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An explicit representation of the transition densities of the skew

Brownian motion with drift and two semipermeable barriers

David Dereudre∗, Sara Mazzonetto†, Sylvie Roelly‡.

Abstract

In this paper, we obtain an explicit representation of the transition density of the one-dimensional skew
Brownian motion with (a constant drift and) two semipermeable barriers. Moreover we propose a rejection
method to simulate this density in an exact way.

Key words: Skew Brownian motion; semipermeable barriers; Distorted Brownian motion; Local time;
Rejection sampling; Exact simulation.

2010 MSC: Primary 60J35, 68U20; Secondary 60H10, 65C20

1 Introduction

The need to study the skew Brownian motion, and in particular its explicit transition densities, has emerged in
various contexts during the last years. An overview and list of historical background and main applications can
be found in [1]. Nevertheless, to the best of our knowledge, the transition densities of the one-dimensional skew
Brownian motion with constant drift and two semipermeable barriers was not yet given as a closed formula, not
even for the driftless version. In the latter case, one can only find in [8] a non explicit formula for it.

We obtain here a closed formula for the transition density of the skew Brownian motion with drift and two
semipermeable barriers as series of Gaussian transition densities and cumulative distribution functions. This is
a non trivial generalization of the case of reflecting barriers treated in [21].

In order to avoid repetitions, from now on we will use the following notation: β-SBM is the skew Brownian
motion with one semipermeable barrier of permeability coefficient β and (β1, β2)-SBM is the skew Brownian
motion with two semipermeable barriers of permeability coefficients respectively β1 and β2.

The β−SBM was introduced by Itô and McKean in [10], as a one-dimensional Wiener process transformed by
flipping the excursions from the origin with probability 1−β

2 ∈ (0, 1) (if β = 0 it is the usual Brownian motion).
Unfortunately this trajectorial definition does not lend itself to generalizations.

The skew Brownian motion behaves as a Brownian motion between the barriers but it has a particular
behaviour when it reaches them: it is partially reflected. This interpretation yields the various generalizations,
that we are going to present shortly.

A recent survey on the skew Brownian motion can be found in [12] in which various equivalent representations
of the semigroup are given. Let us now present the process as a solution to a stochastic differential equation.

It was proved by Harrison and Shepp in [9] that if |β| ≤ 1, there is a unique strong solution to the stochastic
differential equation involving the symmetric local time at the point 0 (L0

t )t≥0

{

dXt = dWt + β dL0
t (X),

X0 = x, L0
t =

∫ t

0
✶{Xs=0}dL

0
s,

(1)
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that is the β−SBM. In particular if β = 0, it is the usual Brownian motion. Harrison and Shepp also proved
that if |β| > 1 there is no solution to (1). Notice that if x > 0, the 1−SBM is the reflected Brownian motion on
the positive semi-axis, and if x < 0, the (−1)−SBM is the reflected Brownian motion on the negative semi-axis.

There are many possible generalizations of the SBM: one-dimensional skew BM with more semipermeable
barriers ([11],[14],[18]), n-dimensional skew BM with one permeable barrier, as it is called in [14] referring to
[16] and [17], and distorted Brownian motion ([15]). A new proof of the weak existence and uniqueness for the
n−dimensional SBM appeared recently in [2].

The existence of several barriers does not allow anymore a trajectorial interpretation as randomly flipped
excursions like for the β-SBM, nevertheless one can define the process as the unique strong solution to a slight
modification of equation (1). The stochastic differential equation E ((β1, β2), μ) satisfied by the (β1, β2)−SBM
with drift μ ∈ R is indeed

{

dXt = dWt + μdt+ β1dL
z1
t (X) + β2dL

z2
t (X),

X0 = x, Lz1
t =

∫ t

0
✶{Xs=z1}dL

z1
s , Lz2

t =
∫ t

0
✶{Xs=z2}dL

z2
s ,

E((β1, β2), μ)

where the coefficients β1, β2 ∈ (−1, 1) and z1, z2 ∈ R are the barriers. Obviously, if β2 = 0 the second barrier
disappears and one obtains the equation satisfied by the β1-SBM with drift with semipermeable barrier z1:

{

dXt = dWt + μdt+ β1dL
z1
t (X),

X0 = x, Lz1
t =

∫ t

0
✶{Xs=z1}dL

z1
s .

E(β1, μ)

The transition probability density function p
(β1)
μ (t, x, y) of the Markov process, unique solution to E(β1, μ),

is computed in [6] using the trajectorial interpretation. As already noticed this approach is not extendable for
finding the transition density in presence of more barriers. So let us briefly recall how to compute the semigroup
of the β−SBM with barrier in zero as solution of a partial differential equation with specific boundary conditions.

