
An explicit example of a maximal 3-cyclically

monotone operator with bizarre properties

Heinz H. Bauschke∗ and Xianfu Wang†

August 22, 2007 (originally submitted October 27, 2006)

Abstract

Subdifferential operators of proper convex lower semicontinuous functions and, more generally, maximal
monotone operators are ubiquitous in optimization and nonsmooth analysis. In between these two classes
of operators are the maximal n-cyclically monotone operators. These operators were carefully studied
by Asplund, who obtained a complete characterization within the class of positive semidefinite (not
necessarily symmetric) matrices, and by Voisei, who presented extension theorems à la Minty.

All previous explicit examples of maximal n-cyclically monotone operators are maximal monotone;
thus, they inherit the known good properties of maximal monotone operators. In this paper, we construct
an explicit maximal 3-cyclically monotone operator with quite bizarre properties. This construction
builds upon a recent, nonconstructive and Zorn’s Lemma-based, example. Our operator possesses two
striking properties that sets it far apart from both the maximal monotone operator and the subdifferential
operator case: it is not maximal monotone and its domain, which is closed, fails to be convex. Indeed, the
domain is the boundary of the unit diamond in the Euclidean plane. The path leading to this operator
requires some new results that are interesting in their own right.
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1 Introduction

Throughout this paper, we assume that

X is a real Banach space with continuous dual X∗, dual pairing 〈·, ·〉, and norm ‖ · ‖. (1)

Let A be a set-valued operator from X to X∗, i.e., (∀x ∈ X) Ax ⊆ X∗ so that A is a mapping from X to
the power set of X∗. We use the notation A : X ⇉ X∗ and remark that A can be identified with its graph

∗Mathematics, Irving K. Barber School, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7,

Canada. E-mail: heinz.bauschke@ubc.ca.
†Mathematics, Irving K. Barber School, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7,

Canada. E-mail: shawn.wang@ubc.ca.

1



graA :=
{

(x, x∗) ∈ X × X∗ | x∗ ∈ Ax
}

. Now let n ∈ {2, 3, . . .}. Then A is n-cyclically monotone if

(a1, a
∗
1) ∈ graA,

...
(an, a∗

n) ∈ graA
an+1 := a1



















⇒
n

∑

i=1

〈ai+1 − ai, a
∗
i 〉 ≤ 0. (2)

We note that 2-monotonicity simplifies to

(

∀(x, x∗) ∈ graA
)(

∀(y, y∗) ∈ graA
)

〈x − y, x∗ − y∗〉 ≥ 0, (3)

i.e., to ordinary monotonicity. Cyclic monotonicity describes the situation when A is m-cyclically monotone
for every m ∈ {2, 3, . . .}. The operator A is maximal n-cyclically monotone if A is n-cyclically monotone
and no proper extension (in the sense of inclusion of graphs) of A is n-cyclically monotone. Zorn’s Lemma
guarantees that every n-cyclically monotone operator admits a maximal n-cyclically monotone extension. At
the one end of the spectrum of maximal n-cyclically monotone operators are the maximal 2-monotone, i.e.,
the maximal monotone operators. At the other end are the maximal cyclically monotone operators, which
Rockafellar revealed to be the subdifferential operators of functions that are convex, lower semicontinuous,
and proper [8]. Subdifferential and maximal monotone operators play a central role in optimization and
nonsmooth analysis; see, e.g., [5, 9, 10, 11, 13].

Even though maximal monotone operators may fail to be subdifferential operators (consider, e.g., a
nonzero skew linear operator), they often have properties similar to subdifferential operators. As an example,
if X is a “nice” space (say reflexive) and A is maximal monotone, then the closure of the domain domA :=
{

x ∈ X | Ax 6= ∅
}

of A, similarly for range of A denoted by ranA := A(X) =
⋃

x∈X Ax, is convex; see, e.g.,
[6, 7, 11].

To test such properties for maximal n-cyclic monotonicity, concrete examples are needed. Although n-
cyclic monotone operators were analyzed by Asplund [1] and by Voisei [12], the only concrete examples are
matrices. (See also [3] for the special case of rotators in the Euclidean plane.) Since matrices are continuous
operators with full domain, they are maximal monotone and thus have good properties. The existence of a
maximal 3-cyclic monotone operator that is not maximal monotone was established recently in [2]. However,
this operator was not explicitly known — the proof was based on Zorn’s Lemma.

The goal of this note is to present an explicit maximal 3-cyclically monotone operator that is not maximal

monotone. This operator has another bizarre property that is in striking contrast to the maximal monotone

operator and the subdifferential operator case: its domain is closed but not convex. In fact, convexity fails
in a spectacular fashion — the operator’s domain is the boundary of the unit diamond.

The remainder of the paper is organized as follows. In Section 2, we present several new results on
n-cyclically monotone operators that will aid us in the construction of the announced operator. Some of
these results are quite interesting in their own right: Theorem 2.10 relates the recession cone of images to
the normal cone of the closed convex hull of the domain, Theorem 2.12 is a characterization of maximal
monotonicity within the class of maximal n-cyclically monotone operator that underlines the importance of
convexity, and Theorem 2.14 gives precise information on the effect of adding a normal cone operator. The
final Section 3 contains the actual construction of the operator. This is done in several steps, culminating
in Theorem 3.10.

Our notation is standard; see, e.g., [13]. For a nonempty subset S of X , we use conv S, conv S, recS,
intS, and riS to denote its convex hull, its closed convex hull, its recession cone, its interior, and its relative
interior, respectively. For a nonempty convex closed subset C of X and a point x ∈ C, the tangent and the
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normal cone of C at x are denoted by TC(x) and by NC(x), respectively. We write R+ =
{

ρ ∈ R | ρ ≥ 0
}

.
Finally, the closed and relatively open line segments between two distinct vectors x and y in X are [x, y] :=
{

(1 − λ)x + λy | 0 ≤ λ ≤ 1
}

and ]x, y[ :=
{

(1 − λ)x + λy | 0 < λ < 1
}

, respectively.

2 Auxiliary results

Recognizing and constructing n-cyclically monotone operators

Let A : X ⇉ X∗ be such that graA contains only finitely many points. Given n ∈ {2, 3 . . .}, it is conceptually
simple to decide whether A is n-cyclically monotone: one has to check whether each of finitely many cyclic
sums (as in (2)) is negative or zero. Our first result shows that if we are interested in all orders of cyclic
monotonicity, then we only need to perform finitely many computations.

