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1 Introduction

Electromagnetic waves propagate at the speed of light. Thus, the field at a certain

point in space and time depends only on field values within a dependency cone. A

tent pitching method introduces a special “causal” spacetime mesh that respects

this finite speed of propagation. It is not limited to Maxwell equations, but can

be applied to general hyperbolic equations. A tent pitching method requires a

numerical scheme to discretize the equation on that mesh. Discontinuous Galerkin

(DG) methods are of particular interest since they offer a systematic avenue to

build high order methods. For a given initial condition at the bottom of a tent,

the discrete equations may be solved within each individual tent, up to the tent

top. The computed solution at the tent top provides initial conditions for the tents

that follow later in time. This method is highly parallel, since many tents can be

solved independently. Methods using such tent-pitched meshes may be traced back

to [5, 7]. More recent works [1, 6, 8] develop Spacetime DG (SDG) methods within

tents by formulating local variational problems, for which linear systems are set up

and solved. Although these systems are local, the matrix size can grow rapidly with

the polynomial order, especially in four-dimensional spacetime tents. In this context
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it is natural to ask if one can develop explicit schemes (which usually perform well

under low memory bandwidth) that take advantage of tents.

A key ingredient to answer this question was presented in [2], where Mapped

Tent Pitching (MTP) schemes were introduced. The MTP discretization, which

proceeds by mapping tents to a spacetime cylinder, allows one to evolve the solution

either implicitly or explicitly within tents. The memory requirements of the explicit

MTP scheme are limited to what is needed for storing the spatial mesh, the solution

coefficients at one time step, and the topology of the tents.

In this work, we show that notwithstanding the above-mentioned advantages

of the explicit MTP scheme, one may lose higher order convergence if a naive

time stepping strategy (involving a standard explicit Runge-Kutta scheme) is used.

We then develop a new Taylor time-stepping for the local problems within tents.

Despite its simplicity, our numerical experiments show that it delivers optimal order

of convergence.

2 Mesh Generation by Tent Pitching

We start with a conforming spatial mesh consisting of elements T = {T } and

vertices V = {V }. We progress in time by defining a sequence of advancing fronts

τi . A front τi is given as a standard nodal finite element function on this mesh. It is

defined by storing the current time for every vertex of the mesh. We move from τi

to the next front τi+1 by moving one vertex forward in time, while keeping all other

vertices fixed. The spacetime domain between τi and τi+1 we call a tent. In Fig. 1,

the red domain is the tent between τi and τi+1.

Its projection to the spatial domain is exactly the vertex patch ωV around V of

the original mesh. The data to be stored for one tent are the bottom and top-times of

the central vertex, plus the times for all neighboring vertices.

Note that although the algorithm is described sequentially, it is highly parallel.

Vertices with graph-distance of at least two can be moved forward independently.

For example, in Fig. 1, all blue tents can be built and processed in parallel.

The distance for advancing a vertex is limited by the speed of light, a constraint

often referred to in the literature as the causality condition. Under this condition, the

Maxwell problem inside the tent is solvable using the initial conditions at the tent

bottom. Thus, the top boundary is an outgoing boundary and no boundary conditions

are needed there.

Fig. 1 Tent pitched spacetime mesh for a one-dimensional spatial mesh
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Note that the spatial mesh in Fig. 1 is refined towards the right boundary, which

leads to smaller tent heights at the right boundary. Hence, smaller time steps in

locally refined regions is a very natural feature of tent pitching methods.

3 The MTP Discretization

Now, we consider the discretization method for one tent domain K = {(x, t) : x ∈
ωV , ϕb(x) ≤ t ≤ ϕt (x))}, where ωV is the union of elements containing the vertex

V , and ϕb and ϕt are the bottom and top fronts, respectively, restricted to ωV . Our

aim is to numerically solve the Maxwell system on K , namely

∂tεE = ∇ × H , ∂tµH = −∇ × E , (1)

where boundary values for both fields are given at the tent bottom and ∇ = ∇x

denotes the spatial gradient.

