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Abstract however, the simple EImore delay approximation is an inade-

quate delay measure for all nodes of a gate and interconnect
Due to its simplicity, the ubiquitous Elmore delay, or first path model [4]. Moreover, when the RC interconnect effects
moment of the impulse response, has been an extremely popwre dominant, the need for high-level delay metrics becomes
lar delay metric for analyzing RC trees and meshes. Its inaccu-even more critical. It is important that the RC interconnect
racy has been noted, however, and it has been demonstratedelays are considered during the early phases of design in such
that higher order moments can be mapped to dominant polecases, and that the high-level design metrics are correlated to
approximations (e.g. AWE) in the general case. The first threethe more accurate back-end analyses.
moments can be mapped to a two-pole approximation, but sta- .
bility is an issue, and even a stable model results in a transcen- It was recently demonstrated [4] that the first three

dental equation that must be iteratively evaluated to determineMoments of the impulse response are required to predict the
the delay. delay of all nodes in an RC tree with reasonable accuracy. In

[5], the first few moments and the sum of the open circuit time

In this paper we describe an explicit delay approximation constants were used to generate a stable two-pole model.
based on the first three moments of the impulse response. Wenfortunately, the approximation is inaccurate at times, and is
begin with the development of a provably stable two-pole subject to yielding a complex pole pair for RC circuits. Of
transfer function/impedance model based on the first threecourse the first three moments can also be used to generate a
moments (about s=0) of the impulse response. Then, since théwo-pole model via moment matching, e.g. AWE, but higher
model form is known, we evaluate the delay (any waveformorder moments, or expansions about other frequency points are
percentage point) in terms of an analytical approximation that sometimes required for ensuring stable approximations.

is consistently within a fraction of 1 percent of the “exact”
solution for this model. The result is an accurate, explicit delay
expression that will be an effective metric for high-speed inter-
connect circuit models.

In this paper we develop a two-pole approximation, based
upon the first three moments of the impulse response, that gen-
erates stable real poles for RC circuits. While this is an advan-
tage for high-level design approximations, it still renders a
1 Introduction transcendgntal .expression for. the voltage Wavefqrm that must

be solved iteratively to determine the delay. But with an under-

Moments and moment-matching approximations are Standing of the form of this two-pole approximation, we esti-
widely used as delay metrics and measures for RC circuit mod-mate the delay (any waveform percentage point) with extreme
els of gates and their associated interconnect. The Elmore delaficcuracy without nonlinear iterations. The result is an explicit
[1, 2], or first moment of the impulse response, has been theeXpression for the delay as a function of the first three moments
metric of choice for high-level design automation applications ©f the impulse response.
due to the ease of calculation and the resulting closed form
expression for delay as a function of circuit parameters. For2 Background
more accurate analyses, several moments are often used to gen-
erate reduced-order transfer function approximations (e.g
AWE [3]) that are efficiently applied for various back-end anal-
yses.

. A decade ago, the Elmore delay [1] was considered accu-
rate enough to approximate the delay for most linear RC inter-
connects. For an RC tree, the Elmore delay at some @ode

Tpe» Can be computed with linear complexity:

TDe = ZRkeCk (1)

As RC interconnect effects become more pronounced,

*  This work was supported in part by IBM and the Semicon-
ductor Research Corporation under contract DC-068. R is the common resistance path between kddehe input

node and node to the input nodeC, is the capacitance at

nodek, and the summation is over all nodes. Due to the uncer-
tainty of the Elmore delay accuracy, bounds for the step
response delay, based on one pole expressions with time con-
stants determined using the circuit elements values, were
developed [2]. Recently it was shown that the Elmore delay is

