij(dσµνLi)(uCe)Hj n4

f

OdLueHW2 = g2(εW µν)ij(dLi)(uCσµνe)Hj n4
f

ud∗LeHG
OdLueHG1 = g3εij(Gµν)αβ(dασµνLi)(uC,βe)Hj n4

f

OdLueHG2 = g3εij(Gµν)αβ(dαLi)(uC,βσµνe)Hj n4
f

Qd∗L2HB

OdLQLHB1 = g1εijεkl(dLi)(QC,jσµνL
k)H lBµν n4

f

OdLQLHB2 = g1εikεjl(dLi)(QC,jσµνL
k)H lBµν n4

f

OdLQLHB3 = g1εijεkl(dσµνLi)(QC,jLk)H lBµν n4
f

Qd∗L2HW

OdLQLHW1 = g2εij(εW µν)kl(dLi)(QC,jσµνL
k)H l n4

f

OdLQLHW2 = g2εik(εW µν)jl(dLi)(QC,jσµνL
k)H l n4

f

OdLQLHW3 = g2εil(εW µν)jk(dLi)(QC,jσµνL
k)H l n4

f

OdQLLHW1 = g2εij(εW µν)kl(dQi)(LC,jσµνL
k)H l n4

f

OdQLLHW2 = g2εil(εW µν)jk(dQi)(LC,jσµνL
k)H l 1

2n
3
f (nf − 1)

Qd∗L2HG

OdLQLHG1 = g3εijεkl(Gµν)αβ(dαLi)(QC,jβσµνL
k)H l n4

f

OdLQLHG2 = g3εikεjl(Gµν)αβ(dαLi)(QC,jβσµνL
k)H l n4

f

OdQLLHG = g3εijεkl(dGµνQi)(LC,jσµνL
k)H l n4

f

Q∗uL2HB
OQuLLHB1 = g1εij(Qσµνu)(LCLi)HjBµν n4

f

OQuLLHB2 = g1εij(Qu)(LCσµνL
i)HjBµν n4

f

Q∗uL2HW

OQuLLHW1 = g2(εW µν)ij(Qσµνu)(LCLi)Hj n4
f

OQuLLHW2 = g2(εW µν)ij(QσµνuH)(LC,iLj) 1
2n

3
f (nf + 1)

OQuLLHW3 = g2(εW µν)ij(Qu)(LCσµνL
i)Hj n4

f

OQuLLHW4 = g2(εW µν)ij(QuH)(LC,iσµνL
j) 1

2n
3
f (nf − 1)

Q∗uL2HG
OQuLLHG1 = g3εij(QGµνσµνu)(LCLi)Hj n4

f

OQuLLHG2 = g3εij(QGµνu)(LCσµνL
i)Hj n4

f

Table 2. Dim-9 operators in classes ψ2ϕ6, ψ2ϕ4X, ψ2ϕ2X2, ψ4ϕX for sector (∆B,∆L) = (0, 2).
There are 45 operators without counting fermion generations and 39 remain for one generation case.
Hermitian conjugated operators are not included or counted.
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Classes Configurations Operators # with nf

(∆B,∆L) = (0, 2)

ψ4ϕ3

L3e∗H2H∗ OeLLLH3 = εikεjlεmn(eLi)(LC,jLm)HkH lH̃n n4
f

L2L∗eH3 OLeLLH3 = εikεjl(LeH)(LC,iLj)HkH l 1
2n

3
f (nf + 1)

ud∗LeH2H∗ OdLueH3 = εij(dLi)(uCe)Hj(H†H) n4
f

Qd∗L2H2H∗

OdLQLH31 = εikεjlεmn(dLm)(QC,iLj)HkH lH̃n n4
f

OdLQLH32 = εikεjlεmn(dLi)(QC,mLj)HkH lH̃n n4
f

OdLQLH33 = εikεjlεmn(dLi)(QC,jLm)HkH lH̃n n4
f

Q∗uL2H2H∗
OQuLLH31 = δijεkl(Qiu)(LC,jLk)H l(H†H) n4

f

OQuLLH32 = εikεjl(QuH̃)(LC,iLj)HkH l 1
2n

3
f (nf + 1)

Q∗dL2H3 OQdLLH3 = εikεjl(QdH)(LC,iLj)HkH l 1
2n

3
f (nf + 1)

Qu∗L2H3 OuLQLH3 = εikεjlεmn(uLi)(QC,jLm)HkH lHn n4
f

QQ∗LeH3 OQeQLH3 = εikεjl(QeH)(QC,iLj)HkH l n4
f

ψ6

L4e∗2 OeLeLLL = εikεjl(eLi)(eLj)(LC,kLl) 1
24n

3
f (nf + 1)(5n2

f − 6nf + 13)

ud∗L2ee∗ OdLueeL = εij(dLi)(uCe)(eLj) n6
f

ud∗L3L∗ OLudLLL = δikεjl(Liu)(dLj)(LC,kLl) 1
3n

4
f (2n2

f + 1)

Qd∗L3e∗
OdLQLeL = εijεkl(dLi)(QC,jLk)(eLl) n6

f

OdQeLLL = εikεjl(dQi)(eLj)(LC,kLl) 1
3n

4
f (2n2

f + 1)