The approach of MTP schemes is to map the tent domain to a spacetime cylinder

ωV × (0, 1) and solve the transformed equation there. The transformation from the

cylinder to the tent is denoted by Φ : ωV × (0, 1) → K and is defined by Φ(x, t̂) =
(x, ϕ(x, t̂)) where

ϕ(x, t̂) = (1 − t̂ )ϕb(x) + t̂ϕt (x) .

It is similar to the Duffy transformation mapping a square to a triangle (see Fig. 2).

With the notation

skew E =

⎛
⎜⎝

0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0

⎞
⎟⎠ ,

we can rephrase the curl operator as ∇ × E = div skew E, where the divergence

of the matrix function is taken row-wise. To simplify notation further, we define

u : K → R
6 by u = (E,H), and set g : K → R

6 and f : K → R
6×3 by

g(u) =
[

εE

µH

]
, f (u) =

[
− skew H

skew E

]
. (2)

Then (1) may be rewritten as the conservation law ∂tg(u) + divx f (u) = 0.

Furthermore, we define F(u) ∈ R
6×4 as

F(u) =
[
f (u) g(u)

]
=

[
− skew H εE

skew E µH

]
,
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Fig. 2 Tent mapped from a tensor product domain

which allows us to write Maxwell’s system (1) as the spacetime conservation law

divx,t F(u) = 0 . (3)

For each row of F , the spacetime divergence divx,t sums the spatial divergence of

the first three components with the time-derivative of the last component.

Now, we apply the Piola transformation to pull back F from the tent K to the

cylinder using the mapping Φ. The derivative of Φ and its transposed inverse are

Φ ′ =
[

I 0

∇ϕT δ

]
and (Φ ′)−T =

[
I −δ−1 ∇ϕ

0 δ−1

]
.

The Piola transform of F is F̂ (û)= P{F } = (det Φ ′)(F ◦Φ)(Φ ′)−T with û= u◦Φ.

Since the Piola transform provides an algebraic transformation of the divergence,

Eq. (3) is simply transformed to divx,t̂ F̂ (û) = 0 on the spacetime cylinder. Then,

inserting the Jacobian of Φ leads us to the transformed equation

∂t̂ (g(û) − f (û)∇ϕ) + divx(δf (û)) = 0 , (4)

where δ(x) = ϕt (x) − ϕb(x) is the local height of the tent. Note that ∇ϕ is an

affine-linear function in quasi-time t̂ . Equation (4) describes the evolution of û along

quasi-time from t̂ = 0 to t̂ = 1. Details of the calculations are given in [2].

The next step is the space discretization of (4) by a standard discontinuous

Galerkin method. Let Vh ⊂ [L2]6 be the DG finite element space of degree p on T.

On each tent we search for û : [0, 1] → Vh such that

∫

ωV

∂t̂

[
g(û) − f (û)∇ϕ

]
vh −

∑

T ⊂ωV

∫

T

δf (û)∇vh +
∑

F⊂ωV

∫

F

δfn(û
+, û−)�v� = 0

holds for all vh ∈ Vh and all t̂ ∈ [0, 1]. Only the restriction of Vh on the patch

ωV is used in this equation. The numerical flux fn(û
+, û−) depends on the positive

trace lims→0+ û(x + sn) and negative trace lims→0+ û(x − sn), where n is a unit

normal vector of arbitrary orientation to the face. The jump is defined as usual by
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�û� := û+ − û− and the mean value by {û} := 1
2
(û+ + û−). One example is the

upwind flux [3, p. 434]

fn(û
+, û−) =

[
{Ĥ } × n + �Êt�

−{Ê} × n + �Ĥt�

]
,

with the tangential components Êt = −(Ê×n)×n and Ĥt = −(Ĥ ×n)×n of Ê =
E◦Φ and Ĥ = H ◦Φ. Note that the local tent height δ enters the boundary integrals

as a multiplicative factor. At the outer boundary of the vertex patch we have δ = 0,

so the facet integrals on the outer boundary disappear. For the above semidiscrete

system, initial values for the tent problem are given finite element functions at the

tent bottom. The finite element solution on the tent top provides the initial conditions

for the next level tent. Therefore, no projection of initial values is needed when

propagating from one tent to the next.