Theorem 2.1 Let A : X ⇉ X∗ and let n ∈ {2, 3, . . .}. Suppose that A is n-cyclically monotone and that

graA contains exactly n points. Then A is cyclically monotone.

Proof. Using strong induction on m, we show that A is m-cyclically monotone for every m ≥ n+1. Suppose
that A is (m − 1)-cyclically monotone for some m ≥ n + 1 and take

{

(b1, b
∗
1), . . . , (bm, b∗m)

}

⊆ graA. (4)

We must show that

σ :=

m
∑

i=1

〈bi+1 − bi, b
∗
i 〉 ≤ 0, where bm+1 := b1. (5)

Since m ≥ n + 1 but graA contains only n points, there exist integers k and l such that

bk = bl and 1 ≤ k < l ≤ m. (6)

We split σ into σ1 + σ2, where

σ1 :=

l−1
∑

i=k

〈bi+1 − bi, b
∗
i 〉 and σ2 :=

m
∑

i=l

〈bi+1 − bi, b
∗
i 〉 +

k−1
∑

i=1

〈bi+1 − bi, b
∗
i 〉 (7)

are two cyclic sums, each of which contains at least one term and hence at most (m − 1) terms. Since A is
(m − 1)-cyclically monotone, we see that σ1 ≤ 0 and that σ2 ≤ 0. Therefore, σ = σ1 + σ2 ≤ 0. �

Remark 2.2 Rockafellar [8] (see also [13, Proposition 2.4.3]) showed that for every cyclically monotone
operator A, there exists a convex lower semicontinuous and proper function f : X → ]−∞, +∞] such that
graA ⊆ gra∂f . In fact, if A is n-cyclically monotone and graA contains exactly n points, then A is
cyclically monotone (by Theorem 2.1). Rockafellar’s proof, together with an argument similar to the proof
of Theorem 2.1, shows that there exists a continuous polyhedral function f with graA ⊂ gra∂f .

Remark 2.3 To construct a maximal n-cyclically monotone operator that is not maximal monotone, it is
natural to start with an operator A such that A is n-cyclically monotone, but A is not (n + 1)-cyclically
monotone, and graA contains n + 1 points. (Starting with n or fewer points is not advisable because one
might end up with a cyclically monotone extension; see Theorem 2.1.) Indeed, this clue helped us construct
the bizarre monotone operator in Section 3; see Remark 3.2.
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We now provide some basic results concerning the construction and characterization of n-cyclically mono-
tone operators. The proofs of the first two results are omitted since they are straightforward.

Proposition 2.4 Let A : X ⇉ X∗ and let B : X ⇉ X∗ be n-cyclically monotone operators, for some

n ∈ {2, 3, . . .}. Then A + B is n-cyclically monotone.

Proposition 2.5 Let A : X ⇉ X∗, let n ∈ {2, 3, . . .}, and let B : X ⇉ X∗ be such that its graph is the

norm×weak* closure of graA. Then A is n-cyclically monotone ⇔ B is n-cyclically monotone.

The next result is part of the folklore.

Proposition 2.6 Let n ∈ {2, 3, . . .} and let S1 × · · · × Sn ⊆ Y n, where Y is a real vector space. Then
conv(S1 × · · · × Sn) = (conv S1) × · · · × (conv Sn).

Corollary 2.7 Let n ∈ {2, 3, . . .}, let S1, . . . , Sn be subsets of X∗, and let, for every i ∈ {1, . . . , n}, yi ∈
conv(Si). Then there exist finitely many reals λ1, . . . , λm in [0, 1] such that λ1 + · · · + λm = 1 and there

exists, for every i ∈ {1, . . . , n}, subsets {si,k}1≤k≤m of Si such that yi = λ1si,1 + · · · + λmsi,m.

Corollary 2.7 has the following useful consequence.

Proposition 2.8 Let A : X ⇉ X∗, let n ∈ {2, 3, . . .}, and set B : X ⇉ X∗ : x 7→ conv(Ax). Then A is

n-cyclically monotone ⇔ B is n-cyclically monotone.

Proof. “⇐”: Clear. “⇒”: Assume that A is n-cyclically monotone, and take (x1, y
∗
1), . . . , (xn, y∗

n) in graB.
By Corollary 2.7, there exist convex coefficients λ1, . . . , λm and sets {x∗

i,k}1≤k≤m in Axi such that

(

∀i ∈ {1, . . . , n}
)

y∗
i =

m
∑

k=1

λkx∗
i,k. (8)

Set xn+1 := x1. Because A is n-cyclically monotone, we have (∀k ∈ {1, . . . , m}) 0 ≥
∑n

i=1〈xi+1 − xi, x
∗
i,k〉. Multiply the kth inequality by λk, and add all resulting inequalities to deduce that

0 ≥
∑

k λk

∑

i〈xi+1 − xi, x
∗
i,k〉 =

∑

i〈xi+1 − xi,
∑

k λkx∗
i,k〉 =

∑

i〈xi+1 − xi, y
∗
i 〉. The other direction is

obvious. �

Properties of maximal n-cyclically monotone operators

We first recall the following result which deals with the extensibility of n-cyclic monotone operators.

Fact 2.9 [2, Proposition 2.7] Let A : X ⇉ X∗ be n-cyclically monotone for some n ∈ {2, 3, . . .}, let (x, x∗) ∈
X × X∗, and define B : X ⇉ X∗ via graB := graA ∪ {(x, x∗)}. Then (x, x∗) is n-cyclically monotonically

related to graA, i.e., graB is n-cyclically monotone ⇔

sup
(a1,a∗

1
)∈gra A
...

(an−1,a∗

n−1
)∈gra A

( n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉

)

+ 〈x − an−1, a
∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (9)
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Theorem 2.10 Let A : X ⇉ X∗ be maximal n-cyclically monotone for some n ∈ {2, 3, . . .}, let x ∈ domA,
and set C := conv domA. Then rec(Ax) = NC(x).

Proof. Take x∗ ∈ Ax, and (a1, a
∗
1), . . . , (an−1, a

∗
n−1) in graA.