In [16] and [17] it is shown that

L̂ =
1

2
Δ + βδ0∇ (2)

is, formally, the infinitesimal generator of the β− SBM with barrier in zero. Moreover the parabolic problem
∂tu = L̂u (whose solution is the semigroup generated by L̂) is equivalent to the transmission problem (see [12],
section 3.1):

{

∂tv = 1
2Δv

(1 + β)∇v(t, 0+) = (1− β)∇v(t, 0−) (transmission condition).
(3)

A solution to (3) is equivalently a weak solution to the following problem:

⎧

⎪⎨

⎪⎩

u(t, x) ∈ C(0, T ;L2(R)) ∩ L2(0, T ;H1(R)),

∂tu = Lu,

u(0, x) = ϕ(x) ∈ L2(R),

(4)

where L is the divergence form operator

L =
1

2k(x)

d

dx

(

k(x)
d

dx

)

with k(x) =
1

2
+ β

(

✶R+(x)− 1

2

)

with domain D(L) =
{
ϕ ∈ H1(R); k(x)ϕ′(x) ∈ H1(R)

}
. Using Dirichlet forms one proves that the unique

solution of (4) is the semigroup of the β−SBM, solution of (1) (see section 3 of [12]).
Our approach for computing the transition density of the (β1, β2)−SBM with or without drift will be based on

identiying its infinitesimal generator as a divergence form operator, generalising the case of the driftless process
treated for example in [5],[13]. Once we will have computed the divergence form of the infinitesimal generator
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(L,D(L)) associated to E((β1, β2), μ), we will solve the Kolmogorov equation satisfied by the semigroup: for
each continuous and bounded function f , Ptf is the solution in C1,2(R+ × R \ {0},R) ∩ C(R+ × R,R) of

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t
u(t, x) = Lu(t, x) = 1

2
∂2

∂x2u(t, x) + μ ∂
∂x

u(t, x) t ∈ R+, x ∈ R \ {z1, z2},
1+βj

2 ∇u(t, z+j ) =
(1−βj)

2 ∇u(t, z−j ) t ∈ R+, j = 1, 2,

u(t, z+j ) = u(t, z−j ) t ∈ R+, j = 1, 2,

u(0, x) = f(x) x ∈ R.

(5)

The transition density (t, y) �→ p(t, x, y) will satisfy, for x fixed, the analogous PDE for the adjoint L∗:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t
p(t, y) = L∗p(t, y) t ∈ (0,+∞), y ∈ R \ {z1, z2},

1
2∇p(t, z+j ) − μ p(t, z+j ) =

1
2∇p(t, z−j ) − μ p(t, z−j ) t ∈ R+, j = 1, 2,

(1 + βj) p(t, z
−
j ) = (1− βj) p(t, z

+
j ) t ∈ R+, j = 1, 2,

p(0, y) = δx(y) y ∈ R.

(6)

The paper is organized as follows: in Section 2 we give an explicit characterization of the infinitesimal
generator associated to the solution to E((β1, β2), μ) in order to obtain a representation of its transition density.
Then we exploit it in the following cases: first for the (β1, β2)−SBM without drift, then for the β−SBM with
constant drift, and finally we give the formula for the drifted version of the (β1, β2)−SBM. Moreover we discuss
some particular and limit cases and compare our results to former ones. In Section 3 we present a rejection
sampling method that allows to simulate exactly the SBM with two semipermeable barriers.

2 The transition density of the (β1, β2)-SBM with and without drift

2.1 The framework and the method

In order to obtain the transition density of the (β1, β2)-SBM, we identify its infinitesimal generator. The
infinitesimal generator of the β1-SBM with one semipermeable barrier in z1, solution of the equation E(β1, 0),
is the divergence form operator

{

L = 1
2k(x)

d
dx

(
k(x) d

dx

)
, D(L) =

{
ψ ∈ H1(R); k(x)ψ′(x) ∈ H1(R)

}
,

k(x) = 1
2 + β1

(
✶[z1,+∞)(x)− 1

2

) (7)

with piecewise constant function k(x) unique up to a multiplicative constant. (See for example [13]).
Notice that a straightforward generalization of (7) yields to the generator of the β = (β1, β2, . . . , βn)-SBM

with n semipermeable barriers in z1 < z2 < . . . < zn, by modifying the piecewise constant function k(x). Indeed,
in case of two semipermeable barriers z1, z2, the function k(x) assumes three different values:

k(x) =

(
1

2
+ β1

(

✶[z1,+∞)(x)−
1

2

))(
1

2
+ β2

(

✶[z2,+∞)(x)−
1

2

))

=

⎧

⎪⎨

⎪⎩

1
4 (1− β1)(1− β2) x < z1,
1
4 (1 + β1)(1− β2) z1 ≤ x < z2,
1
4 (1 + β1)(1 + β2) x ≥ z2.

(8)

Therefore taking k =
∏n

m=0

(
1
2 + βm

(
✶[zm,+∞) − 1

2

))
, (L,D(L)) is the infinitesimal generator of the SBM with

n semipermeable barriers.

The operator L is a divergence form operator with discontinuous coefficients, therefore one obtains a repre-
sentation for the transition densities, as in [8], Chapter II. In section 5 the authors recover themselves the case
of the β-SBM and the (β1, β2)-SBM without drift. Unfortunately in the latter case the authors do not explicit
further the transition density function, they just identify it through a “kind of θ-function”

h(t, ξ, C, α) =
1

2π

∫ +∞

−∞
e−w2teiwξ

(
1 + Ceiwα

)−1
dw. (9)
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We are therefore going to generalize the method, called Green function method or Titchmarsh-Kodaira-Yoshida
method, for giving an explicit representation of the transition density function associated to the slightly more
general infinitesimal generator including a constant drift μ ∈ R.