After the semi-discretization, as usual, we are left to solve a system of N =
dim Vh(ωV ) ordinary differential equations for U : [0, 1] → R

N ,

d

dt̂

[
MU

]
(t̂) − AU(t̂) = 0 , t̂ ∈ (0, 1) , (5)

given U(0). The non-standard feature of (5) is that M is an affine-linear function

of the quasi-time t̂ (since our mapping enters the mass matrix M through ∇ϕ). The

matrix A is independent of t̂ . A straightforward approach is to substitute Y = MU

and solve

d

dt̂
Y − AM−1Y = 0 ,

instead of (5). Although first order convergence was observed with this strategy,

further numerical studies showed reduced order of convergence if the stage-order

of the Runge Kutta (RK) method is not high enough—see Fig. 3 (right). While the

implicit MTP schemes discussed in [2] do not show this problem, the issue remains

critical for explicit schemes. Thus, we propose to use a new type of explicit time-

stepping for time discretization, discussed next.

4 Structure-Aware Taylor Time-Stepping

Returning to the ordinary differential equation (5) and continuing to make the

substitution Y = MU , we now reconsider the previous equation as the following

differential-algebraic system:

d

dt̂
Y = AU , Y = MU . (6)
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We begin by subdividing the interval (0, 1) into m ∈ N smaller intervals of size 1
m

,

defined by (t̂i, t̂i+1) = ( i
m

, i+1
m

), for i ∈ N and 0 ≤ i ≤ m − 1. Recall that A is

independent of quasi-time t̂ , and M is an affine function of t̂ , i.e.,

M(t̂) = Mi + (t̂ − t̂i)M
′, t̂ ∈ (t̂i, t̂i+1)

where Mi = M(t̂i) and the derivative M ′ is a constant matrix. We want to design a

time-stepping scheme that is aware of this structure.

Consider the approximations to Y,U on (t̂i, t̂i+1) in the form of Taylor polyno-

mials Yi, Ui of degree q, defined by

Yi(t̂) =
q∑

n=0

(t̂ − t̂i)
n

n! Yi,n Ui(t̂) =
q−1∑

n=0

(t̂ − t̂i)
n

n! Ui,n , t̂ ∈ (t̂i, t̂i+1) ,

(7)

where Yi,n = Y
(n)
i (t̂i) and Ui,n = U

(n)
i (t̂i). To find these derivatives, we differentiate

both equations of (6) n times to get

Y (n+1)(t̂) = AU (n)(t̂) , n ≥ 0 ,

Y (n)(t̂) = M(t̂)U (n)(t̂) + nM ′U (n−1)(t̂) , n ≥ 1 .

For the second equation we used Leibnitz’ formula (fg)(n) =
∑n

i=0

(
n
i

)
f (i)g(n−i),

and the fact that M is affine-linear. Evaluating these equations for the Taylor

polynomials Yi, Ui at t̂ = t̂i , we obtain a recursive formula for Yi,n and Ui,n in

terms of Ui,n−1, namely

Yi,n = AUi,n−1 , 1 ≤ n ≤ q ,

MiUi,n = Yi,n − nM ′Ui,n−1 , 1 ≤ n ≤ q − 1 ,
(8)

for all 0 ≤ i ≤ m − 1. Given Y0,0 = Y (t̂0), M0U0,0 = Y0,0, applying (8) with

i = 0 gives the approximate functions Y0(t̂), U0(t̂) in the first subinterval (t̂0, t̂1).

The recursive formulas are initiated for later subintervals at n = 0 by

Yi,0 = Yi−1(t̂i), MiUi,0 = Yi,0 , 1 ≤ i ≤ m − 1 . (9)

After the final subinterval, we get Ym−1(tm), our approximation to Y (1). We

shall refer to the new time-stepping scheme generated by (8) as the q-stage SAT

(structure-aware Taylor) time-stepping.

Note that Ym−1(tm) is our approximation to Y = MU at the top of the tent. This

value is then passed to the next tent in time. The time dependence of M arises from

the time dependence of ∇ϕ. This gradient is continuous along spacetime lines of

constant spatial coordinates. Therefore, when passing from one element of a tent to
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the same element within the next tent in time, Y is continuous (since the solution U

is continuous). Of course, on flat fronts ∇ϕ = ∇τ = 0, so there M is just a diagonal

matrix containing the material parameters.