“NC(x) ⊆ rec(Ax)”: Take y∗ ∈ NC(x). Since A is n-cyclically monotone, we have

n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (10)

Now a1 ∈ domA ⊆ C, thus
〈a1 − x, y∗〉 ≤ 0. (11)

Adding (10) and (11), we obtain

n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗ + y∗〉 ≤ 0. (12)

By Fact 2.9, (x, x∗+y∗) is n-cyclically monotonically related to graA. As A is maximal n-cyclically monotone,
we deduce that x∗ + y∗ ∈ Ax. Therefore, Ax + y∗ ⊆ Ax and hence y∗ ∈ rec(Ax).

“rec(Ax) ⊂ NC(x)”: Let z∗ ∈ rec(Ax). Then (∀ρ > 0) x∗ + ρz∗ ∈ Ax and hence

n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗ + ρz∗〉 ≤ 0, (13)

which, after dividing by ρ and letting ρ → +∞, yields 〈a1 − x, z∗〉 ≤ 0. Since a1 is an arbitrary point in
domA, it follows that z∗ ∈ NC(x). �

Corollary 2.11 Suppose that X is finite-dimensional and let A : X ⇉ X∗ be maximal n-monotone for

some n ∈ {2, 3, . . .}. Then either domA is unbounded or ranA is unbounded. Consequently, graA contains
infinitely many points.

Proof. Assume to the contrary that both domA and ranA are bounded. We claim that

domA is closed. (14)

Indeed, take a sequence (an)n∈N in domA such that an → a ∈ X . Suppose (∀n ∈ N) a∗
n ∈ Aan. Since

(a∗
n)n∈N is bounded and X∗ is finite-dimensional, we assume that (a∗

n)n∈N converges to a∗ ∈ X∗. The
n-cyclic maximality of A and Proposition 2.5 imply that graA is closed. Thus (a, a∗) ∈ graA and hence
a ∈ domA, which verifies (14). Since domA is bounded and closed, [9, Theorem 17.2] implies that C :=
conv domA = conv domA. Next, [9, Corollary 18.3.1 and Corollary 18.5.3] yield an extreme point x of C
such that x ∈ domA. Clearly, x ∈ bdry C and thus, by [9, Theorem 23.4], NC(x) is unbounded. In view of
Theorem 2.10, rec(Ax) is unbounded and so is Ax. This is absurd since we assumed that domA and ranA
are bounded. �

The following result, which is of use in Section 3, underlines the importance of convexity.

Theorem 2.12 Suppose that X is finite-dimensional and let A : X ⇉ X∗ be maximal n-cyclically monotone
for some n ∈ {2, 3, . . .}. Then A is maximal monotone ⇔ ri conv domA ⊆ domA.

Proof. “⇒”: This implication is due to Minty [6]. “⇐”: Combine [4, Proposition 2.2(iii) and Corollary 2.8]
with [2, Corollary 2.15]. �
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Extension of n-cyclically monotone operators

Proposition 2.13 Let A : X ⇉ X∗, let n ∈ {2, 3, . . .}, let (x, x∗) ∈ X × X∗, and set B : X ⇉ X∗ : x 7→
conv(Ax). Then (x, x∗) is n-cyclically monotonically related to graA ⇔ (x, x∗) is n-cyclically monotonically

related to graB.

Proof. “⇐”: is clear. “⇒”: Use (9) and argue analogously to the proof of Proposition 2.8. �

We now demonstrate that adding a normal cone operator may be useful in order to restrict the domain
of n-cyclically monotone extensions.

Theorem 2.14 Let A : X ⇉ X∗, let n ∈ {2, 3, . . .}, let (x, x∗) ∈ X × X∗, and set C := conv domA. Then
(x, x∗) is n-cyclically monotonically related to gra(A + NC) if and only if

(x, x∗) is n-cyclically monotonically related to graA and (15)

x ∈
⋂

a∈dom A

(

a + TC(a)
)

. (16)

Proof. Take (a1, a
∗
1), . . . , (an−1, a

∗
n−1) in graA.

“⇒”: By Fact 2.9, we have ∀(ai, a
∗
i ) ∈ graA with i = 1, . . . , n − 1,

sup

( n−2
∑

i=1

〈ai+1 − ai, a
∗
i + NC(ai)〉 + 〈x − an−1, a

∗
n−1 + NC(an−1)〉 + 〈a1 − x, x∗〉

)

≤ 0. (17)

Since 0 belongs to each normal cone NC(ai), we obtain

n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (18)

Using again Fact 2.9, we see that this implies (15). Now assume that a1 = · · · = an−1. Then (17) becomes
sup〈x − a1, a

∗
1 + NC(a1) − x∗〉 ≤ 0; equivalently,

sup〈x − a1, NC(a1)〉 ≤ 〈x − a1, x
∗ − a∗

1〉. (19)

Since NC(a1) is a cone, we must have sup〈x − a1, NC(a1〉 ≤ 0. Therefore, x − a1 ∈ TC(a1) and hence
x ∈ a1 + TC(a1), which verifies (16).

“⇐”: By (15) and Fact 2.9, ∀(ai, a
∗
i ) ∈ graA with i = 1, · · · , n − 1 we have

n−2
∑

i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (20)

Take, for every i ∈ {1, . . . , n − 1}, y∗
i ∈ NC(ai). Then

n−2
∑

i=1

〈ai+1 − ai, y
∗
i 〉 ≤ 0. (21)
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By (16), x − an−1 ∈ TC(an−1) and thus

〈x − an−1, y
∗
n−1〉 ≤ 0. (22)

Adding (20)–(22), we obtain

n−2
∑

i=1

〈ai+1 − ai, a
∗
i + y∗

i 〉 + 〈x − an−1, a
∗
n−1 + y∗

n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (23)

Then (x, x∗) is n-cyclically monotonically related to gra(A + NC) by Fact 2.9. �

We now turn to the condition (16). The following general result will be used in Section 3.