⎧

⎪⎨

⎪⎩

L = 1
2h(x)

d
dx

(
h(x) d

dx

)
,

D(L) =
{
ψ ∈ H1

0 (h(x)dx); h(x)ψ′(x) ∈ H1(h−1(x)dx)
}
,

h(x) := k(x)e2μx
(10)

where k(x) is the piecewise constant function defined in (8). Remark that h(x) is strictly positive but not
bounded from above.

Lemma 2.1. 1 The operator (L,D(L)) defined by (10)

(i) is self-adjoint in L2(h(x)dx) and its spectrum σ(L) is a closed subset of (−∞, 0] containing 0;

(ii) is the infinitesimal generator in L2(h(x)dx) of the process (β1, β2)-SBM with drift μ.

Proof. First of all notice that the measure ν(dx) := h(x)dx is not a finite measure. The form

q : H1
0 (h(x)dx)×H1

0 (h(x)dx) → R defined by (f, g) �→
∫

R

f ′g′h(x)dx, (11)

is symmetric, semibounded and closed with domain Q(q) = H1
0 (h(x)dx) ⊆ L2(h(x)dx). Therefore there exists a

unique operator T with D(T ) ⊆ Q(q) such that q(u, v) = − < u, Tv >ν (see for example Corollary 1.3.1 in [7]).
Moreover the operator T is self-adjoint.
One can show that (2L,D(L)) = (T,D(T )) using the implicit characterization of D(T ). Therefore the operator
2L is self-adjoint, hence the conclusions on its spectrum.

We now apply the results presented in the recent paper [15], Remark 2.6.ii: the Hunt process whose semigroup
is associated to the closed form (q,Q(q)) in (11) is the SBM with drift with semipermeable barriers. By
uniqueness of the self-adjoint operator associated to the form we conclude that the operator (L,D(L)) is the
infinitesimal generator of this SBM.

Remark 2.2. (i) The same lemma holds for the β1-SBM with drift, and also for the driftless processes
(β1, β2)-SBM and β1-SBM (μ = 0);

(ii) As an alternative to (10), one can express the infinitesimal generator for the (β1, β2)-SBM with drift as

{

A = 1
2k(x)

d
dx

(
k(x) d

dx

)
+ μ d

dx

D(A) :=
{
ψ ∈ H1(dx); kψ′ ∈ H1(dx)

}

with k(x) defined in (8). In that case, A is not self-adjoint.

(iii) One can show, using Hille-Yoshida theorem, that the operator (L,D(L)) is sectorial since it is self adjoint
and in particular it is the infinitesimal generator af a strongly-continuous semigroup of contractions.

Since the infinitesimal generator (L,D(L)) is a sectorial operator, its associated transition semigroup Pt can
be represented as:

Ptϕ(x) =
1

2πi

∫

Γ

eλtuλ,ϕ(x)dλ

where Γ is a contour in the complex λ plane around the negative semi-axis (−∞, 0] that contains the spectrum
σ(L) and uλ,ϕ is the resolvent solution to (λ − L)uλ,ϕ = ϕ for all ϕ ∈ L2(h(x)dx) (see for example Theorem
12.31 in [19]). Therefore the transition density satisfies

p(t, x, y) =
1

2πi

∫

Γ

eλtG(x, y;λ)dλ (12)

where G(x, y;λ) are the Green functions.

1The authors would like to thank Markus Klein (Universität Potsdam) for the interesting discussions
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Lemma 2.3. For each λ ∈ C \ R− the Green functions are given by

G(x, y;λ) = −2h(y)
U+(y, λ)U−(x, λ)✶{x≤y} + U+(x, λ)U−(y, λ)✶{y<x}

h(x0)W (U−, U+)(x0, λ)

where U± ∈ D(L) are the solutions to:

(λ− L)U±(x, λ) = 0, lim
x→+∞

U+(x, λ) = 0, lim
x→−∞

U−(x, λ) = 0, (13)

while W (U−, U+)(x0, λ) = U−(x0, λ)U
′
+(x0, λ)− U ′

−(x0, λ)U+(x0, λ) is the wronskian in x0 ∈ R.

Proof. One can easily prove that the function x �→ h(x)W (U−, U+)(x, λ) is constant and check that x �→
G(x, y;λ) is a solution to (λ − L)v(x) = δ0(x − y) for all y ∈ R. By uniqueness of the solution the proof is
done.

Remark 2.4. Notice that x �→ G(x, y;λ) ∈ D(L), and y �→ G(x, y;λ) ∈ D(L∗) =
{

ϕ, ϕ
g
∈ D(L)

}

since

L∗g := hL
(
g
h

)
is the adjoint in L2(dx). The same holds for y �→ p(t, x, y) ∈ D(L∗).

2.2 The case of (β1, β2)-SBM without drift

We will now present the method step by step.