Q∗uL3e∗ OQueLLL = δikεjl(Qiu)(eLj)(LC,kLl) 1
3n

4
f (2n2

f + 1)

u2d∗2e2 Oddueue = δαρδβσ(dαdC,β)(uC,ρe)(uC,σe) 1
2n

3
f (n3

f + 1)

dud∗2L2 OduddLL1 = εij(dγµu)(dγµd)(LC,iLj) 1
2n

5
f (nf − 1)

OduddLL2 = εij(dγµu)(dγνd)(LC,iiσµνLj) 1
2n

5
f (nf + 1)

u2d∗u∗L2 OduuuLL1 = εij(dγµu)(uγµu)(LC,iLj) 1
2n

5
f (nf − 1)

OduuuLL2 = εij(dγµu)(uγνu)(LC,iiσµνLj) 1
2n

5
f (nf + 1)

Qud∗2Le
OdQdueL1 = εij(dQi)(dγµu)(eCγµLj) n6

f

OdQdueL2 = δασδβρεij(dαQiβ)(dργµuσ)(eCγµLj) n6
f

Q∗u2d∗Le
OQudueL1 = (Qu)(dγµu)(eCγµL) n6

f

OQudueL2 = δασδβρ(Qαuβ)(dργµuσ)(eCγµL) n6
f

Q2d∗2L2

OdQdQLL1 = εikεjl(dQi)(dQj)(LC,kLl) 1
2n

3
f (n3

f + 1)

OdQdQLL2 = εikεjlδασδβρ(dαQiβ)(dρQjσ)(LC,kLl) 1
2n

3
f (n3

f + 1)

OdQdQLL3 = εikεjl(dQi)(dσµνQj)(LC,kσµνLl) n6
f

OdQdQLL4 = εikεjl(dσµρQi)(dσ ρ
ν Q

j)(LC,kiσµνLl) 1
2n

3
f (n3

f + 1)

QQ∗ud∗L2

OdQQuLL1 = εij(dQi)(Qu)(LCLj) n6
f

OdQQuLL2 = δασδβρεij(dαQiβ)(Qρuσ)(LCLj) n6
f

OdQQuLL3 = εij(dσµνQi)(Qu)(LCσµνLj) n6
f

OdQQuLL4 = δασδβρεij(dασµνQiβ)(Qρuσ)(LCσµνLj) n6
f

Q∗2u2L2 OQuQuLL1 = δikδjl(Qiu)(Qju)(LC,kLl) 1
2n

3
f (n3

f + 1)

OQuQuLL2 = δασδβρδikδjl(Qiαuβ)(Qjρuσ)(LC,kLl) 1
2n

3
f (n3

f + 1)

Dψ2ϕ5 LeH4H∗D OeLH5D = εijεkl(eCγµL
i)Hj(HkiDµH l)(H†H) n2

f

Dψ2ϕ3X

LeH3BD
OeLH3BD1 = g1εijεkl(eCγµL

i)HjHkDνH
lBµν n2

f

OeLH3BD2 = g1εijεkl(eCγµL
i)HjHkDνH

lB̃µν n2
f

LeH3WD

OeLH3WD1 = g2εij(εW µν)kl(eCγµL
i)DνH

jHkH l n2
f

OeLH3WD2 = g2εij(εW µν)kl(eCγµL
i)HjHkDνH

l n2
f

OeLH3WD3 = g2εij(εW̃µν)kl(eCγµL
i)DνH

jHkH l n2
f

OeLH3WD4 = g2εij(εW̃µν)kl(eCγµL
i)HjHkDνH

l n2
f

Table 3. Dim-9 operators in classes ψ4ϕ3, ψ6, Dψ2ϕ5, Dψ2ϕ3X for sector (∆B,∆L) = (0, 2).
There are 43 operators without counting fermion generations and 41 remain for one generation case.
Hermitian conjugated operators are not included or counted.
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J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (0, 2)

Dψ4ϕ2

L2ee∗H2D

OeLeLH2D1 = εikεjl(eLi)(eCγµL
j)iDµHkH l n4

f

OeLeLH2D2 = εikεjl(eLi)(eCγµL
j)HkiDµH l n4

f

OeeLLH2D = εikεjl(eγµe)(LC,ii
←→
D µLj)HkH l 1

2n
3
f (nf − 1)

L3L∗H2D

OLLLLH2D1 = δikεjmεln(LiγµLj)(LC,kLl)iDµHmHn n4
f

OLLLLH2D2 = δikεjlεmn(LiγµLj)(LC,kLl)iDµHmHn 1
3n

2
f (2n2

f + 1)

