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Abstract

Due to its simplicity, the ubiquitous Elmore delay, or first
moment of the impulse response, has been an extremely popu-
lar delay metric for analyzing RC trees and meshes. Its inaccu-
racy has been noted, however, and it has been demonstrated
that higher order moments can be mapped to dominant pole
approximations (e.g. AWE) in the general case. The first three
moments can be mapped to a two-pole approximation, but sta-
bility is an issue, and even a stable model results in a transcen-
dental equation that must be iteratively evaluated to determine
the delay.

In this paper we describe an explicit delay approximation
based on the first three moments of the impulse response. We
begin with the development of a provably stable two-pole
transfer function/impedance model based on the first three
moments (about s=0) of the impulse response. Then, since the
model form is known, we evaluate the delay (any waveform
percentage point) in terms of an analytical approximation that
is consistently within a fraction of 1 percent of the “exact”
solution for this model. The result is an accurate, explicit delay
expression that will be an effective metric for high-speed inter-
connect circuit models.

1 Introduction

Moments and moment-matching approximations are
widely used as delay metrics and measures for RC circuit mod-
els of gates and their associated interconnect. The Elmore delay
[1, 2], or first moment of the impulse response, has been the
metric of choice for high-level design automation applications
due to the ease of calculation and the resulting closed form
expression for delay as a function of circuit parameters. For
more accurate analyses, several moments are often used to gen-
erate reduced-order transfer function approximations (e.g.
AWE [3]) that are efficiently applied for various back-end anal-
yses.

As RC interconnect effects become more pronounced,
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however, the simple Elmore delay approximation is an inade-
quate delay measure for all nodes of a gate and interconnect
path model [4]. Moreover, when the RC interconnect effects
are dominant, the need for high-level delay metrics becomes
even more critical. It is important that the RC interconnect
delays are considered during the early phases of design in such
cases, and that the high-level design metrics are correlated to
the more accurate back-end analyses.

It was recently demonstrated [4] that the first three
moments of the impulse response are required to predict the
delay of all nodes in an RC tree with reasonable accuracy. In
[5], the first few moments and the sum of the open circuit time
constants were used to generate a stable two-pole model.
Unfortunately, the approximation is inaccurate at times, and is
subject to yielding a complex pole pair for RC circuits. Of
course the first three moments can also be used to generate a
two-pole model via moment matching, e.g. AWE, but higher
order moments, or expansions about other frequency points are
sometimes required for ensuring stable approximations.

In this paper we develop a two-pole approximation, based
upon the first three moments of the impulse response, that gen-
erates stable real poles for RC circuits. While this is an advan-
tage for high-level design approximations, it still renders a
transcendental expression for the voltage waveform that must
be solved iteratively to determine the delay. But with an under-
standing of the form of this two-pole approximation, we esti-
mate the delay (any waveform percentage point) with extreme
accuracy without nonlinear iterations. The result is an explicit
expression for the delay as a function of the first three moments
of the impulse response.

2 Background

A decade ago, the Elmore delay [1] was considered accu-
rate enough to approximate the delay for most linear RC inter-
connects. For an RC tree, the Elmore delay at some nodee,

, can be computed with linear complexity:

(1)

 is the common resistance path between nodek to the input

node and nodee to the input node,  is the capacitance at

nodek, and the summation is over all nodes. Due to the uncer-
tainty of the Elmore delay accuracy, bounds for the step
response delay, based on one pole expressions with time con-
stants determined using the circuit elements values, were
developed [2]. Recently it was shown that the Elmore delay is
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an upper bound on the 50% step response delay, based on the
unimodal property of the RC tree impulse responses [4].

For today’s deep submicron technologies, however, the
reduced wiring dimensions have increased the resistance of the
interconnect paths and the single pole representations of the
waveforms are no longer reliable. Maximum errors due to
these first order models are typically over 100% for high-speed
interconnect paths since the higher-order pole effects can no
longer be ignored. One of the first attempts to characterize
transfer functions using two poles was reported in [5]. The
“charge-sharing” model proposed in [5] attempted to character-
ize the moments of a transfer function in terms of circuit ele-
ments. For example, the transfer function at nodee was
expressed as:

(2)

No higher order moments were determined, so the approx-
imation was built using only the first two moments, corre-
sponding to a two pole and a zero approximation of the form:

(3)

The lack of higher order information forced the authors of [5]
to use heuristics based on the sum of the reciprocal poles, :

(4)

Asymptotic Waveform Evaluation (AWE) [3] was later
developed as a more general method for computing any num-
ber of transfer-function moments for general RLC circuits:

, (5)

The coefficients of the Taylor series expansion of a transfer
function  abouts=0 (shown in (5)) are expressed in the
time domain as:

(6)

where  is the time domain form of the transfer function. It
is apparent from (6) that these coefficients are related to the

moments of  by the factor .