Theorem 2.15 Suppose that X is a Hilbert space and let S be a nonempty subset of X such that C := conv S
is closed. Then

⋂

s∈S

(

s + TC(s)
)

= C. (24)

Proof. For every s ∈ S, we have C − s ⊆ cone(C − s) = TC(s) and hence C ⊆ s + TC(s). Thus

C ⊆
⋂

s∈S

(

s + TC(s)
)

. (25)

Now take x ∈ X r C. To conclude the proof, it suffice to find a point s ∈ S such that

x /∈ s + TC(s). (26)

Denote by PCx the projection of x onto the nonempty closed convex set C. Then x 6= PCx and the halfspace

H :=
{

y ∈ X | 〈y − PCx, x − PCx〉 ≤ 0
}

(27)

contains C. We claim that
S ∩ bdry H 6= ∅. (28)

Otherwise, S ⊆ intH ⇒ C = conv S ⊆ intH ⇒ PCx ∈ intH , which is absurd since PCx ∈ bdry H . Thus
(28) is true, and we take s ∈ S ∩ bdry H . Then

s ∈ S and 〈s − PCx, x − PCx〉 = 0. (29)

and hence (∀c ∈ C) 〈c − s, x − PCx〉 = 〈c − PCx, x − PCx〉 + 〈PCx − s, x − PCx〉 ≤ 0. Thus

C − s ⊆ K :=
{

y ∈ X | 〈y, x − PCx〉 ≤ 0
}

. (30)

Since K is a closed convex cone, we deduce that TC(s) = cone(C − s) ⊆ K. Thus

s + TC(s) ⊆ s + K. (31)

If x ∈ s + K, then x − s ∈ K and hence (using once more (29)) we would obtain the absurdity

0 < ‖x − PCx‖2 = 〈x − PCx, x − PCx〉 + 〈PCx − s, x − PCx〉 = 〈x − s, x − PCx〉 ≤ 0. (32)

Thus x /∈ s + K. By (31), x /∈ s + TC(s) and therefore (26) holds, which completes the proof. �
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Corollary 2.16 Suppose that X is finite-dimensional, let S be a nonempty bounded closed subset of X, and
set C := conv S. Then

⋂

s∈S

(

s + TC(s)
)

= C. (33)

Proof. By [9, Theorem 17.2], conv S is closed. The result thus follows from Theorem 2.15. �

Remark 2.17 Corollary 2.16 fails if the assumption that S be bounded or the assumption that S be closed
is omitted: (i) If S :=

{

(x, y) ∈ R
2 | |x|y = 1

}

, then S is nonempty, unbounded, and closed, and the set
C := conv S is equal to the closed upper halfplane; therefore (∀s ∈ S) TC(s) = R

2 and (33) fails. (ii) If
S :=

{

(x, y) ∈ R
2 | x2 + y2 < 1

}

, then S is nonempty, bounded, but not closed, and (33) fails again.

3 The bizarre example

Introducing A and its graph closure B

From now on, X = R
2. We shall construct a maximal 3-cyclically monotone operator M with remarkable

properties. This will require several steps. Let us denote the full unit diamond by D, i.e.,

D :=
{

(x, y) ∈ R
2 | |x| + |y| ≤ 1

}

. (34)

The extreme points of D are

b1 := (1, 0), b2 := (0, 1), b3 := (−1, 0), and b4 := (0,−1). (35)

Now define

a1 : [0, 1] → [b1,b2] : t 7→ (1 − t, t), a∗
1 : [0, 1] → X : t 7→ (−t, 1 − t),

a2 : [0, 1] → [b2,b3] : t 7→ (−t, 1 − t), a∗
2 : [0, 1] → X : t 7→ (−1, 0),

a3 : [0, 1] → [b3,b4] : t 7→ (t − 1,−t), a∗
3 : [0, 1] → X : t 7→ (t − 1, t − 2),

a4 : [0, 1] → [b4,b1] : t 7→ (t, t − 1), a∗
4 : [0, 1] → X : t 7→ (0,−1).

Since (∀t ∈ [0, 1]) 〈a1(t),a
∗
1(t)〉 = 0, 〈a2(t),a

∗
2(t)〉 = t, 〈a3(t),a

∗
3(t)〉 = 1, and 〈a4(t),a

∗
4(t)〉 = 1− t, we obtain

(∀i ∈ {1, 2, 3, 4})(∀j ∈ {1, 2, 3, 4})(∀s ∈ [0, 1]) [0, 1] → R
3 : t 7→





〈ai(t),a
∗
i (t)〉

〈ai(s),a
∗
j (t)〉

〈ai(t),a
∗
j (s)〉



 is affine. (36)

Define A : R
2 ⇉ R

2 via

graA :=
⋃

i∈{1,2,3,4},t∈]0,1[

{(

ai(t), a∗
i (t)

)}

. (37)

Note that the domain of A consists of the four relatively open line segments in the boundary of the unit
diamond D, i.e.,

domA = ]b1,b2[ ∪ ]b2,b3[ ∪ ]b3,b4[ ∪ ]b4,b1[ . (38)

Let B be the graph closure of A, i.e., B is defined by

graB := graA. (39)
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Since
(∀i ∈ {1, 2, 3, 4}) [0, 1] → R

4 : t 7→ (ai(t),a
∗
i (t)) is continuous, (40)

it is clear that
graB =

⋃

i∈{1,2,3,4},t∈[0,1]

{(

ai(t), a∗
i (t)

)}

. (41)

Hence
domB = [b1,b2] ∪ [b2,b3] ∪ [b3,b4] ∪ [b4,b1], (42)

i.e., the domain of B is the boundary of the unit diamond D. Define B r A : R
2 ⇉ R

2 via

gra(B r A) := (graB) r (graA) (43)

and observe that
gra(B r A) =

{(

ai(t),a
∗
i (t)

)

| i ∈ {1, 2, 3, 4}, t ∈ {0, 1}
}

(44)

contains only finitely many — in fact, at most eight — points. Proposition 2.5 states that

A is 3-cyclically monotone if and only if B is. (45)

Set
µ := sup

each (xi,x
∗

i
)∈graB

〈x2 − x1,x
∗
1〉 + 〈x3 − x2,x

∗
2〉 + 〈x1 − x3,x

∗
3〉. (46)

Then B is 3-cyclically monotone if and only if µ ≤ 0. Because of (40) and (41), the supremum in (46) is
attained, say