OLLLLH2D3 = εikεjl(LγµL)(LC,ii
←→
D µLj)HkH l 1

2n
3
f (nf − 1)

dd∗L2H2D

OdLdLH2D1 = εikεjl(dLi)(dCγµL
j)iDµHkH l n4

f

OdLdLH2D2 = εikεjl(dLi)(dCγµL
j)HkiDµH l n4

f

OddLLH2D = εikεjl(dγµd)(LC,ii
←→
D µLj)HkH l 1

2n
3
f (nf − 1)

uu∗L2H2D

OuLuLH2D1 = εikεjl(uLi)(uCγµL
j)iDµHkH l n4

f

OuLuLH2D2 = εikεjl(uLi)(uCγµL
j)HkiDµH l n4

f

OuuLLH2D = εikεjl(uγµu)(LC,ii
←→
D µLj)HkH l 1

2n
3
f (nf − 1)

ud∗e2H2D OdeueH2D = εij(dγµe)(uCe)(H iiDµHj) n4
f

ud∗L2HH∗D

OdLuLH2D1 = εij(dLi)(uCγµL
j)(H†iDµH) n4

f

OdLuLH2D2 = εikεjl(dLi)(uCγµL
j)H̃kiDµH l n4

f

OdLuLH2D3 = εij(dLi)(uCγµL
j)[(iDµH)†H] n4

f

OdLuLH2D4 = εikεjl(dLi)(uCγµL
j)(iDµH̃)kH l n4

f

OduLLH2D = εikεjl(dγµu)(LC,iiDµL
j)H̃kH l n4

f

Qd∗LeH2D

OdQLeH2D1 = εikεjl(dQi)(LC,jγµe)iDµHkH l n4
f

OdQLeH2D2 = εikεjl(dQi)(LC,jγµe)HkiDµH l n4
f

OdLQeH2D1 = εikεjl(dLi)(QC,jγµe)iDµHkH l n4
f

OdLQeH2D2 = εikεjl(dLi)(QC,jγµe)HkiDµH l n4
f

OdeQLH2D = εikεjl(dγµe)(QC,iiDµLj)HkH l n4
f

Q∗uLeH2D

OQueLH2D1 = δikεjl(Qiu)(eCγµL
j)iDµHkH l n4

f

OQueLH2D2 = δikεjl(Qiu)(eCγµL
j)HkiDµH l n4

f

OQeuLH2D1 = δikεjl(Qie)(uCγµL
j)iDµHkH l n4

f

OQeuLH2D2 = δikεjl(Qie)(uCγµL
j)HkiDµH l n4

f

OQLueH2D = δikεjl(QiγµLj)(uCiDµe)HkH l n4
f

QQ∗L2H2D

OQLQLH2D1 = εikεjl(QγµL)(QC,iLj)iDµHkH l n4
f

OQLQLH2D2 = εikεjl(QγµL)(QC,iLj)HkiDµH l n4
f

OQLQLH2D3 = εikεjl(QγµLi)(QCLj)iDµHkH l n4
f

OQLQLH2D4 = εikεjl(QγµLi)(QCLj)HkiDµH l n4
f

OQLQLH2D5 = εikεjl(QγµLi)(QC,jL)iDµHkH l n4
f

OQQLLH2D1 = εikεjl(QγµQ)(LC,ii
←→
D µLj)HkH l 1

2n
3
f (nf − 1)

OQQLLH2D2 = εikεjl(QγµQi)(LCiDµLj)HkH l n4
f

Table 4. Dim-9 operators in class Dψ4ϕ2 for sector (∆B,∆L) = (0, 2). There are 35 operators
without counting fermion generations and 30 remain for one generation case. Hermitian conjugated
operators are not included or counted.
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J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (0, 2)

Dψ4X

ud∗L2BD

OdLLuBD1 = g1εij(dDµL
i)(LC,jγνu)Bµν n4

f

OdLuLBD2 = g1εij(dLi)(DµLC,jγνu)Bµν n4
f

OdLuLBD3 = g1εij(dLi)(LC,jγµDνu)Bµν n4
f

OduLLBD = g1εij(dγµu)(LC,i←→DνL
j)B̃µν 1

2n
3
f (nf + 1)

ud∗L2WD

OdLLuWD1 = g2(εW µν)ij(dDµL
i)(LC,jγνu) n4

f

OdLuLWD2 = g2(εW µν)ij(dLi)(DµLC,jγνu) n4
f

OdLuLWD3 = g2(εW µν)ij(dLi)(LC,jγµDνu) n4
f

OduLLWD = g2(εW̃µν)ij(dγµu)(LC,i←→DνL
j) 1

2n
3
f (nf − 1)

ud∗L2GD

OdLLuGD1 = g3εij(Gµν)αβ(dαDµL
i)(LC,jγνu

β) n4
f

OdLuLGD2 = g3εij(Gµν)αβ(dαLi)(DµLC,jγνu
β) n4

f

OdLuLGD3 = g3εij(Gµν)αβ(dαLi)(LC,jγµDνu
β) n4

f

OduLLGD = g3εij(G̃µν)αβ(dαγµuβ)(LC,i←→DνL
j) 1

2n
3
f (nf + 1)

D2ψ2ϕ4

e2H4D2 OeeH4D2 = εijεkl(eCe)(H iDµH
j)(HkDµH l) 1

2nf (nf + 1)

L2H3H∗D2

OLLH4D21 = εikεjl(H†DµH)(LC,iDµLj)HkH l n2
f

OLLH4D22 = εikεjl(H†DµH)(LC,iLj)HkDµH l n2
f

OLLH4D23 = εikεjl(H†H)(DµLC,iDµLj)HkH l 1
2nf (nf + 1)