2.2.1 The Green functions

The first step is to find the eigenfunctions U+(x, λ) and U−(x, λ) of L defined in (13). The two barriers divide
the real line into three intervals over which the functions U± can be constructed as linear combination of the

eigenfunctions of the operator L for the eigenvalue λ ∈ C \ (−∞, 0] that are u−(x) = exp
(√

2λx
)

, u+(x) =

exp
(

−
√
2λx
)

. Therefore

U− =

⎧

⎪⎨

⎪⎩

u− x ≤ z1,

A(λ)u− +B(λ)u+ z1 ≤ x ≤ z2,

C(λ)u− +D(λ)u+ x ≥ z2;

and

U+ =

⎧

⎪⎨

⎪⎩

G(λ)u− +H(λ)u+ x ≤ z1,

E(λ)u− + F (λ)u+ z1 ≤ x ≤ z2,

u+ x ≥ z2,

with eight coefficients to be determined. Notice that since U± ∈ D(L), they are continuous functions and have to
satisfy the so-called transmission conditions derived from the continuity of x �→ k(x)U±(x, λ). These conditions
will determine uniquely the eight coefficients:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(λ) = (1 + β1)
−1;

B(λ) = A(λ)β1e
2
√
2λz1

C(λ) =
(

β1β2e
−2

√
2λ(z2−z1) + 1

)

((1 + β1)(1 + β2))
−1

;

D(λ) =
(

β1e
2
√
2λz1 + β2e

2
√
2λz2
)

((1 + β1)(1 + β2))
−1

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(λ) = −
(

β2e
−2

√
2λz2 + β1e

−2
√
2λz1
)

((1− β1)(1− β2))
−1

H(λ) =
(

β1β2e
−2

√
2λ(z2−z1) + 1

)

((1− β1)(1− β2))
−1

,

E(λ) = −F (λ)β2e
−2

√
2λz2 ,

F (λ) = (1− β2)
−1.
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The second step is to compute the wronskian. Consider x0 < z1, for example x0 = z1 − 1. Hence the
wronskian is

W (x0) = −
√
2λ

β1β2e
−2

√
2λz + 1

2k(x0)
= −2

√
2λH(λ),

where we will denote by z the distance between the barriers z2 − z1. This leads to the following

Proposition 2.5. The Green functions are given by

G(x, y;λ) =
1

φ(λ)
e−φ(λ)|x−y|

∑4
j=1 cj(y, β1, β2)e

−φ(λ)aj(x,y)

β1β2e−2φ(λ)z + 1
.

where φ(λ) :=
√
2λ, z := z2 − z1 is the distance between the barriers, and

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c1(y, β1, β2) ≡ 1

c2(y, β1, β2) =
(
2✶[z1,+∞)(y)− 1

)
β1

c3(y, β1, β2) =
(
2✶[z2,+∞)(y)− 1

)
β2

c4(y, β1, β2) =
(
1− 2✶[z1,z2)(y)

)
β1β2

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

a1(x, y) ≡ 0

a2(x, y) = |y − z1|+ |x− z1| − |y − x|
a3(x, y) = |y − z2|+ |y − z2| − |y − x|
a4(x, y) = 2 (z2 −max(x, y, z1))

+
+ 2 (min(x, y, z2)− z1)

+

Proof. We will only do the computations in the case x < z1 < z2 < y, the other cases are similar. From Lemma
2.3, since h ≡ k and chosing x0 < z1, the Green function is of the following form

G(x, y;λ) = −2k(y)
U+(y, λ)U−(x, λ)

k(x0)W (U−, U+)(x0)
= −2k(y)

u+(y, λ)u−(x, λ)

− 1
2

√
2λ(1 + β1β2e−2

√
2λz)

=
1√
2λ

4k(y)e−
√
2λ(y−x)

1 + β1β2e−2
√
2λz

.

It is then sufficient to check that aj(x, y) = 0 for j ∈ {1, 2, 3, 4} and
∑4

j=1 cj(y, β) = 4k(y).

Remark 2.6. (i) The function φ is well defined as bijection between C \ (−∞, 0] and {ζ ∈ C; ℜ(ζ) > 0}.

(ii) The denominator λ �→ 1 + β1β2e
−2φ(λ)z has no zero in C \ (−∞, 0] since ℜφ(λ) > 0.

(iii) aj(x, y) ≥ 0 for j ∈ {1, 2, 3, 4}.

2.2.2 The transition density as (contour) integral

Since the Green functions depend on λ only through φ(λ) =
√
2λ, we can apply the change of variable

λ �→ φ(λ) =: ξ to the integral appearing in (12):
∫

Γ

e
φ(λ)2

2 t G(x, y;φ(λ)) dφ(λ) =

∫

φ(Γ)

e
ξ2

2 t G(x, y; ξ) dξ

where G(x, y;φ(λ)) = φ(λ)G(x, y;λ) and G(x, y, λ) given in Proposition 2.5.

Since the integrand e
ξ2

2 tG(x, y; ξ) is holomorphic in the closed subset of the complex plane between iR and φ(Γ),
we could deform (shrink) the contour φ(Γ) to the imaginary line by an homotopy. Indeed, if we denote by M

the unique point with imaginary part u in φ(Γ) (as in Figure 1), it is possible to shrink the contour φ(Γ) to iR

if the following lemma holds:

Lemma 2.7. Consider the function

G(x, y, ξ) = e−ξ|x−y|
∑4

j=1 cj(y, β1, β2)e
−ξaj(x,y)

β1β2e−2ξz + 1
.

Then

lim
u→±∞

∫

ρM

e
ξ2

2 t G(x, y; ξ) dξ = 0,

where ρM is the segment in the figure connecting the point M with its projection on iR, M ′ = (0, u).