µ = 〈aj(s̄) − ai(r̄),a
∗
i (r̄)〉 + 〈ak(t̄ ) − aj(s̄),a

∗
j (s̄)〉 + 〈ai(r̄) − ak(t̄ ),a∗

k(t̄ )〉, (47)

where {i, j, k} ⊂ {1, 2, 3, 4} and {r̄, s̄, t̄ } ⊂ [0, 1]. Then

µ = max
r∈[0,1]

〈aj(s̄) − ai(r),a
∗
i (r)〉 + 〈ak(t̄ ) − aj(s̄),a

∗
j (s̄)〉 + 〈ai(r) − ak(t̄ ),a∗

k(t̄ )〉, (48)

and the function we maximize over r ∈ [0, 1] in (48) is affine (by (36)); thus, this function has a maximizer
in {0, 1}. Therefore, without loss of generality, we assume that r̄ ∈ {0, 1} and analogously that s̄ ∈ {0, 1}
and t̄ ∈ {0, 1}. Hence

µ = max
each (xi,x

∗

i
)∈(graB)r(graA)

〈x2 − x1,x
∗
1〉 + 〈x3 − x2,x

∗
2〉 + 〈x1 − x3,x

∗
3〉, (49)

which implies that
B is 3-cyclically monotone if and only if B r A is. (50)

Combining (45) with (50), we have thus established the following result.

Proposition 3.1 The following are equivalent.

(i) A is 3-cyclically monotone.

(ii) B is 3-cyclically monotone.

(iii) B r A is 3-cyclically monotone.

Proposition 3.1 shows that the verification of 3-cyclic monotonicity of B, the graph of which has infinitely
many points, can be reduced to the verification of 3-cyclic monotonicity of B r A, the graph of which has
only finitely many points. We will tackle this verification in the next subsection.
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Verifying that B is 3-cyclically monotone

Recall the expression for the graph of B r A given in (44). It turns out that this graph contains only six
different points:

gra(B r A) =
⋃

i∈{1,2,...,6}

{

(bi,b
∗
i )}, (51)

where

b1 = (1, 0) = a1(0), b∗
1 := (0, 1) = a∗

1(0), (52)

b2 = (0, 1) = a2(0) = a1(1), b∗
2 := (−1, 0) = a∗

2(0) = a∗
1(1), (53)

b3 = (−1, 0) = a3(0) b∗
3 := (−1,−2) = a∗

3(0), (54)

b4 = (0,−1) = a4(0) = a3(1), b∗
4 := (0,−1) = a∗

4(0) = a∗
3(1), (55)

b5 := (−1, 0) = a2(1), b∗
5 := (−1, 0) = a∗

2(1), (56)

b6 := (1, 0) = a4(1), b∗
6 := (0,−1) = a∗

4(1). (57)

Remark 3.2 We wish to point out that the operator with graph
⋃

i∈{1,2,3,4}{(bi,b
∗
i )} was utilized in [2]

and [4]. (This operator, and hence B, is not 4-cyclically monotone.) The construction presented in this
section is the result of our effort to find a concrete maximal 3-cyclically monotone extension of this operator.

To tackle 3-cyclic monotonicity, we set — analogously to (46) —

σ := sup
each (xi,x

∗

i
)∈gra(BrA)

〈x2 − x1,x
∗
1〉 + 〈x3 − x2,x

∗
2〉 + 〈x1 − x3,x

∗
3〉. (58)

Observe that B r A is 3-cyclically monotone if and only if σ ≤ 0. Since gra(B r A) contains only finitely
many points (see (51)), the supremum in (58) is attained. In fact, we write equivalently

σ = max
{i,j,k}⊂{1,2,...,6}

〈bj − bi,b
∗
i 〉 + 〈bk − bj ,b

∗
j 〉 + 〈bi − bk,b∗

k〉. (59)

This formulation requires us to compute 63 = 216 sums. We computed σ using the following (nonoptimized)
code written in GNU Octave. (See http://www.octave.org for further information on this freely available
software. The adaption of this code to other programming languages is straightforward.)

b=[1 0;0 1;-1 0;0 -1;-1 0; 1 0];

bstar = [0 1;-1 0;-1 -2;0 -1;-1 0;0 -1];

sigma = -Inf;

for i=1:6 for j=1:6 for k=1:6

t1 = (b(j,:)-b(i,:))*bstar(i,:)’;

t2 = (b(k,:)-b(j,:))*bstar(j,:)’;

t3 = (b(i,:)-b(k,:))*bstar(k,:)’;

sigma=max(sigma,t1+t2+t3);

end end end

disp(sigma);

The code yields σ = 0. (Note that we are not in any danger of having to deal with round-off errors: the
vectors in gra(B r A) all have small integer entries, which implies that the sums in (59) are all integers as
well). Therefore, B r A is 3-cyclically monotone. In view of Proposition 3.1, we have verified the following
result.

Proposition 3.3 The operator B is 3-cyclically monotone.
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Introducing C and M

We now set
C : R

2
⇉ R

2 : x 7→ conv(Bx). (60)

It is clear that (recall (42))

domC = domB = [b1,b2] ∪ [b2,b3] ∪ [b3,b4] ∪ [b4,b1], (61)

and that (combine Proposition 3.3 and Proposition 2.8)

C is 3-cyclically monotone. (62)

The operator C is identical to the operator B, except (see (52)–(57)) for B(b1) = {b∗
1,b

∗
6} ⊂ C(b1) = [b∗

1,b
∗
6]

and for B(b3) = {b∗
3,b

∗
5} ⊂ C(b3) = [b∗

3,b
∗
5]. Finally, we set

M := C + ND, (63)

where ND is the normal cone operator of the full unit diamond D. Since ND = ∂ιD is a subdifferential
operator, it is cyclically monotone and, in particular, 3-cyclically monotone. In view of Proposition 2.4 and
(61), we obtain the following result.