OLLH4D24 = εikεjl(H†H)(LC,iDµL
j)DµHkH l n2

f

OLLH4D25 = εikεjl(H†H)(LC,iDµL
j)HkDµH l n2

f

OLLH4D26 = εikεjl(H†DµH)(LC,iiσµνLj)DνH
kH l n2

f

D2ψ2ϕ2X

L2H2BD2

OLLH2D2B1 = g1εikεjl(LC,iiDµL
j)HkDνH

lBµν n2
f

OLLH2D2B2 = g1εikεjl(LC,iLj)iDµH
kDνH

lBµν 1
2nf (nf − 1)

OLLH2D2B3 = g1εikεjl(LC,iiDµL
j)HkDνH

lB̃µν n2
f

OLLH2D2B4 = g1εikεjl(LC,iLj)iDµH
kDνH

lB̃µν 1
2nf (nf − 1)

OLLH2D2B5 = g1εikεjl(LC,iσµνDρL
j)DρHkH lBµν n2

f

OLLH2D2B6 = g1εikεjl(LC,iσµνDρL
j)HkDρH lBµν n2

f

OLLH2D2B7 = g1εikεjl(LC,iσµρL
j)DµHkDνH

lBνρ 1
2nf (nf − 1)

L2H2WD2

OLLH2D2W1 = g2εik(εW µν)jl(LC,iiDµL
j)DνH

kH l n2
f

OLLH2D2W2 = g2εik(εW µν)jl(LC,iiDµL
j)HkDνH

l n2
f

OLLH2D2W3 = g2εik(εW̃µν)jl(LC,iiDµL
j)DνH

kH l n2
f

OLLH2D2W4 = g2εik(εW̃µν)jl(LC,iiDµL
j)HkDνH

l n2
f

OLLH2D2W5 = g2εik(εW µν)jl(DρLC,iσµνL
j)DρHkH l n2

f

OLLH2D2W6 = g2εik(εW µν)jl(DρLC,iσµνL
j)HkDρH l n2

f

OLLH2D2W7 = g2εik(εW µν)jl(LC,iσµνDρL
j)DρHkH l n2

f

OLLH2D2W8 = g2εik(εW νρ)jl(LC,iσµρL
j)DµHkDνH

l n2
f

Table 5. Dim-9 operators in classes Dψ4X, D2ψ2ϕ4, D2ψ2ϕ2X for sector (∆B,∆L) = (0, 2).
There are 34 operators without counting fermion generations and 30 remain for one generation
case. Hermitian conjugated operators are not included or counted.

– 25 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (0, 2)

D2ψ4ϕ

L3e∗HD2

OeLLLH21 = εijεkl(eDµL
i)(DµLC,jLk)H l n4

f

OeLLLH22 = εijεkl(eDµL
i)(LC,jDµLk)H l n4

f

OeLLLH23 = εijεkl(eLi)(LC,jDµLk)DµH
l n4

f

OeLLLH24 = εijεkl(eLi)(DµLC,jLk)DµH l 1
3n

2
f (n2

f − 1)