6



Proof. Let us show that the absolute value converges to zero:

∣
∣
∣
∣

∫

ρM

e
ξ2

2 t G(x, y; ξ) dξ

∣
∣
∣
∣
≤
∫

ρM

∣
∣
∣
∣
e

ξ2

2 t G(x, y; ξ)

∣
∣
∣
∣
dξ =

∫ ℓ(u)

0

e
(v2−u2)

2 t
∣
∣G(x, y; iu+ v)

∣
∣ dv

with ℓ(u) := |M ′ −M | (hence M = (ℓ(u), u)) and limu→∞ ℓ(u) = 0. Let us notice that

∣
∣G(x, y; iu+ v)

∣
∣ ≤ e−v|x−y|

∑4
j=1 |cj(y, β1, β2)| e−vaj(x,y)

∣
∣β1β2e−2(iu+v)z + 1

∣
∣

≤ e−v|x−y|
∑4

j=1 |cj(y, β1, β2)| e−vaj(x,y)

1− |β1β2| e−2vz
,

therefore
∣
∣
∣
∣

∫

ρM

e
ξ2

2 t G(x, y; ξ) dξ

∣
∣
∣
∣
≤ e−

u2

2 t

∫ ℓ(u)

0

e
v2

2 t e−v|x−y|
∑4

j=1 |cj(y, β1, β2)| e−vaj(x,y)

1− |β1β2| e−2vz
dv

that clearly converges to zero if |u| goes to infinity.

a)

R

iR

Γ

φ(Γ)
b)

R

φ(Γ)

M ′ = (0, u)
ρM

M

−M ′ = (0,−u)

Figure 1:

a) The picture shows the green image of the blue contour Γ under φ. The spectrum of the operator (L,D(L))
is contained in the red semi-axis (−∞, 0], which coincides with the complement of the domain of φ.

b) In this figure one sees the magenta segment ρM connecting the unique point M in φ(Γ) with imaginary part
u to its projection M ′ on the imaginary line. The homotopy H : [0, 1]× R → R

2 that deforms φ(Γ) into iR

is given by H(t, u) = M ′(1− t) + tM .

Therefore the integral in (12) becomes (with ξ = iw)

p(β1,β2)(t, x, y) =
1

2π

∫

R

e−
w2

2 te−iw|x−y|
∑4

j=1 cj(y, β1, β2)e
−iwaj(x,y)

β1β2e−2iwz + 1
dw. (14)

One can also rewrite it using the functions h defined by equation (9):

p(β1,β2)(t, x, y) =
4∑

j=1

cj(y, β1, β2)h

(
t

2
,− (aj(x, y) + |x− y|) , β1β2,−2z

)

,

which agrees with the results in [8]. Nevertheless, since |β1β2| < 1, we can explicit further the expression (14).
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2.2.3 The transition density as series of Fourier transforms

Proposition 2.8. The transition density of the (β1, β2)-SBM has the following expansion

p(β1,β2)(t, x, y) = p(0,0)(t, x, y)
∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)e
− (aj(x,y)+2zk)2

2t e−|x−y| aj(x,y)+2zk

t (15)

where p(0,0)(t, x, y) is the transition density function of the Brownian motion.

Proof. Let us consider the expression (14). The denominator can be seen as the sum of a geometric series

1

1 + β1β2e−2iwz
=

∞∑

k=0

(−β1β2)
ke−2iwzk

since |β1β2e
−2iwz| = |β1β2| < 1.

Therefore the density can be written as

p(β1,β2)(t, x, y) =
1

2π

∫

R

∞∑

k=0

(−β1β2)
ke−

w2

2 te−iw|x−y|
4∑

j=1

cj(y, β1, β2)e
−iw(aj(x,y)+2zk)dw.

We can exchange integral and series, because the series of absolute values e−
w2

2 t 1
1−|β1β2| is integrable.

We conclude that the transition density is a series of Fourier transforms:

p(β1,β2)(t, x, y) =
∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)
1

2π

∫

R

e−
w2

2 te−iw|x−y|e−iw(aj(x,y)+2zk)dw

=
1√
2π

∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)ĝt(aj(x, y) + 2zk + |x− y|)

=
1√
2πt

∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)g1

(
aj(x, y) + 2zk + |x− y|√

t

)

(16)

where gt(w) := e−
w2

2 t = g1(w
√
t) and its Fourier transform satisfies ĝt(ω) =

1√
t
gt(

ω
t
) = 1√

t
g1

(
ω√
t

)

.

We notice that g1(a+ b) = g1(a)g1(b)e
−ab hence we can write the density as

p(β1,β2)(t, x, y) =
1√
2πt

g1

( |x− y|√
t

) ∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)g1

(
aj(x, y) + 2zk√

t

)

e−
|x−y|

t
(aj(x,y)+2zk).

Using the identity p(0,0)(t, x, y) = 1√
2πt

g1

(
|x−y|√

t

)

we conclude and obtain (15).

2.3 The case of the (β1, β2)-SBM with drift

2.3.1 Expansion of the transition density in the case of one barrier and drift

In this subsection we propose an explicit computation of the transition density function of the β1-SBM with
constant drift μ, solution to E(β1, μ).

Proposition 2.9. The transition density for the SBM with constant drift μ and barrier in z1 satisfies

p(β1)
μ (t, x, y) = p(0)μ (t, x, y)v(β1)

μ (t, x, y),

8



where p
(0)
μ (t, x, y) is the transition density of the Brownian motion with drift μ (without skew), and

v(β1)
μ (t, x, y) :=

(

1− exp

(

−2x1y1

t

))

✶{x1y1>0} +
[
1 + β1

(
2✶[z1,+∞)(y)− 1

)]
exp

(

−2x1y1

t
✶{x1y1>0}

)

·

·
[

1− β1μ
√
2πt exp

(

(|x1|+ |y1|+ tβ1μ)
2

2t

)

Φc

( |x1|+ |y1|+ tβ1μ√
t

)]

,

where x1 := x− z1, y1 := y − z1 and Φc(y) := 1√
2π

∫∞
y

e−
u2

2 du is the queue of a standard Gaussian law.