Proposition 3.4 The operator M is 3-cyclically monotone with

domM = (domC) ∩ (domND) = domC = [b1,b2] ∪ [b2,b3] ∪ [b3,b4] ∪ [b4,b1]. (64)

Deriving the extension inequalities for M

We aim to show that M is maximal 3-cyclically monotone. To this end, let

(x,x∗) =
(

(x, y), (u, v)
)

∈ R
2 × R

2 = R
4 (65)

be 3-cyclically monotonically related to M, i.e.,

{(

(x, y), (u, v)
)}

∪ (graM) is 3-cyclically monotone. (66)

We must show that
(

(x, y), (u, v)
)

∈ graM. (67)

Since domC is nonempty, bounded and closed, with D = conv domC, Corollary 2.16 yields

⋂

z∈domC

(

z + TD(z)
)

= D. (68)

Now (68) and Theorem 2.14 show that (66) is equivalent to

{(

(x, y), (u, v)
)}

∪ (graC) is 3-cyclically monotone and (x, y) ∈ D. (69)

In view of (34) and Proposition 2.13, we write (69) equivalently as

|x| + |y| ≤ 1 and
{(

(x, y), (u, v)
)}

∪ (graB) is 3-cyclically monotone. (70)
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Using Fact 2.9, we note that the second condition in (70) is equivalent to

sup
each (xi,x

∗

i
)∈graB

〈x2 − x1,x
∗
1〉 + 〈(x, y) − x2,x

∗
2〉 + 〈x1 − (x, y), (u, v)〉 ≤ 0. (71)

Arguing as in the proof that led to the equivalence (50), we obtain that (71) is equivalent to

max
each (xi,x

∗

i
)∈gra(BrA)

〈x2 − x1,x
∗
1〉 + 〈(x, y) − x2,x

∗
2〉 + 〈x1 − (x, y), (u, v)〉 ≤ 0. (72)

In view of (51) and (52)–(57), we obtain the following result.

Proposition 3.5 The point
(

(x, y), (u, v)
)

∈ R
4 is 3-cyclically monotonically related to graM if and only if

(x, y) ∈ D, i.e.,

|x| + |y| ≤ 1, (73)

and the extension inequalities

(

∀{i, j} ⊂ {1, 2, . . . , 6}
)

〈bj − bi,b
∗
i 〉 + 〈(x, y) − bj ,b

∗
j 〉 ≤ 〈(x, y) − bi, (u, v)〉 (74)

hold.

Listing the extension inequalities for M

We sort the inequalities (74) parameterized by {i, j} ⊂ {1, 2, . . . , 6} into two groups: i = j and i 6= j. The
case when i = j in (74) results in the six inequalities

(∀i ∈ {1, 2, . . . , 6}) 〈(x, y) − bi,b
∗
i 〉 ≤ 〈(x, y) − bi, (u, v)〉, (75)

i.e.,

y ≤ (x − 1)u + yv, (76)

−x ≤ xu + (y − 1)v, (77)

−x − 1 − 2y ≤ (x + 1)u + yv, (78)

−y − 1 ≤ xu + (y + 1)v, (79)

−x − 1 ≤ (x + 1)u + yv, (80)

−y ≤ (x − 1)u + yv. (81)

We now turn to the case when i 6= j in (74). Since b1 = b6, b3 = b5, b∗
2 = b∗

5, and b∗
4 = b∗

6, each of the
sets {b1, . . . ,b6} and {b∗

1, . . . ,b
∗
6} contains actually only four elements. If i 6= j, but bi = bj or b∗

i = b∗
j ,

then we obtain one of the inequalities previously considered in (76)–(81). Thus, the remaining inequalities
have the form

i 6= j, bi 6= bj and b∗
i 6= b∗

j . (82)

Therefore, we do not have to consider the extension inequalities corresponding to

{i, j} ∈
{

{1, 6}, {3, 5}, {2, 5}, {4, 6}
}

. (83)
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The remaining extension inequalities (74) are

i = 1, j = 2 : 1 − x ≤ (x − 1)u + yv, (84)

i = 2, j = 1 : −1 + y ≤ xu + (y − 1)v, (85)

i = 1, j = 3 : −1 − x − 2y ≤ (x − 1)u + yv, (86)

i = 3, j = 1 : −2 + y ≤ (x + 1)u + yv, (87)

i = 1, j = 4 : −2 − y ≤ (x − 1)u + yv, (88)

i = 4, j = 1 : −1 + y ≤ xu + (y + 1)v, (89)

i = 1, j = 5 : −1 − x ≤ (x − 1)u + yv, (90)

i = 5, j = 1 : −2 + y ≤ (x + 1)u + yv, (91)

i = 2, j = 3 : −x − 2y ≤ xu + (y − 1)v, (92)

i = 3, j = 2 : −3 − x ≤ (x + 1)u + yv, (93)

i = 2, j = 4 : −1 − y ≤ xu + (y − 1)v, (94)

i = 4, j = 2 : −2 − x ≤ xu + (y + 1)v, (95)

i = 2, j = 6 : −1 − y ≤ xu + (y − 1)v, (96)

i = 6, j = 2 : −1 − x ≤ (x − 1)u + yv, (97)

i = 3, j = 4 : −y ≤ (x + 1)u + yv, (98)

i = 4, j = 3 : −2 − x − 2y ≤ xu + (y + 1)v, (99)

i = 3, j = 6 : −2 − y ≤ (x + 1)u + yv, (100)

i = 6, j = 3 : −1 − x − 2y ≤ (x − 1)u + yv, (101)

i = 4, j = 5 : −2 − x ≤ xu + (y + 1)v, (102)

i = 5, j = 4 : −2 − y ≤ (x + 1)u + yv, (103)

i = 5, j = 6 : −2 − y ≤ (x + 1)u + yv, (104)

i = 6, j = 5 : −1 − x ≤ (x − 1)u + yv. (105)

We have verified the following result.

Proposition 3.6 The point
(

(x, y), (u, v)
)

∈ R
4 is 3-cyclically monotonically related to graM if and only if

|x| + |y| ≤ 1 and the 28 inequalities (76)–(81) and (84)–(105) hold.