33rd Design Automation Conference [
Permission to make digital/hard copy of al or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercia advantage, the copyright notice, thetitle of the publication and its date appear, and noticeis given that copyingis
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.
DAC 96 - 06/96 Las Vegas, NV, USA 01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50



an upper bound on the 50% step response delay, based on theut they suffer from the drawback that they can yield positive
unimodal property of the RC tree impulse responses [4]. (unstable) or complex poles for circuits with negative real
poles (e.g. RC circuits). The approaches used by the various
AWE techniques to overcome potential instability generally
fvolves calculating more moments, or moments about multi-
Ef)le expansion points. In [6], using the fact that higher order
moments contain less information about the higher order poles,
moment shifting is used to converge on the low frequency pole
alues. The technique is efficient, but the shifting process
requires the calculation of more moments. Frequency shifting
[7] can be used to generate higher order approximations that
cover a wider bandwidth, however, more moments, expanded
about points other thas¥0, are required. The latest advance is
the Padé Via Lanczos (PVL) process [8] which, like the fre-
) quency shifting technique, can calculate a large number of
- oles for RLC circuits. PVL also has error control which
H(S) = 1-sTpe*s %RkeCkTDk o @ rr:)nakes it a robust approach for generating a transfer function
model that must cover a large bandwidth of interest. Of course,
No higher order moments were determined, so the approx-all of these benefits are at a cost of increased computational
imation was built using only the first two moments, corre- complexity as compared with the linear complexity required to
sponding to a two pole and a zero approximation of the form: calculate moments of RC trees.

k(1+st) 3 The objective of the work described in this paper is to gen-
1+ 1+ @) erate a stable, reliable approximation in terms of just a few
(I+st)) (1+sty) |
moments expanded abas#0. We describe the essence of the
approach in the following two sections.

For today's deep submicron technologies, however, the
reduced wiring dimensions have increased the resistance of th

waveforms are no longer reliable. Maximum errors due to
these first order models are typically over 100% for high-speed
interconnect paths since the higher-order pole effects can n
longer be ignored. One of the first attempts to characterize
transfer functions using two poles was reported in [5]. The
“charge-sharing” model proposed in [5] attempted to character-
ize the moments of a transfer function in terms of circuit ele-
ments. For example, the transfer function at nedeas
expressed as:

H(s) =

The lack of higher order information forced the authors of [5]

to use heuristics based on the sum of the reciprocal pes, 3 Calculating First Two Poles with Guaranteed Stability

Tp = RCx (4) It was demonstrated in [6] that the ratio of successive
moments forms a series asymptotically converging to the value
of the dominant pole:

Asymptotic Waveform Evaluation (AWE) [3] was later Oom [
developed as a more general method for computing any num- Py = lim O—-0 (8)
ber of transfer-function moments for general RLC circuits: j - oM 10

H(s) = My+mS+m,s +mys +..., (5) For a circuit withN poles, the expression of tith moment in
terms of poles and residues is:
The coefficients of the Taylor series expansion of a transfer N k.
function H (s) abouts=0 (shown in (5)) are expressed in the mj = z —'+1 (9)
time domain as: i=1 (p.)J
I
k 00
(-1) k . . . . . .
M= 0 q t Ch(t)dt (6) wherek; is thei-th residue ang is thei-th pole. Using (9), we
: 0
m.
i0 et .
whereh (t) is the time domain form of the transfer function. It can express the ratio m. as.
. _ j+1
is apparent from (6) that these coefficients are related to the .
- +-= = e H—
moments o (1) by the factof T kPO K CPg ky Dy
: . - - 10)
1k +2 Kk +2 k +2 (

AWE applied moment matching, recognized as a Padé 1+_25p_15’ +_3%p_151 . +_NEEE’
approximation, to generate reduced order transfer function kqOP,0 ki P30 kg PO
approximations. A Padé approximation can be used to trans-
form the moment-series representation of the transfer function, !
shown in (5), to a rational form: As stated in [6], a§ increases in value~ ! in (10) is

b s"+b_ " 4. +bs+b J+1
H(s) = m m-1 1 0 @) approaching the value of the dominant pole, since
as'+a & teras+ PL<Py<--<Py-
n n-1 o T ST

Therefore, using only the information contained in the first
three moments of the impulse response, the most accurate
Padé approximations are simple and easy to implement,approximation of the first pole that we can apply is:

in terms of the dominant poles and zeros



m
Py = — (11) and m_2 . Therefore, it follows from (16) thatPadé approxi-

3 3

) . ) ) _mation based on the first three moments will yield two real neg-
This asymptotic convergence is also explained by Padé g4ye poles only when the ratio of successive moments