This result appears in [6] for a barrier in zero although it holds for any barrier. The authors prove it using
the trajectorial definition of the SBM.
We provide here a completely different proof based on the generalization of the Green function method. Indeed
the infinitesimal generator of the process is a generalization of (7) with the function h(x) = k(x)e2μx instead of
k(x). We will denote by β := β1 ∈ (−1, 1) \ {0} the unique skewness parameter. The same method we develop
here, will also provide the transition density for the (β1, β2)-SBM with drift even though trickier technical issues
are involved.

A. The Green functions

When there is a drift μ �= 0, the functions U±(x, λ) solutions to (13) are linear combinations of the two

eigenfunctions for the eigenvalue λ ∈ C \ (−∞, 0] u±(x, λ) = exp
(

−μx∓
√

μ2 + 2λx
)

. The coefficients are

uniquely determined using the continuity and the transmission conditions:

U− =

{

u− on (−∞, z1],

A(λ)u− +B(λ)u+ on [z1,+∞),
and U+ =

{

E(λ)u− + F (λ)u+ on (−∞, z1],

u+ on [z1,+∞),

with ⎧

⎪⎪⎨

⎪⎪⎩

A(λ) = 1
β+1

(

1 + βμ√
μ2+2λ

)

, B(λ) = (1−A(λ))e2
√

μ2+2λz1

F (λ) = 1
(1−β)

(

1 + βμ√
μ2+2λ

)

, E(λ) = (1− F (λ))e−2
√

μ2+2λz1 .

We compute the wronskian at the point x0 < z1 and obtain

W (U−, U+)(x0, λ) = −2
√

μ2 + 2λF (λ) exp (−2μx0).

This leads to the result:

Lemma 2.10. The Green functions satisfy

G(x, y;λ) = 2h(y)
U−(x ∧ y, λ)U+(x ∨ y, λ)

βμ+
√

2λ+ μ2

= eμ(y−x) 1
√

2λ+ μ2

e−
√

2λ+μ2|y−x|
√

2λ+ μ2 + βμ

⎛

⎝

2∑

j=1

cj(μ, y;
√

2λ+ μ2)e−
√

2λ+μ2aj(x,y)

⎞

⎠

(17)

where {

c1(μ, y;w) = βμ+ w

c2(μ, y;w) = βw
(
2✶[z1,+∞)(y)− 1

)
− βμ,

{

a1(x, y) ≡ 0

a2(x, y) = |y − z1|+ |x− z1| − |y − x|.

Notice that a2(x, y) ≥ 0 for all x, y ∈ R.
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B. The transition density as a contour integral

The dependence on λ of the Green functions given by (17) is actually a dependence on

φ(λ) :=
√

2λ+ μ2 ∈ {ζ ∈ C;ℜ(ζ) > 0}.

This allows the change of variables ξ := φ(λ) as in the subsection 2.2.2:

p(β)μ (t, x, y) =
1

2πi

∫

Γ

eλtG(x, y;λ)dλ =

= eμ(y−x) 1

2πi

∫

Γ

eλt
e−

√
2λ+μ2|y−x|

√

2λ+ μ2 + βμ

⎛

⎝

2∑

j=1

cj(μ, y;
√

2λ+ μ2)e−
√

2λ+μ2aj(x,y)

⎞

⎠
dλ

√

2λ+ μ2

= eμ(y−x)−μ2

2 t 1

2πi

∫

φ(Γ)

e
ξ2

2 t e
−ξ|y−x|

ξ + βμ

⎛

⎝

2∑

j=1

cj(μ, y; ξ)e
−ξaj(x,y)

⎞

⎠ dξ.

a)

R

iR

Γ

φ(Γ)

b1)

R

βμ > 0

φ(Γ)

M ′ = (0, u)
ρM

M = (ℓ(u), u)

−M ′

|μ|−βμ

b2)

R

βμ < 0

φ′

γ

M ′
ρM

M

−M ′

|μ|−βμ

Figure 2:

a) The picture shows the green image of the blue contour Γ under φ. The red line (−∞, 0] contains the

spectrum of the operator (L,D(L)). The dashed line (−∞, μ2

2 ] is the complement of the domain of φ.

b1) Case βμ > 0: the figure represents the magenta segment ρM connecting the unique point M in φ(Γ) with
imaginary part u to its projection on the imaginary line. The red segment (0, |μ|] is the image under φ of

(−μ2

2 , 0].

b2) Case βμ < 0: the curve φ(Γ) is decomposed as the union of a green curve φ′ that avoids the unique pole
−βμ ∈ (0, |μ|] and the blue cycle γ containing it. The segment ρM connects in this case the unique point
M in φ′ with imaginary part u to its projection on the imaginary line.