To briefly remark on the expected convergence rate of a q-stage SAT time-

stepping, recall that due to the mapping of the MTP method we solve for û = u◦Φ,

which satisfies ∂n
t̂
û = δn(∂n

t u) ◦ Φ. The causality condition implies that δ → 0 if

the mesh size h → 0. Thus we may expect the nth temporal derivative of û, and

correspondingly U (n), to go to zero at the rate O(hn). By using a q-stage SAT time-

stepping, we approximate the first q − 1 terms of the exact Taylor expansion of U .

Thus we expect the convergence rate to be O(hq), the size of the remainder term

involving U (q). The next section provides numerical evidence for this.

Before concluding this section, we should note that in (8) and (9), we tacitly

assumed that Mi is invertible. Let us show that this is indeed the case whenever the

causality condition (see Sect. 2) |∇ϕ| <
√

εµ is fulfilled. At any quasi-time t̂ , given

a ŵ = (ŵE, ŵH ) ∈ Vh whose coefficient vector in the basis expansion is W ∈ R
N ,

consider the equation M(t̂)U = W for the coefficient vector U of û ∈ Vh. This

equation, in variational form, is

∫

ωV

[g(û) − f (û)∇ϕ] · v̂ =
∫

ωV

(ŵE, ŵH ) · v̂, for all v̂ ∈ Vh. (10)

Let a(û, v̂) denote the left hand side of (10). To prove solvability of (10), it suffices

to prove that a(·, ·) is a coercive bilinear form on [L2]6 for any t̂ . By inserting

g(û) = [εÊ, µĤ ]T and f (û) = [− skew Ĥ , skew Ê]T into a(û, û),

a(û, û) =
∫

ωV

(εÊ − Ĥ × ∇ϕ) · Ê + (µĤ + Ê × ∇ϕ) · Ĥ

=
∫

ωV

εÊ · Ê + µĤ · Ĥ + 2(Ê × ∇ϕ) · Ĥ

≥
∫

ωV

εÊ · Ê + µĤ · Ĥ − 2
|∇ϕ|
√

εµ

√
ε|Ê|√µ|Ĥ | ,

where we used the Cauchy-Schwarz inequality and inserted
√

ε and
√

µ to achieve

the desired scaling. By applying Young’s inequality and |∇ϕ| <
√

εµ,

a(û, û) ≥
∫

ωV

εÊ · Ê + µĤ · Ĥ − |∇ϕ|
√

εµ
(εÊ · Ê + µĤ · Ĥ )

=
∫

ωV

(
1 − |∇ϕ|

√
εµ

)
(εÊ · Ê + µĤ · Ĥ ) ≥ C min (ε, µ)‖û‖2

L2
,

form some constant C > 0. Thus Mi is invertible and the SAT time-stepping is well

defined on all tents respecting the causality condition.
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One may exploit the specific details of the Maxwell problem to avoid the

assembly and the inversion of matrices Mi (as we have done in our implementation).

In fact, instead of (10), we can explicitly solve the corresponding exact undiscretized

equation obtained by replacing Vh by [L2]6 in (10). The solution û = (Ê, Ĥ ) in

closed form reads

Ê = 1

εµ − |∇ϕ|2
(

I − 1

εµ
∇ϕ∇ϕT

)
(µŵE + ŵH × ∇ϕ) ,

Ĥ = 1

εµ − |∇ϕ|2
(

I − 1

εµ
∇ϕ∇ϕT

)
(εŵH − ŵE × ∇ϕ) .

We then perform a projection of these into Vh to obtain the coefficients U(t̂i).

For uncurved elements, this just involves the inversion of a diagonal mass matrix.

For the small number of curved elements, we use a highly optimized algorithm

which uses an approximation instead of the exact inverse mass matrix.

5 Numerical Results

The MTP discretization in combination with the SAT time-stepping on tents is

implemented within the Netgen/NGSolve finite element library. In this section

numerical results concerning accuracy as well as performance are reported.