AWE applied moment matching, recognized as a Padé
approximation, to generate reduced order transfer function
approximations. A Padé approximation can be used to trans-
form the moment-series representation of the transfer function,
shown in (5), to a rational form:

(7)

in terms of the dominant poles and zeros

Padé approximations are simple and easy to implement,
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but they suffer from the drawback that they can yield positive
(unstable) or complex poles for circuits with negative real
poles (e.g. RC circuits). The approaches used by the various
AWE techniques to overcome potential instability generally
involves calculating more moments, or moments about multi-
ple expansion points. In [6], using the fact that higher order
moments contain less information about the higher order poles,
moment shifting is used to converge on the low frequency pole
values. The technique is efficient, but the shifting process
requires the calculation of more moments. Frequency shifting
[7] can be used to generate higher order approximations that
cover a wider bandwidth, however, more moments, expanded
about points other thans=0, are required. The latest advance is
the Padé Via Lanczos (PVL) process [8] which, like the fre-
quency shifting technique, can calculate a large number of
poles for RLC circuits. PVL also has error control which
makes it a robust approach for generating a transfer function
model that must cover a large bandwidth of interest. Of course,
all of these benefits are at a cost of increased computational
complexity as compared with the linear complexity required to
calculate moments of RC trees.

The objective of the work described in this paper is to gen-
erate a stable, reliable approximation in terms of just a few
moments expanded abouts=0. We describe the essence of the
approach in the following two sections.

3 Calculating First Two Poles with Guaranteed Stability

It was demonstrated in [6] that the ratio of successive
moments forms a series asymptotically converging to the value
of the dominant pole:

(8)

For a circuit withN poles, the expression of thej-th moment in
terms of poles and residues is:

(9)

whereki is thei-th residue andpi is thei-th pole. Using (9), we

can express the ratio of  as:

(10)

As stated in [6], asj increases in value,  in (10) is

approaching the value of the dominant pole, since
.

Therefore, using only the information contained in the first
three moments of the impulse response, the most accurate
approximation of the first pole that we can apply is:
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(11)

This asymptotic convergence is also explained by Padé
tables [9], but it is important to point out that this convergence
is not necessarily monotonic. In fact, we can show that based
on the monotonicity of the series from (8), we can determine
when a Padé (moment matching) approximation fails to yield a
stable two-pole approximation.

3.1 Two-pole Padé instability

For a Padé approximation of the form ,

the coefficients of  can be expressed in terms of the

moments ofH(s). ExpandingH(s) around  we obtain:

(12)

where the series coefficients in (12) are given by (6) and will be
referred to as moments for notational simplicity.

For a second order Padé approximation, it has been well
documented in the literature [3] that the denominator polyno-
mial coefficients can be obtained by first calculating the
moments ofH(s), then solving the following linear set of equa-
tions:

(13)

where the denominator polynomial  is:

(14)

For this two pole case, the coefficient values are:

(15)

Because  is a second order polynomial, if  is

negative, the roots will be real and of opposite sign (one nega-
tive and one positive pole). From (15) we can write:

(16)

For a passive RC interconnect circuit, the moments of
 will alternate in sign. Namely,m0 andm2 are positive

while m1 andm3 are negative [3]. The sign of  is given by

the monotonicity of the successive moments ratios: ,
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and . Therefore, it follows from (16) thata Padé approxi-

mation based on the first three moments will yield two real neg-
ative poles only when the ratio of successive moments
(equation (8)) is monotonically approaching the value of the
first pole.

3.2 Approximating a second pole

Equation (11) is a viable approximation for the first pole
of our two pole model, however, the stability of a second pole
approximation will depend on the convergence properties of
the successive moment ratios. To explain how we arrive at a
guaranteed stable approximation for the second pole, we begin
with the ratio of two successive moments in (10). Using poly-
nomial division, we can rewrite (10) as:

(17)

Next we consider the following ratio of terms:

(18)

Using (17), the ratio in (18) becomes:

(19)

Note that for , the ratio in (19) is an

approximation of the ratio of the first two poles for large values
of j. Due to the uncertainty of the monotonicity of the moment
ratios, we do not know the sign of (19), but we can still con-
sider convergence to theexact magnitude of the ratio of the
first two poles. Rewriting (19) and considering just the magni-
tude of the ratio in (18), we obtain:

(20)

As j increases, the right hand side of (20) is approaching
the magnitude of the ratio of the first two poles:
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(21)

Therefore, based on the first three moments, our most accurate
approximation for the second pole is:

(22)

This procedure can be used to obtain higher order poles
too, but it is not very convenient since the required number of

moments is increasing as , to obtain theq-th pole. In con-
trast for a moment-matching approximation such as AWE,
where the required number of moments increases linearly with
the approximation order.