If βμ > 0 the integrand is holomorphic on the region between the contour φ(Γ) and the imaginary line. If
βμ < 0 the integrand has exactly one pole of order one in ξ = −βμ. We then decompose the curve φ(Γ) as the
union of a curve φ′ and γ, where γ is a loop around the pole and φ′ avoids the pole.
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Respectively φ(Γ) and φ′ can be deformed to the imaginary line (through H : [0, 1] × R → R
2 given by

H(t, u) = M ′(1− t) + tM), if the analogous of Lemma 2.7 is satisfied:

Lemma 2.11.

lim
|u|→+∞

∫

ρM

e
ξ2

2 t e−ξ|y−x|

ξ + βμ

⎛

⎝

2∑

j=1

cj(μ, y; ξ)e
−ξaj(x,y)

⎞

⎠ dξ = 0,

where ρM is the segment in the figures connecting the points M ′ and M .

Proof. First of all notice that this integral is equal to

Iu :=

∫

ρM

e
ξ2

2 t e−ξ|y−x|

ξ + βμ

⎛

⎝

2∑

j=1

cj(μ, y; ξ)e
−ξaj(x,y)

⎞

⎠ dξ =

∫

ρM

e
ξ2

2 t e−ξ|y−x|
(

1 +
c2(μ, y; ξ)

ξ + βμ
e−ξa2(x,y)

)

dξ,

with ℓ(u) := |M − M ′| and limu→∞ ℓ(u) = 0. Let us consider the following parametrization of the segment
ρ(M) = {M ′ + v(1, 0); v ∈ (0, ℓ(u))}, then:

|Iu| ≤
∫ ℓ(u)

0

e−
(u2−v2)

2 te−v|y−x|
(

1 +

∣
∣
∣
∣

c2(μ, y; v + iu)

v + iu+ βμ

∣
∣
∣
∣
e−v a2(x,y)

)

dv.

For u large enough
∣
∣
∣
∣

c2(μ, y; v + iu)

v + iu+ βμ

∣
∣
∣
∣
= |β|

√
(
v
(
2✶[z1,+∞)(y)− 1

)
− μ
)2

+ u2

(v + βμ)2 + u2
≤ 1,

therefore

|Iu| ≤
∫ ℓ(u)

0

e−
(u2−v2)

2 te−v|y−x|
(

1 + e−v a2(x,y)
)

dv,

that converges to zero if |u| goes to infinity.

We compute the integral on the loop through the method of residues:

p(β)μ (t, x, y) = eμ(y−x)−μ2

2 t 1

2πi

∫

φ′

e
ξ2

2 t e
−ξ|y−x|

ξ + βμ

⎛

⎝

2∑

j=1

cj(μ, y; ξ)e
−ξaj(x,y)

⎞

⎠ dξ

+ eμ(y−x)−μ2

2 t 1

2πi

∫

γ

e
ξ2

2 t e
−ξ|y−x|

ξ + βμ

⎛

⎝

2∑

j=1

cj(μ, y; ξ)e
−ξaj(x,y)

⎞

⎠✶R−(βμ)

= eμ(y−x)−μ2

2 t

2∑

j=1

1

2π

∫

R

e−
w2

2 t 1

iw + βμ
cj(μ, y; iw)e

−iw(aj(x,y)+|x−y|)dw

−βμ
(
1 + β

(
2✶[z1,+∞)(y)− 1

))
eμ(y−x)−μ2

2 te
β2μ2

2 teβμ(|y−z1|+|x−z1|)✶R−(βμ).
︸ ︷︷ ︸

(∗)

(18)

The last equality is obtained by shrinking
∫

φ′ →
∫

iR
and changing variable ξ = iw.

C. The transition density as a sum of Fourier transforms

We interpret each of the two integrals in the last equality of equation (18) as the Fourier transform computed
at the value (aj(x, y) + |x− y|) of the function

w �→ e−
w2

2 t

iw + βμ
cj(μ, y; iw) =

⎧

⎨

⎩

e−
w2

2 t if j = 1

β
((

2✶[z1,+∞)(y)− 1
)
+ μ

(
1 + β

(
2✶[z1,+∞)(y)− 1

))
i

w−iβμ

)

e−
w2

2 t if j = 2,
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where the Fourier transform of f is F(f)(ω) = f̂(ω) = 1√
2π

∫

R
e−iωyf(y) dy. In both cases, these functions are

integrable in w, so the transition density can now be written as

p(β)μ (t, x, y) =
1√
2π

eμ(y−x)−μ2

2 t

2∑

j=1

F
(

e−
w2

2 t 1

iw + βμ
cj(μ, y; iw)

)

(aj(x, y) + |x− y|)

− βμ
(
1 + β

(
2✶[z1,+∞)(y)− 1

))
eμ(y−x)−μ2

2 te
β2μ2

2 teβμ(|y−z1|+|x−z1|)✶R−(βμ).

(19)

We can assume that βμ �= 0 because if β = 0 we get the simple Brownian motion with drift without skew, and
if μ = 0 we get the β-SBM whose transition density is already known (see for example [3]).

Lemma 2.12. If a ∈ R
∗, then

F
(

1

w − ia

)

(ω) = i
√
2π (2✶R+(a)− 1) eaω ✶R− (aω) .

Proof. It is true since

1

w − ia
= F−1

(

i
√
2π (2✶R+(a)− 1) eaω ✶R− (aω)

)

(w) =
1√
2π

∫

R

(

i
√
2π (2✶R+(a)− 1) eaω ✶R− (aω)

)

ei ω w dω.