ud∗LeHD2

OdLeuH21 = εij(dDµL
i)(DµeCu)Hj n4

f

OdLeuH22 = εij(dDµL
i)(eCDµu)Hj n4

f

OdLeuH23 = εij(dDµL
i)(eCu)DµHj n4

f

OdLeuH24 = εij(dLi)(DµeCu)DµHj n4
f

OdLeuH25 = εij(dLi)(eCDµu)DµHj n4
f

OdLeuH26 = εij(diσµνLi)(DµeCDνu)Hj n4
f

OdLeuH27 = εij(DµdDνL
i)(eCiσµνu)Hj n4

f

Qd∗L2HD2

OdLLQH21 = εijεkl(dDµL
i)(DµLC,jQk)H l n4

f

OdLLQH22 = εijεkl(dDµL
i)(LC,jDµQk)H l n4

f

OdLLQH23 = εijεkl(dDµL
i)(LC,jQk)DµH l n4

f

OdLLQH24 = εijεkl(dLi)(DµLC,jQk)DµH l n4
f

OdLLQH25 = εijεkl(dLi)(LC,jDµQ
k)DµH l n4

f

OdLLQH26 = εikεjl(dDµL
i)(DµLC,jQk)H l n4

f

OdLLQH27 = εikεjl(dDµL
i)(LC,jDµQk)H l n4

f

OdLLQH28 = εikεjl(dDµL
i)(LC,jQk)DµH l n4

f

OdLLQH29 = εikεjl(dLi)(DµLC,jQk)DµH l n4
f

OdLLQH210 = εikεjl(dLi)(LC,jDµQ
k)DµH l n4

f

Q∗uL2HD2

OQuLLH21 = δijεkl(QiDµu)(DµLC,jLk)H l n4
f

OQuLLH22 = δijεkl(QiDµu)(LC,jDµLk)H l n4
f

OQuLLH23 = δijεkl(QiDµu)(LC,jLk)DµH l n4
f

OQuLLH24 = δijεkl(Qiu)(DµLC,jLk)DµH l n4
f

OQuLLH25 = δijεkl(Qiu)(LC,jDµL
k)DµH l n4

f

OQuLLH26 = δijεkl(Qiiσµνu)(DµLC,jDνLk)H l n4
f

OQuLLH27 = δijεkl(DµQiDνu)(LC,jiσµνL
k)H l n4

f

D3ψ2ϕ3 LeH3D3

OLeHD31 = εijεkl(eCγµiDνL
i)DνHjDµHkH l n2

f

OLeHD32 = εijεkl(eCγµiDνL
i)HjDµHkDνH l n2

f

OLeHD33 = εijεkl(eCγµL
i)iDνH

jDµHkDνH l n2
f

D3ψ4 ud∗L2D3 OduLLD3 = εij(dγµiDνu)(DµLC,iDνLj) n4
f

D4ψ2ϕ2 L2H2D4

OLLH2D41 = εikεjl(DµLC,iDµLj)DνH
kDνH l 1

2nf (nf + 1)

OLLH2D42 = εikεjl(DµLC,iDνL
j)DµHkDνH l 1

2nf (nf + 1)

OLLH2D43 = εikεjl(DµLC,iDνL
j)DνHkDµH l 1

2nf (nf + 1)

Table 6. Dim-9 operators in classesD2ψ4ϕ, D3ψ2ϕ3, D4ψ4, D4ψ2ϕ2 for sector (∆B,∆L) = (0, 2).
There are 35 operators without counting fermion generations and 34 remain for one generation case.
Hermitian conjugated operators are not included or counted.
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J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (2, 0)

ψ6

d2Q4 OddQQQQ1 = εαβγερστ εikεjl(dC,αdρ)(QC,iβQjσ)(QC,kγQlτ ) 1
12n

3
f (nf + 1)(5n2

f − 6nf + 7)
OddQQQQ2 = εαβτ ερσγεikεjl(dC,αdρ)(QC,iβQjσ)(QC,kγQlτ )

d3Q2u OudddQQ = εαβγερστ εij(uC,αdρ)(dC,βdσ)(QC,iγQj,τ ) 1
6n

3
f (5n3

f + n2
f + nf − 1)

d4u2 Oududdd1 = εαβγερστ (uC,αdρ)(uC,βdσ)(dC,γdτ ) 1
48n

2
f (nf + 1)(25n3

f − 18n2
f + 35nf + 6)

Oududdd2 = εασγερβτ (uC,αdρ)(uC,βdσ)(dC,γdτ )

(∆B,∆L) = (1, 3)

ψ6 L3Qu2 OLLLQuu = εαβγεikεjl(LC,iLj)(LC,kQlα)(uC,βuγ) 1
6n

3
f (2n2

f + 1)(nf − 1)

L2eu3 OLLeuuu = εαβγ(LCεL)(eCuα)(uC,βuγ) 1
6n

3
f (nf + 1)(nf − 1)2

(∆B,∆L) = (1,−1)

ψ4ϕX

d3L∗HB OLdddHB = g1εαβγ(LdαH)(dC,βσµνd
γ)Bµν 1

2n
3
f (nf + 1)

d3L∗HW OLdddHW = g2εαβγ(LWµνdαH)(dC,βσµνd
γ) 1

2n
3
f (nf + 1)

d3L∗HG OLdddHG = g3(εGµν)αβγ(LdαH)(dC,βσµνd
γ) n4

f

ud2L∗H∗B
OLdudHB = g1εαβγ(LdαH̃)(uC,βσµνd

γ)Bµν n4
f

OLuddHB = g1εαβγ(LuαH̃)(dC,βσµνd
γ)Bµν 1

2n
3
f (nf + 1)

ud2L∗H∗W
OLdudHW = g2εαβγ(LWµνdαH̃)(uC,βσµνd

γ) n4
f

OLuddHW = g2εαβγ(LWµνuαH̃)(dC,βσµνd
γ) 1

2n
3
f (nf + 1)

ud2L∗H∗G

OLdudHG = g3(εGµν)αβγ(LdαH̃)(uC,βσµνd
γ) n4

f

OLdduHG = g3(εGµν)αβγ(LdαH̃)(dC,βσµνu
γ) n4

f

OLuddHG = g3(εGµν)αβγ(LuαH̃)(dC,βσµνd
γ) n4

f

Qd2e∗H∗B
OeQddHB1 = g1εαβγ(H†eσµνQα)(dC,βdγ)Bµν 1

2n
3
f (nf − 1)

OeQddHB2 = g1εαβγ(H†eQα)(dC,βσµνd
γ)Bµν 1

2n
3
f (nf + 1)

Qd2e∗H∗W
OeQddHW1 = g2εαβγ(H†WµνeσµνQ

α)(dC,βdγ) 1
2n

3
f (nf − 1)

OeQddHW2 = g2εαβγ(H†WµνeQα)(dC,βσµνd
γ) 1

2n
3
f (nf + 1)