_tables [9], but it_is importan'_[ to point out that this convergence (equation (8)) is monotonically approaching the value of the
is not necessarily monotonic. In fact, we can show that basedsj g pole.

on the monotonicity of the series from (8), we can determine
when a Padé (moment matching) approximation fails to yield a3 2 Approximating a second pole
stable two-pole approximation.
Equation (11) is a viable approximation for the first pole

3.1 Two-pole Padé instability of our two pole model, however, the stability of a second pole
approximation will depend on the convergence properties of

For a Padé approximation of the forrh(s) = N(s) , the successive moment ratios. To explain how we arrive at a
D (s) guaranteed stable approximation for the second pole, we begin

the coefficients ofD (Ss) can be expressed in terms of the with _the _ra_ti_o of two success_ive moments in (10). Using poly-
nomial division, we can rewrite (10) as:

moments oH(s). ExpandingH(s) arounds = O we obtain: . .
(=). Expandingi(s) koopd *10 P00 kgopd*1o pyO

2 3 _< 2
_ p,|1+S0=0 M-—0+"0=0 mM-—=0+.../17)
H(s) = my+ms+mys +mgs +... (12) 17T kp,0 O Pp0 KfPgh O g0
where the series coefficients in (12) are giVen by (6) and will be Next we consider the fo”owing ratio of terms:
referred to as moments for notational simplicity. 0 m m 0
. . . j+1

For a second order Padé approximation, it has been well Eﬁj__Fn—J_B

documented in the literature [3] that the denominator polyno- j+1 j+2

mial coefficients can be obtained by first calculating the om g M, o0 (18)
moments oH(s), then solving the following linear set of equa- oY= _1*en
tions: ij +2 mj +3H
my My d2 m, 13) Using (17), the ratio in (18) becomes:
= 13 i i
koopd 1o pyR kgorqd tlo 2
my my) |dy ms 2015 m-o1g+ 30t m-20 o+
ki, O O P00 kyOPgO O P30
1-72 2 1-"3 3 (19)
where the denominator polynomidl(s)  is: koopid *20 Py kgopqd *20  pyr2
> k—l]—[l 1 —-—0 +k—D—D -—=0 +...
D(s) = 1+d;s+ds (14) 120 O Pl ¥qPgh O Pall
For this two pole case, the coefficient values are: Note that forp; <p,<...<py ., the ratio in (19) is an
m.m —m2 MM. — M. M. approximation of the ratio of the first two poles for large values
d.= L1 3 2 and d. =03 12 (15) of j. Due to the uncertainty of the monotonicity of the moment
2 Mo — m2 1 m2 _ m.m ratios, we do not know the sign of (19), but we can still con-
0’2 "1 1 702 sider convergence to thexactmagnitude of the ratio of the
_ o _ first two poles. Rewriting (19) and considering just the magni-
BecauseD (s) is a second order polynomlaldg is tude of the ratio in (18), we obtain:
negative, the roots will be real and of opposite sign (one nega- %1 plgﬁ
tive and one positive pole). From (15) we can write: k3|]I02Ej +15 P50l
Dml moD 1+—0—0 _ .
m,m, 0— - —0 m. m . 1 k2|:|p3|] g plE?
1 271gm, m0 = 01— —=0
—_— O —,—— m. m. 0 0O
d2 om, Mg (16) A+l j+2 - 2 P2 (20)
mym,0—= — —0 M1 Myg P2 O P?
3720my; m,0 I e e M-
J J 1+9020 @ —3 4
For a passive RC interconnect circuit, the moments of koOPgd pl[p
H (s) will alternate in sign. Namelyny andm, are positive Bl—b—g
2

while m; andmg are negative [3]. The sign mfz is given by
As j increases, the right hand side of (20) is approaching

m, m ; h X i
the monotonicity of the successive moments rat%eg: —1, the magnitude of the ratio of the first two poles:

m; m,



om m_.4 4 Stable Two-Pole Approximation Based on First Three
1% Moments
im 2T+ Mieo _P 21 , : : ,
. 'moo on . m . .C = p_ (21) With a pair of stable poles that approximates the first two
1= i S 1 poles of the actual circuit, what remains is to match an impulse
|jmj +92 mj +3 response of the form
_p]_t _pzt
Therefore, based on the first three moments, our most accurate f(t) = kle + k2e (23)
approximation for the second pole is:
oMy my to the first two moments of the actual transfer function. To sim-
T plify terminology, we will use the above expression for the
p,=p oy m, (22) transfer function which assumes that fhterms are positive
2 1 om; m, (for a stable response). The moment matching equations are:
U—-— k, k
om, mg 2+ Zom =1 (24)
Pp Py
This procedure can be used to obtain higher order poles
too, but it is not very convenient since the required number of k1 k2
q —2 + —2 = —ml (25)
moments is increasing & , to obtain ¢t pole. In con- Py Py
trast for a moment-matching approximation such as AWE,
where the _requ_ired number of moments increases linearly withywhere the pole-terms are given by:
the approximation order. m
U1 M
To demonstrate the accuracy of this pole convergence, we m Ea' “m.
consider the 10-pole RC tree shown in Fig. 1. Note that this cir- P, = _2 and Py =Py 1 2 (26)
m
R948 R1024 3 Em_l_ﬂz
—'T_\ACAS\_:% Cc10 omy M3
0.007p 2p From (24) and (25) the residue expressions are:
1+m
R272 R334 R496 R572 R610 R7120 R824 kl - 5 _:)pzp% (27)
u(t) c1I c2 csI CI c5 CI c cs 1 "2
TOTHI5T "0 =L T T 1+myp,
0.114p 1.238p 0.021p 0.028p 0.007p 1.048p 0.47p 0.2p k, = ——p% (28)

p1 - pz
Figure 1: RC circuit with widely varying time constants.

5 Explicit Approximation of the Delay Point
cuit is stiff (widely varying time constants), thereby making the L
pole convergence more difficult to achieve since the moment ~ FOr our two-pole approximation we can assume that two
ratios converge to the poles non-uniformly. The first and sec-conditions are satisfied: one pole is dominant such that
ond pole approximations based on (11) and (22) and normal-p; <p,, and the residue of the dominant pole is always posi-

ﬁeﬂetfotrhdee': ?nxc?rﬁtex?slu?risrriosr:gmg ILrllsg(Ijgfoz d?&g;%?gt:m tive (since the area of the impulse response is positive). There-
cognver ence were thoée at capacitor C4 Yore, we can assume that the exponential term corresponding to
9 P ) the dominant pole is also dominant. These conditions will

1.25] allow us to approximate the delay in terms of an explicit

] p{M expression.
115 (exac)

4 X
1.051 - P 5.1 Delay points for the step responses
0.95 1 pgm) i o In Fig. 3 we con§ider our two-pt_)Ie impulse response vvjth

1 —2 its pair of exponential functions. First, we seek the median
0.85] pjexac) point of this sum of exponentials to approximate the 50% delay
0.75 point of the step response (because the step response is the time

T 3 5 7 9 11 13 integral of the impulse response). To first order, we might con-

sider that the second exponential is rapidly decreasing to zero
such that the 50% delay poirtj {n Fig. 3) occurs at a point
Figure 2: The first two pole approximations based on where the value of the second exponential is practically zero.
(11|) and (22)f and norrPallz%d tﬁ. tﬂe" exgct The first order estimate considers the contribution of the sec-
\&aol;ﬁsnﬁs a function of n, the highest order ond exponential (the cross-hatched area) as a constant factor to
' the step response delay.

n

The general form of the impulse response is given by:



k, —p,t, Kk, —p-t
A (0(—1)+—1e 11+—2e 21
kit ___ dominant exponentiag(t) f o =t4 1 P2 (35)
- — — second exponentiah(t) P14 ) —Poty
+k,e

ke 2

5.2 Delay points for ramp responses

The general form of a two pole system response to a satu-

time rated ramp is given by:

Figure 3: The components of a two-pole impulse response: ky —p,t K, —p,t

a dominant exponential e;(t) and a second Et—B+p—2e ' +p—2e ?

exponential e(t). E ' : 2 if t<t,
t
y() = o (36)
_plt _pzt Et — ﬁe_plt (epltt — 1) — ﬁe_pzt (epztl — 1)
f(t) = k,e +k,e (29) ot p? 2
1 2 0 b i it t>1,

t
so the cross-hatched area is: t
k2

P,

whereB = k /p?+k,/pZ and, is the saturated ramp transi-

30
(30) tion time.