5.1 Convergence Studies in Two Space Dimensions

We consider the model problem in two space dimensions

∂tεEz = ∂xHy − ∂yHx , ∂tµHx = −∂yEz , ∂tµHy = ∂xEz ,

on the spacetime cube [0, π ]2 × [0,
√

2π ]. Parameters are set ε = µ = 1 such

that speed of light is c = 1. Initial and boundary values are set such that the exact

solution is given by

Ez = sin(x) sin(y) cos (
√

2t) ,

Hx = − 1√
2

sin(x) cos(y) sin (
√

2t) ,

Hy = 1√
2

cos(x) sin(y) sin (
√

2t) .

Based on a spatial mesh with mesh size h, we generate a tent pitched mesh

such that the maximal slope |∇ϕ| is bounded by (2c)−1 and apply a discontinuous
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O(h) O(h2) O(h3) O(h4) O(h5)

103 105 107dof

classical Runge-Kutta method

Fig. 3 Spatial L2 error of all field components over degrees of freedom (dof) for the (p+1)-stage

SAT time-stepping (left) and the classical Runge-Kutta (right)

Galerkin method in space using polynomials of order p, with 1 ≤ p ≤ 4. On each

cylinder we perform a (p + 1)-stage SAT time-stepping with m = 2p intervals. The

spatial L2 error of all field components at the final time is reported in the left plot

of Fig. 3. We observe that the error goes to zero at the optimal rate of O(hp+1) until

we are close to machine precision.

In contrast, the right plot in Fig. 3 illustrates the previously mentioned loss of

convergence rates when the classical Runge-Kutta method is used. The convergence

rates stagnate at first order no matter what p is used. A similar behavior was also

observed for other explicit Runge-Kutta methods.

5.2 Large Scale Problem in Three Space Dimensions

As a second example we present a simulation on a domain similar to the resonator

shown in [4]. The geometry is given as body of revolution of smooth B-spline

curves. The mesh consisting of 489,593 curved tetrahedral elements is shown in

Fig. 4. Due to higher curvature the mesh is refined along the inner roundings, where

the ratio of the largest to the smallest element is approximately 5:1. We used a

Gaussian peak (located at the axis of revolution and the position of the fifth inner

rounding) for the electric field as initial data. The explicit MTP scheme with SAT

time-stepping then computed the solution at t = 260 using time slabs of height

1, with each slab composed of Ntents = 149,072 tents. On each tent we used a

(p+1)-stage SAT time-stepping with m = 2p intervals, where p denotes the spatial

polynomial order. With the spatial degrees of freedom Ndof,i of the ith tent and the
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Fig. 4 Tetrahedral mesh with 489 k curved elements, ratio of the largest to the smallest element of

approximately 5:1 and the Hy component of solution at t = 260 calculated with spatial polynomial

order p = 3

Table 1 Number of degrees of freedom and simulation times for spatial polynomial orders

p = 2, 3

p = 2 p = 3

Number of spatial dof 2.938 × 107 5.875 × 107

Number of spacetime dof per slab 1.908 × 109 7.632 × 109

Simulation time per slab 4.6 s 49.2 s

Total simulation time 20 min 3 h 33 min

This data was generated using a shared memory server with 4 E7-8867 CPUs with 16 cores each

number of stages q = p + 1, we obtain the total spacetime degrees of freedom per

time slab

Ntents∑

i=1

Ndof,i m q =

⎛
⎝

Ntents∑

i=1

Ndof,i

⎞
⎠ 2p(p + 1) .

The corresponding numbers of degrees of freedom and the simulation times are

shown in Table 1. In [4] a similar problem is solved using a discontinuous Galerkin

method with quadratic elements, combined with a polynomial Krylov subspace

method in time. Using 96 cores it took them 7:10 h to reach the final time. Our

simulation with polynomial order p = 3, which has a comparable number of

unknowns, took 3:33 h on 64 cores. This significant speed up is an illustration of

the capability of the new method. The Hy component of the obtained solution at

t = 260, using third order polynomials in space, is shown in Fig. 4.
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