Qd2e∗H∗G
OeQddHG1 = g3(εGµν)αβγ(H†eσµνQα)(dC,βdγ) n4

f

OeQddHG2 = g3(εGµν)αβγ(H†eQα)(dC,βσµνd
γ) n4

f

Q2dL∗H∗B
OLdQQHB1 = g1εαβγεij(Lσµνdα)(QC,βQiγ)H̃jBµν n4

f

OLdQQHB2 = g1εαβγεij(Ldα)(QC,βσµνQ
iγ)H̃jBµν n4

f

Q2dL∗H∗W

OLdQQHW1 = g2εαβγ(εW µν)ij(Lσµνdα)(QCβQiγ)H̃j n4
f

OLdQQHW2 = g2εαβγ(εW µν)ij(LσµνdαH̃)(QC,iβQjγ) 1
2n

3
f (nf − 1)

OLdQQHW3 = g2εαβγ(εW µν)ij(Ldα)(QCβσµνQ
iγ)H̃j n4

f

OLdQQHW4 = g2εαβγ(εW µν)ij(LdαH̃)(QC,iβσµνQ
jγ) 1

2n
3
f (nf + 1)

Q2dL∗H∗G

OLdQQHG1 = g3(εGµν)αβγεij(Lσµνdα)(QC,βQiγ)H̃j n4
f

OLdQQHG2 = g3(εGµν)αβγεij(LσµνdαH̃)(QC,iβQjγ) n4
f

OLdQQHG3 = g3(εGµν)αβγεij(Ldα)(QC,βσµνQ
iγ)H̃j n4

f

OLdQQHG4 = g3(εGµν)αβγεij(LdαH̃)(QC,iβσµνQ
jγ) n4

f

ψ4ϕ3

d3L∗H2H∗ OLdddH3 = εαβγ(LdαH)(dC,βdγ)(H†H) 1
3n

2
f (n2

f − 1)

d2uL∗HH∗2 OLdudH3 = εαβγ(LdαH̃)(uC,βdγ)(H†H) n4
f

Qd2e∗HH∗2 OeQddH3 = εαβγ(H†eQα)(dC,βdγ)(H†H) 1
2n

3
f (nf − 1)

Q2dL∗HH∗2
OLdQQH31 = εαβγεij(Ldα)(QC,βQiγ)H̃j(H†H) n4

f

OLdQQH32 = εαβγεikεjl(LdαH)(QC,iβQjγ)H̃kH̃ l 1
2n

3
f (nf − 1)

Q2uL∗H∗3 OLuQQH3 = εαβγεikεjl(LuαH̃)(QC,iβQjγ)H̃kH̃ l 1
2n

3
f (nf − 1)

Q3e∗H∗3 OeQQQH3 = εαβγεikεjl(H†eQα)(QC,iβQjγ)H̃kH̃ l 1
3n

2
f (n2

f − 1)

Table 7. Dim-9 operators in sectors (∆B,∆L) = (2, 0), (1, 3), and in classes ψ4ϕX, ψ4ϕ3 for
sector (∆B,∆L) = (1,−1). There are 40 operators without counting fermion generations and 29
remain for one generation case. Hermitian conjugated operators are not included or counted.
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J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (1,−1)

ψ6

d3ee∗2 Oeeeddd = εαβγ(eeC)(eCdα)(dC,βdγ) 1
6n

3
f (nf + 1)(n2

f − 1)

d3LL∗e∗ OeLLddd = εαβγ(eL)(Ldα)(dC,βdγ) 1
3n

4
f (n2

f − 1)

d2ueL∗2
OLeLdud = εαβγεij(Lie)(Ljdα)(uC,βdγ) n6

f

OLLeudd = εαβγεij(LiσµνLC,j)(eCuα)(dC,βσµνdγ) 1
4n

4
f (nf + 1)2

Qd2eL∗e∗ OeQLded = εαβγ(eQα)(Ldβ)(eCdγ) n6
f

Qd2LL∗2 OLQLdLd = εαβγδikδjl(LC,iQjα)(Lkdβ)(Lldγ) n6
f

Q2deL∗2 OLeLdQQ = εαβγδikδjl(Lie)(Ljdα)(QC,kβQlγ) n6
f

d4d∗e∗ Oeddddd = εαβγ(edC)(dCdα)(dC,βdγ) 1
4n

4
f (n2

f − 1)

d3uu∗e∗ Oeudddu = εαβγ(euC)(dCdα)(dC,βuγ) n6
f

Qd3d∗L∗ OLddQdd = εαβγ(Ldα)(dQβ)(dCdγ) n6
f

Q∗d3uL∗

OLdQddu1 = εαβγ(Ld)(Qdα)(dC,βuγ) n6
f

OLdQddu2 = εαβγ(Ldα)(Qd)(dC,βuγ) n6
f

OLQdddu = εαβγ(LσµνQC)(dC,ασµνdβ)(dCuγ) 1
2n

5
f (nf + 1)

Qd2uu∗L∗

OLduQud1 = εαβγ(Ldα)(uQ)(uC,βdγ) n6
f

OLduQud2 = εαβγ(Ldα)(uQβ)(uCdγ) n6
f

OLduQud3 = εαβγ(Ldα)(uQβ)(uC,γd) n6
f

Q2d2u∗e∗
OeQuQdd1 = εαβγ(eQα)(uQ)(dC,βdγ) 1

2n
5
f (nf − 1)