To demonstrate the accuracy of this pole convergence, we
consider the 10-pole RC tree shown in Fig. 1. Note that this cir-

cuit is stiff (widely varying time constants), thereby making the
pole convergence more difficult to achieve since the moment
ratios converge to the poles non-uniformly. The first and sec-
ond pole approximations based on (11) and (22) and normal-
ized to their exact values are shown in Fig. 2 for higher and
higher order moments. The moments used to demonstrate this
convergence were those at capacitor C4.
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Figure 1: RC circuit with widely varying time constants.
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Figure 2: The first two pole approximations based on
(11) and (22) and normalized to their exact
values as a function of n, the highest order
moment.
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4 Stable Two-Pole Approximation Based on First Three
Moments

With a pair of stable poles that approximates the first two
poles of the actual circuit, what remains is to match an impulse
response of the form

(23)

to the first two moments of the actual transfer function. To sim-
plify terminology, we will use the above expression for the
transfer function which assumes that thep-terms are positive
(for a stable response). The moment matching equations are:

(24)

(25)

Where the pole-terms are given by:

(26)

From (24) and (25) the residue expressions are:

(27)

(28)

5 Explicit Approximation of the Delay Point

For our two-pole approximation we can assume that two
conditions are satisfied: one pole is dominant such that

, and the residue of the dominant pole is always posi-

tive (since the area of the impulse response is positive). There-
fore, we can assume that the exponential term corresponding to
the dominant pole is also dominant. These conditions will
allow us to approximate the delay in terms of an explicit
expression.

5.1 Delay points for the step responses

In Fig. 3 we consider our two-pole impulse response with
its pair of exponential functions. First, we seek the median
point of this sum of exponentials to approximate the 50% delay
point of the step response (because the step response is the time
integral of the impulse response). To first order, we might con-
sider that the second exponential is rapidly decreasing to zero
such that the 50% delay point (t1 in Fig. 3) occurs at a point
where the value of the second exponential is practically zero.
The first order estimate considers the contribution of the sec-
ond exponential (the cross-hatched area) as a constant factor to
the step response delay.

The general form of the impulse response is given by:
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(29)

so the cross-hatched area is:

(30)

with the appropriate sign given by the sign of the second pole
residue  (shown in the figure as positive).

For our first order estimate then, we seek a pointt1 which
satisfies the equation:

(31)

The solution of (31), using the constraint from (24), is:

(32)

The first order delay estimate,t1, can be used as an initial
guess to find the “exact” delay via a Newton-Raphson (N-R)
iteration. However, since it is a good initial guess, we can also
consider a single N-R iteration step as an improved explicit
approximation. Usingt1 as an initial guess, one N-R iteration
yields a delay,tNRof:

(33)

The same algorithm can be applied for any percentage
delay point. In the general case, for % delay point, the
first order approximation is:

(34)

Using (34) as an initial guess, the explicit single-step N-R
approximation becomes:
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Figure 3:  The components of a two-pole impulse response:
a dominant exponential e1(t) and a second
exponentiale2(t).
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5.2 Delay points for ramp responses

The general form of a two pole system response to a satu-
rated ramp is given by:

(36)

where  andtt is the saturated ramp transi-

tion time.

To find the % delay point on this response we first
have to determine the region where it belongs by computing
the response at  and comparing it with . Then

we compute the first order delay estimate,t1, based on neglect-
ing the second pole exponential term. We observe that, for

, t1 is the solution of the following equation:

(37)

where ,  and . The

solutions of (37) for variousa’s andp1’s can be pre-computed
and stored as a two-dimensional table.

For t1 has an explicit solution equivalent with (34),

that is:

(38)

In both cases,tNR can be explicitly written as a function oft1
with the one step Newton-Raphson formula:

(39)

We must mention here that the general formulas are going
to be more precise for , and less precise for small

percentages, , since the accuracy oft1 depends on
the decay of the areae2(t) prior to timet1.

The formulas presented above can be improved by taking
into account the error given by the assumption that, fort1, the
second exponential is practically zero. Checking and consider-
ing these errors significantly complicates the delay formula
without providing much improvement in the approximation.
This is especially true for the saturated ramp cases.
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6 Results

The proposed model has been tested over a large number
of RC interconnect examples from the 620 PowerPC chip. The
following are distributions of the model error as compared to a
straightforward AWE approximation (no moment shifting or
frequency shifting) and a 4 pole AWE approximation (with
moment shifting) that we will consider exact for this experi-
ment. The responses were for a sample of 10,000 nodes from
thousands of RC examples.

Fig. 4a displays the modeling error for these RC intercon-
nects when they are driven by an ideal voltage source (no
driver/gate impedance considered). This represents a worst-
case for any two pole model since the poles are most clustered
without a driver resistance. Even so, the plot shows that the
proposed model, with an explicit approximation as described in
Section 5, matches the 4-th order AWE approximations very
well and maintains a relatively small error in all cases.

Next we added gate and transistor impedances of
100ohms, to consider a more realistic analysis problem. The
same set of nodes were analyzed. The error distributions for
this case, with a driver impedance, and hence, more low fre-
quency pole dominance, is shown in Fig. 4b.

7 Conclusions

The first three moments of the transfer function can be
used to determine stable approximations of the first two domi-
nant poles. By matching their residues to the first two moments

Figure 4: Distribution of the 50% delay point errors for a)
insignificant b) significant driver equivalent
resistance. The delay approximation is in terms of
equation (33) (Distribution based on 10,000
samples).
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we can obtain a stable time domain expression of the transfer
function. A simple solution scheme is proposed that permits an
explicit formula for the delay as a function of the first three
moments of the impulse response from this model. The explicit
formula relies on the dominant effect of the first pole and uses a
single Newton-Raphson iteration to accurately predict the solu-
tion.
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