To find thel00[x % delay point on this response we first
have to determine the region where it belongs by computing
the response at = t,  and comparing it witB0 [t . Then

with the appropriate sign given by the sign of the second pole
residuek2 (shown in the figure as positive).

For our first order estimate then, we seek a gginthich we compute the first order delay estimétebased on neglect-
satisfies the equation: ing the second pole exponential term. We observe that, for
t t<t,tqis the solution of the following equation:
1 _plt k tr 'l
[ke dt+-2 =05 (31) adli =t 37)
P2
0
. . . . Ky Pyt
The solution of (31), using the constraint from (24), is: where a = p—ze o, t, = at,+B andt,' = t,—t; . The
2k, 0 L
t 1= lm D_lg (32) solutions of (37) for varioua’s andp,’s can be pre-computed
Py 0P 0O and stored as a two-dimensional table.
The first order delay estimatig, can be used as an initial For t>t, t; has an explicit solution equivalent with (34),

guess to find the “exact” delay via a Newton-Raphson (N-R) that is:

iteration. However, since it is a good initial guess, we can also [k, (e”t—1)0

consider a single N-R iteration step as an improved explicit t o= Lot ’n (38)
approximation. Using, as an initial guess, one N-R iteration Y p, O(-o0) p2t, O

yields a delaytygOf: o _ .
In both casesyg can be explicitly written as a function gf

k, —pqt K, —p,t
_05+ p_le P, p_ze P21 with the one step Newton-Raphson formula:
1 2 y(tl) —-a
INRT 1 ? (33) ty, = b — ———— 39
NR 1 -ty Pty NR T T T (39)
ke +k,e

We must mention here that the general formulas are going
The same algorithm can be applied for any percentageto be more precise fat >a > 0.5 , and less precise for small
delay point. In the general case, 0Lt % delay point, the percentages).5>a >0 , since the accuracyafepends on

first order approximation is: the decay of the ares(t) prior to timet;.
O k O
t, = lm 1 (34) The formulas presented above can be improved by taking
1 Pq 0(1-a) py0 into account the error given by the assumption thatt;fahe

second exponential is practically zero. Checking and consider-
Using (34) as an initial guess, the explicit single-step N-R ing these errors significantly complicates the delay formula
approximation becomes: without providing much improvement in the approximation.
This is especially true for the saturated ramp cases.



6 Results we can obtain a stable time domain expression of the transfer
function. A simple solution scheme is proposed that permits an

The proposed model has been tested over a large numbegypiicit formula for the delay as a function of the first three
of RC interconnect examples from the 620 PowerPC chip. Themoments of the impulse response from this model. The explicit
following are distributions of the model error as compared t0 a formyla relies on the dominant effect of the first pole and uses a

straightforward AWE approximation (no moment shifting or - single Newton-Raphson iteration to accurately predict the solu-
frequency shifting) and a 4 pole AWE approximation (with ion.

moment shifting) that we will consider exact for this experi-
ment. The responses were for a sample of 10,000 nodes fro
thousands of RC examples. nBI BLIOGRAPHY
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Figure 4: Distribution of the 50% delay point errors for a)
insignificant b) significant driver equivalent
resistance. The delay approximation is in terms of
equation (33) (Distribution based on 10,000
samples).

Next we added gate and transistor impedances of
100ohms, to consider a more realistic analysis problem. The
same set of nodes were analyzed. The error distributions for
this case, with a driver impedance, and hence, more low fre-
guency pole dominance, is shown in Fig. 4b.

7 Conclusions

The first three moments of the transfer function can be
used to determine stable approximations of the first two domi-
nant poles. By matching their residues to the first two moments