OeQuQdd2 = εαβγ(eQα)(uQβ)(dCdγ) n6
f

QQ∗d3e∗ OeQQddd = εαβγ(eQα)(Qdβ)(dCdγ) n6
f

Q3du∗L∗
OLduQQQ1 = εαβγεij(Ldα)(uQiβ)(QCQjγ) n6

f

OLduQQQ2 = εαβγεij(Ldα)(uQiβ)(QC,γQj) n6
f

Q2Q∗d2L∗

OLdQdQQ1 = εαβγδij(Ldα)(Qid)(QC,βQjγ) n6
f

OLdQdQQ2 = εαβγδij(Ldα)(Qidβ)(QCQjγ) n6
f

OLdQdQQ3 = εαβγδij(Ldα)(Qidβ)(QC,γQj) n6
f

Dψ4ϕ2

d3e∗HH∗D
OedddH2D1 = εαβγ(eγµdα)(dC,βdγ)(H†iDµH) 1

3n
2
f (n2

f − 1)

OedddH2D2 = εαβγ(eγµdα)(dC,βi
←→
D µdγ)(H†H) 1

2n
3
f (nf + 1)

d2ue∗H∗2D OedudH2D = εαβγ(eγµdα)(uC,βdγ)(H†iDµH̃) n4
f

Qd2L∗HH∗D

OLddQH2D1 = εαβγδij(Lidα)(dC,βγµQ
jγ)(H†iDµH) n4

f

OLddQH2D2 = εαβγεij(Ldα)(dC,βγµQ
iγ)H̃jiDµH n4

f

OLddQH2D3 = εαβγδij(Lidα)(dC,βγµQ
jγ)[(iDµH)†H] n4

f

OLddQH2D4 = εαβγεij(Ldα)(dC,βγµQ
iγ)(iDµH̃)jH n4

f

OLQddH2D1 = εαβγδij(LiγµQjα)(dC,βi
←→
D µdγ)(H†H) 1

2n
3
f (nf + 1)

OLQddH2D2 = εαβγεij(LγµQiα)(dC,βi
←→
D µdγ)H̃jH 1

2n
3
f (nf + 1)

QduL∗H∗2D

OLduQH2D1 = εαβγδikεjl(Lidα)(uC,βγµQ
jγ)iDµH̃kH̃ l n4

f

OLduQH2D2 = εαβγδikεjl(Lidα)(uC,βγµQ
jγ)H̃kiDµH̃ l n4

f

OLduQH2D3 = εαβγδikεjl(LiiDµdα)(uC,βγµQ
jγ)H̃kH̃ l n4

f

OLudQH2D1 = εαβγδikεjl(Liuα)(dC,βγµQ
jγ)iDµH̃kH̃ l n4

f

OLudQH2D2 = εαβγδikεjl(Liuα)(dC,βγµQ
jγ)H̃kiDµH̃ l n4

f

Q2de∗H∗2D

OeQdQH2D1 = εαβγεikεjl(eQiα)(dC,βγµQ
jγ)iDµH̃kH̃ l n4

f

OeQdQH2D2 = εαβγεikεjl(eQiα)(dC,βγµQ
jγ)H̃kiDµH̃ l n4

f

OedQQH2D = εαβγεikεjl(eγµdα)(QC,iβi
←→
D µQjγ)H̃kH̃ l 1

2n
3
f (nf + 1)

Q3L∗H∗2D

OLQQQH2D1 = εαβγδikεjmεln(LiγµQjα)(QC,kβQlγ)iDµH̃mH̃n n4
f

OLQQQH2D2 = εαβγδikεjlεmn(LiγµQjα)(QC,kβQlγ)iDµH̃mH̃n 1
3n

2
f (2n2

f + 1)

OLQQQH2D3 = εαβγεikεjl(LγµQα)(QC,iβi
←→
D µQjγ)H̃kH̃ l 1

2n
3
f (nf + 1)

Table 8. Dim-9 operators in classes ψ6, Dψ4ϕ2 for sector (∆B,∆L) = (1,−1). There are 44
operators without counting fermion generations and 39 remain for one generation case. The SU(3)C
contraction with δαβ is implied in class ψ6 class. Hermitian conjugated operators are not included
or counted.

– 28 –



J
H
E
P
1
1
(
2
0
2
0
)
1
5
2

Classes Configurations Operators # with nf

(∆B,∆L) = (1,−1)

Dψ4X

d3e∗BD
OedddBD1 = g1εαβγ(eγµdα)(dC,βDνd

γ)Bµν n4
f

OedddBD2 = g1εαβγ(eγµdα)(dC,βDνd
γ)B̃µν 1

6n
2
f (n2

f + 3nf + 2)

d3e∗GD

OedddGD1 = g3(εGµν)αβγ(eγµdα)(DνdC,βdγ) n4
f

OedddGD2 = g3(εGµν)αβγ(eγµdα)(dC,βDνd
γ) n4

f

OedddGD3 = g3(εG̃µν)αβγ(eγµdα)(dC,βDνd
γ) 1

3n
2
f (n2

f − 1)