Simplifying the extension inequalities

The 28 inequalities referred to in Proposition 3.6 are clearly not easy to handle. Fortunately, we are able to
reduce this system of inequalities significantly. The key is to observe that the 28 inequalities have only four
different right-hand sides, namely

(x − 1)u + yv, xu + (y − 1)v, (x + 1)u + yv, and xu + (y + 1)v, (106)

and that
|x| + |y| ≤ 1. (107)
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The right-hand side (x − 1)u + yv

The corresponding inequalities are (76), (81), (84), (86)=(101), (88), and (90)=(97)=(105), leaving us with
the following set of left-hand sides:

{y,−y, 1− x,−1 − x − 2y,−2− y,−1 − x}. (108)

Clearly, −1 − x ≤ 1 − x and also −2 − y ≤ y (recall (107)). Deleting two redundant left-hand sides, we
have reduced the set to {y,−y, 1 − x,−1 − x − 2y}. Moreover, by (107), we also have y ≤ 1 − x and
−1− x− 2y ≤ −y ≤ 1−x. Therefore, all inequalities with right-hand side (x− 1)u+ yv reduce to the single

inequality
1 − x ≤ (x − 1)u + yv. (109)

The right-hand side xu + (y − 1)v

The corresponding inequalities are (77), (85), (92), and (94)=(96), with the set of left-hand sides

{−x,−1 + y,−x − 2y,−1 − y}. (110)

Now x ± y ≤ x + |y| ≤ 1 ⇒ −1 ± y ≤ −x; thus, we are left with max{−x,−x − 2y} ≤ xu + (y − 1)v, which
we rewrite as

|y| − y − x ≤ xu + (y − 1)v. (111)

The right-hand side (x + 1)u + yv

The corresponding inequalities are (78), (80), (87)=(91), (93), (98), and (100)=(103)=(104). The set of
left-hand sides is

{−x − 1 − 2y,−x− 1,−2 + y,−3 − x,−y,−2 − y}. (112)

Now (107) reveals that −y is the largest element in this set. Therefore, we are left with the inequality

−y ≤ (x + 1)u + yv. (113)

The right-hand side xu + (y + 1)v

The corresponding inequalities are (79), (89), (95)=(102), and (99). The set of left-hand sides is

{−y − 1,−1 + y,−2 − x,−2 − x − 2y}. (114)

Again (107) is very useful; it allows to decide that −2 − x ≤ −1 + y and that −2 − x − 2y ≤ −1 − y. Thus
we are left with max{−1 + y,−1 − y} ≤ xu + (y + 1)v, i.e., with

−1 + |y| ≤ xu + (y + 1)v. (115)

Altogether, we have achieved a reduction from 29 inequalities to 5.
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Proposition 3.7 The point
(

(x, y), (u, v)
)

∈ R
4 is 3-cyclically monotonically related to graM if and only if

the following 5 inequalities hold.

|x| + |y| ≤ 1, (116)

1 − x ≤ (x − 1)u + yv, (117)

|y| − y − x ≤ xu + (y − 1)v, (118)

−y ≤ (x + 1)u + yv, (119)

−1 + |y| ≤ xu + (y + 1)v. (120)

Excluding the interior of the unit diamond

In this section, we assume that (x, y) lies in the interior of the unit diamond, i.e.,

|x| + |y| < 1, (121)

and that (117)–(120) hold. We will consider cases and each time arrive at a contradiction.

Case y = 0.

On the one hand, (117) becomes 1− x ≤ (x − 1)u ⇔ u ≤ −1. On the other hand, (119) yields 0 ≤ (x + 1)u
⇔ 0 ≤ u. Altogether, we have obtained the absurdity u ≤ −1 < 0 ≤ u.

Case y > 0.

In this case, (117)–(119) become

1 − x ≤ (x − 1)u + yv, (122)

−x ≤ xu + (y − 1)v, (123)

−y ≤ (x + 1)u + yv. (124)

Since 0 < y < 1, we solve (122)–(124) for v:

1 − x + u − xu

y
≤ v, (125)

x + xu

1 − y
≥ v, (126)

−y − u − xu

y
≤ v. (127)

Combining yields

1 − x + u − xu

y
≤

x + xu

1 − y
, (128)

−y − u − xu

y
≤

x + xu

1 − y
. (129)
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Now (128)–(129) are equivalent to the two inequalities

(1 − y)(1 − x + u − xu) ≤ y(x + xu), (130)

(1 − y)(−y − u − xu) ≤ y(x + xu), (131)

which we rewrite as

1 − x − y ≤ −u(1 − x − y), (132)

−y(1 + x − y) ≤ u(1 + x − y). (133)

By (121), we have 1 − y ± x > 0; hence, (132)–(133) yield 1 ≤ −u and −y ≤ u. Therefore, 1 ≤ −u ≤ y,
which contradicts (121).

Case y < 0.

In this case, (117), (119), and (120) become

1 − x ≤ (x − 1)u + yv, (134)

−y ≤ (x + 1)u + yv, (135)

−1 − y ≤ xu + (1 + y)v. (136)

Since −1 < y < 0, we solve (134)–(136) for v:

1 − x + u − xu

y
≥ v, (137)

−y − xu − u

y
≥ v, (138)

−1 − y − xu

1 + y
≤ v. (139)

Combining yields

−1 − y − xu

1 + y
≤

1 − x + u − xu

y
, (140)

−1 − y − xu

1 + y
≤

−y − xu − u

y
. (141)

Next, (140)–(141) are equivalent to

−(1 + y)(1 + y − x) ≥ u(1 + y − x), (142)

u(1 + y + x) ≥ 0. (143)

By (121), we have 1 + y ± x > 0; thus, (142)–(143) results in −(1 + y) ≥ u and u ≥ 0. Altogether,
0 ≥ −u ≥ 1 + y, which contradicts (121).

Therefore, we have obtained the following refinement of Proposition 3.7.
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Proposition 3.8 The point
(

(x, y), (u, v)
)

∈ R
4 is 3-cyclically monotonically related to graM if and only if

the following hold.

|x| + |y| = 1, (144)

1 − x ≤ (x − 1)u + yv, (145)

|y| − y − x ≤ xu + (y − 1)v, (146)

−y ≤ (x + 1)u + yv, (147)

−1 + |y| ≤ xu + (y + 1)v. (148)

Revisiting the boundary of the unit diamond

We now assume that
(

(x, y), (u, v)
)

is 3-cyclically monotonically related to graM, i.e., (144)–(148) hold (by
Proposition 3.8). We shall show that (u, v) ∈ M(x, y), and we do this by considering 8 cases (the 4 extreme
points of D, and the 4 relatively open line segments in the boundary of D).

Case (x, y) = b1 = (1, 0).