Qd2L∗BD

OLddQBD1 = g1εαβγ(LDµd
α)(dC,βγνQ

γ)Bµν n4
f

OLddQBD2 = g1εαβγ(Ldα)(DµdC,βγνQ
γ)Bµν n4

f

OLddQBD3 = g1εαβγ(Ldα)(dC,βγµDνQ
γ)Bµν n4

f

OLQddBD = g1εαβγ(LγµQα)(dC,β←→Dνd
γ)B̃µν 1

2n
3
f (nf + 1)

Qd2L∗WD

OLddQWD1 = g2εαβγ(Wµν)ij(LiDµd
α)(dC,βγνQ

jγ) n4
f

OLddQWD2 = g2εαβγ(Wµν)ij(Lidα)(DµdC,βγνQ
jγ) n4

f

OLddQWD3 = g2εαβγ(Wµν)ij(Lidα)(dC,βγµDνQ
jγ) n4

f

OLQddWD = g2εαβγ(W̃µν)ij(LiγµQjα)(dC,β←→Dνd
γ) 1

2n
3
f (nf + 1)

Qd2L∗GD

OLddQGD1 = g3(εGµν)αβγ(LDµd
α)(dC,βγνQ

γ) n4
f

OLddQGD2 = g3(εGµν)αβγ(Ldα)(DµdC,βγνQ
γ) n4

f

OLddQGD3 = g3(εGµν)αβγ(Ldα)(dC,βγµDνQ
γ) n4

f

OLddQGD4 = g3(εGµν)αγβ(LDµd
α)(dC,βγνQ

γ) n4
f

OLddQGD5 = g3(εGµν)αγβ(Ldα)(DµdC,βγνQ
γ) n4

f

OLddQGD6 = g3(εGµν)αγβ(Ldα)(dC,βγµDνQ
γ) n4

f

OLQddGD = g3(εG̃µν)αβγ(LγµQα)(dC,βDνd
γ) n4

f

D2ψ4ϕ

d3L∗HD2 OLdddHD21 = εαβγ(LDµd
α)(dC,βDµdγ)H n4

f

OLdddHD22 = εαβγ(Ldα)(dC,βDµd
γ)DµH 1

3n
2
f (2n2

f + 1)

d2uL∗H∗D2

OLdduHD21 = εαβγδij(LiDµd
α)(DµdC,βuγ)H̃ l n4

f

OLdduHD22 = εαβγδij(LiDµd
α)(dC,βDµuγ)H̃ l n4

f

OLdduHD23 = εαβγδij(LiDµd
α)(dC,βuγ)DµH̃ l n4

f

OLdduHD24 = εαβγδij(Lidα)(DµdC,βuγ)DµH̃ l n4
f

OLdduHD25 = εαβγδij(Lidα)(dC,βDµu
γ)DµH̃ l n4

f

Qd2e∗H∗D2

OeQddHD21 = εαβγεij(eDµQ
iα)(DµdC,βdγ)H̃j n4

f

OeQddHD22 = εαβγεij(eDµQ
iα)(dC,βdγ)DµH̃j 1

2n
3
f (nf − 1)

OeQddHD23 = εαβγεij(eQiα)(DµdC,βdγ)DµH̃j n4
f

OeQddHD24 = εαβγεij(eiσµνQiα)(DµdC,βDνdγ)H̃j 1
2n

3
f (nf + 1)

OeQddHD25 = εαβγεij(DµeDνQ
iα)(dC,βiσµνdγ)H̃j 1

2n
3
f (nf + 1)

Q2dL∗H∗D2

OLQQdHD21 = εαβγδijεkl(LiDµd
α)(DµQC,jβQkγ)H̃ l n4

f

OLQQdHD22 = εαβγδijεkl(LiDµd
α)(QC,jβDµQkγ)H̃ l n4

f

OLQQdHD23 = εαβγδijεkl(LiDµd
α)(QC,jβQkγ)DµH̃ l n4

f

OLQQdHD24 = εαβγδijεkl(Lidα)(DµQC,jβQkγ)DµH̃ l n4
f

OLQQdHD25 = εαβγδijεkl(Lidα)(QC,jβDµQ
kγ)DµH̃ l n4

f

OLQQdHD26 = εαβγδijεkl(Liiσµνdα)(DµQC,jβDνQ
kγ)H̃ l n4

f

OLQQdHD27 = εαβγδijεkl(DµLiDνd
α)(QC,jβiσµνQkγ)H̃ l n4

f

D3ψ4 d3e∗D3 OedddD3 = εαβγ(eγµiDνd
α)(DµdC,βDνdγ) 1

3n
2
f (n2

f − 1)

Qd2L∗D3 OLQddD3 = εαβγ(LγµiDνQ
α)(DµdC,βDνdγ) n4

f

Table 9. Dim-9 operators in classes Dψ4X, D2ψ4ϕ, D3ψ4 for sector (∆B,∆L) = (1,−1). There
are 41 operators without counting fermion generations and 38 remain for one generation case.
Hermitian conjugated operators are not included or counted.
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