Then (145)–(148) simplify to

0 ≤ u, (149)

−u − 1 ≤ v ≤ u + 1; (150)

equivalently, to (u, v) ∈ [(0, 1), (0,−1)] + R+(1, 1) + R+(1,−1) = conv(B(1, 0)) + ND(1, 0) = M(1, 0).

Case (x, y) = b2 = (0, 1).

Then (145)–(148) are equivalent to
max{u + 1,−u − 1} ≤ v, (151)

i.e., (u, v) ∈ (−1, 0) + R+(−1, 1) + R+(1, 1) = B(0, 1) + ND(0, 1) = M(0, 1).

Case (x, y) = b3 = (−1, 0).

Then (145)–(148) simplify to

u ≤ −1, (152)

u − 1 ≤ v ≤ −u − 1; (153)

equivalently, to (u, v) ∈ [(−1, 0), (−1,−2)] + R+(−1, 1) + R+(−1,−1) = conv(B(−1, 0)) + ND(−1, 0) =
M(−1, 0).
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Case (x, y) = b4 = (0,−1).

Then (145)–(148) are equivalent to
v ≤ −|u| − 1, (154)

i.e., (u, v) ∈ (0,−1) + R+(−1,−1) + R+(1,−1) = B(0,−1) + ND(0,−1) = M(0,−1).

Case (x, y) = (1 − t, t) = a1(t) ∈ ]b1,b2[, where 0 < t < 1.

Then (145) and (146) yield v ≥ u + 1 and v ≤ u + 1, respectively. Hence v = u + 1. Then (147) becomes
u ≥ −t, which is stronger than u ≥ −1, i.e., (148). Thus write u = −t + ρ, where ρ ∈ R+, and therefore
(u, v) = (−t + ρ,−t + ρ + 1) = (−t,−t + 1) + ρ(1, 1) ∈ a∗

1(t) + ND(x, y) = A(x, y) + ND(x, y) = M(x, y).

Case (x, y) = (−t, 1 − t) = a2(t) ∈ ]b2,b3[, where 0 < t < 1.

Here (146) and (147) result in v ≤ −u − 1 and v ≥ −u − 1, respectively. Thus v = −u − 1. Then (148)
becomes u ≤ t − 1, which is weaker than (145), i.e., u ≤ −1. Hence write u = −1 − ρ, where ρ ∈ R+, and
therefore (u, v) = (−1−ρ, 1+ρ−1) = (−1, 0)+ρ(−1, 1) ∈ a∗

2(t)+ND(x, y) = A(x, y)+ND(x, y) = M(x, y).

Case (x, y) = (t − 1,−t) = a3(t) ∈ ]b3,b4[, where 0 < t < 1.

This time, (147) and (148) give v ≤ u−1 and v ≥ u−1, respectively. Hence v = u−1. Now (145) corresponds
to u ≤ −1 + t, which is stronger than u ≤ 0, which is the counterpart of (146). We write u = −1 + t − ρ,
where ρ ∈ R+, and observe that (u, v) = (t−1−ρ, t−2−ρ) = (t−1, t−2)+ρ(−1,−1) ∈ a∗

3(t)+ND(x, y) =
A(x, y) + ND(x, y) = M(x, y).

Case (x, y) = (t, t − 1) = a4(t) ∈ ]b4,b1[, where 0 < t < 1.

Here (145) and (148) yield v ≤ −u − 1 and v ≥ −u − 1, respectively. Hence v = −u − 1. Now (146)
becomes u ≥ −t, which is weaker than u ≥ 0, which is the outcome of (147). Hence (u, v) = (u,−u − 1) ∈
(0,−1) + R+(1,−1) = a∗

4(t) + ND(x, y) = A(x, y) + ND(x, y) = M(x, y).

Let us record the outcome of this subsection in the following result.

Proposition 3.9 The point
(

(x, y), (u, v)
)

∈ R
4 is 3-cyclically monotonically related to graM if and only if

it belongs to graM already.
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Summary

Theorem 3.10 The operator

M : R
2

⇉ R
2

x 7→



































































[(0, 1), (0,−1)] + R+(1, 1) + R+(1,−1), if x = (1, 0);

(−t, 1 − t) + R+(1, 1), if x = (1 − t, t) and 0 < t < 1;

(−1, 0) + R+(−1, 1) + R+(1, 1), if x = (0, 1);

(−1, 0) + R+(−1, 1), if x = (−t, 1 − t) and 0 < t < 1;

[(−1, 0), (−1,−2)] + R+(−1, 1) + R+(−1,−1), if x = (−1, 0);

(t − 1, t − 2) + R+(−1,−1), if x = (t − 1,−t) and 0 < t < 1;

(0,−1) + R+(−1,−1) + R+(1,−1), if x = (0,−1);

(0,−1) + R+(1,−1), if x = (t, t − 1) and 0 < t < 1;

∅, otherwise

(155)

is maximal 3-cyclically monotone and its domain

domM =
{

(x, y) ∈ R
2 | |x| + |y| = 1

}

(156)

is equal to the boundary of the unit diamond. In stark contrast, M is not maximal monotone; in fact,
every maximal monotone extension of M must have its domain equal to the full unit diamond

{

(x, y) ∈ R
2 |

|x| + |y| ≤ 1
}

.

Proof. Proposition 3.9 implies that M is maximal 3-cyclically monotone. Since (ri D)∩ (domM) = (intD)∩
(bdry D) = ∅, it is clear from Theorem 2.12 that M is not maximal monotone. Now let N be a maximal
monotone extension of M, and take (x,x∗) ∈ graN. Then (x,x∗) is monotonically related to C + ND. By
Theorem 2.14 and Corollary 2.16, x ∈ D. Thus

domN ⊆ D. (157)

Since N is an extension of M, we clearly have

bdry D = domM ⊆ domN, (158)

which implies D = conv bdry D ⊆ conv domN and thus

intD ⊆ int conv domN. (159)

Now [11, Theorem 18.3] states int domN = int conv domN. Hence (159) implies that

intD ⊆ int domN. (160)

Combining (158) and (160) yields
D ⊆ domN. (161)

In view of (157) and (161), we conclude that domN = D. �

Remark 3.11 It would be interesting to find a more systematic way of constructing a maximal n-cyclically
monotone operator that is not maximal monotone.
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