Notice that 1
w−ia

is not integrable but i
√
2π (2✶R+(a)− 1) eaω ✶R− (aω) is integrable.

Using F
(

e−
w2

2 t
)

(ω) = 1√
t
e−

ω2

2t and Lemma 2.12, we get

F
(

e−
w2

2 t c2(μ, y; iw)

iw + βμ

)

(ω) =

β√
t

(
2✶[z1,+∞)(y)− 1

)
e−

ω2

2t − 1√
t
|βμ|

(
1 + β

(
2✶[z1,+∞)(y)− 1

))
·
(

ew βμ
✶R− (βμw) ∗ e−w2

2t

)

(ω).

We compute the convolution as

(

ew βμ
✶R− (βμw) ∗ e−w2

2t

)

(ω) =
√
te

(βμ)2

2 t+βμω
√
2π

⎛

⎜
⎝✶R−(βμ)
︸ ︷︷ ︸

(∗∗)

+(2✶R+(βμ)− 1)Φc

(
ω√
t
+ βμ

√
t

)

⎞

⎟
⎠ .

Notice that the term (∗∗) arising from the convolution is actually opposite to the term (∗) in (18) arising
from the integration on the cycle γ containing the pole. Therefore the transition density becomes

p(β)μ (t, x, y) =
1√
2πt

eμ(y−x)−μ2

2 t

(

e−
(a1(x,y,z1)+|x−y|)2

2t + β
(
2✶[z1,+∞)(y)− 1

)
e−

(a2(x,y,z1)+|x−y|)2

2t

)

+

−
(
1 + β

(
2✶[z1,+∞)(y)− 1

))
βμeμ(y−x)−μ2

2 te
(βμ)2

2 t+βμ(a2(x,y,z1)+|x−y|)Φc

(
a2(x, y, z1) + |x− y|√

t
+ βμ

√
t

)

.

Isolating the density of the Brownian motion with drift μ without skew, we recognise the expression we wanted,
which completes the proof of Proposition 2.9:

p(β)μ (t, x, y) = p(0)μ (t, x, y)

(

e−
(|x−y|)2−|x−y|2

2t + β
(
2✶[z1,+∞)(y)− 1

)
e−

(|x−z1|+|y−z1|)2−|x−y|2

2t

)

+

− p(0)μ (t, x, y)
√
2πtβμ

(
1 +
(
2✶[z1,+∞)(y)− 1

)
β
)
eβμa2(x,y,z1)e

(βμt+|x−y|)2

2t Φc

( |x− z1|+ |y − z1|+ βμt√
t

)

.
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2.3.2 The case of two barriers and drift

In this subsection we extend the computations done in the previous one to the case of two barriers to provide
the transition density for the (β1, β2)-SBM with drift.

Theorem 2.13. Suppose β1μ > 0 and β2μ > 0. The transition density of the (β1, β2)-SBM with drift decomposes
as

p(β1,β2)
μ (t, x, y) = p(0,0)μ (t, x, y)v(β1,β2)

μ (t, x, y)

where the function v
(β1,β2)
μ is given by a series of Fourier transforms. If β1 �= β2,

v(β1,β2)
μ (t, x, y) = e

|x−y|2

2t

∞∑

k=0

(−β1β2)
k

β1 − β2

k∑

n=0

k∑

m=0

(−1)m(2k − n)!

(k − n)!(k −m)!n!m!

(μ
√
t)n+1−2m

(β1 − β2)2k−n

4∑

j=1

2∑

h=0

cj,2−h(y)

(μ
√
t)h

F
h
m,n(ωj,k);

(20)
and if β1 = β2,

v(β1,β1)
μ (t, x, y) = e

|x−y|2

2t

∞∑

k=0

β2k
1

(2k + 1)!

4∑

j=1

2∑

h=0

k∑

m=0

(
k

m

)

(−1)m+1(μ
√
t)2(k−m)+2−hcj,2−h(y)G

h
m,2k+1(ωj,k, β1μ

√
t),

(21)

where ωj,k :=
aj(x,y)+2zk+|y−x|√

t
, z := z2 − z1 and aj(x, y) and cj,h(y) are defined in Lemma 2.14.

F
h
m,n(ω) := G

h
m,n(ω, β2μ

√
t)− (−1)nG

h
m,n(ω, β1μ

√
t)

and for A ∈
{
β1μ

√
t, β2μ

√
t
}
,

G
h
m,n(ω,A) = (2m+ h)!

m+⌊h
2 ⌋∑

ℓ=0

(−1)ℓ+h

2ℓ
1

ℓ!(2(m− ℓ) + h)!
Sh
m,n,l(ω,A)

where

Sh
m,n,l(ω,A) =

n∑

r=0

2(m−ℓ)+h
∑

s=0

(
n

r

)(
2(m− ℓ) + h

s

)

(ω +A)n−rA2(m−ℓ)+h−sJr+s(ω,A),

and

Jq(ω,A) :=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
2πe

A2

2 +AωΦc(ω +A) q = 0,

−e−
ω2

2 q = 1,

J0(ω,A)(q − 1)!!− J1(ω,A)
∑ q

2−1
a=0 (ω +A)q−2a−1 (q−1)!!

(q−2a−1)!! q ≥ 2 even,

J1(ω,A)
∑ q−1

2
a=0(ω +A)(q−1−2a)2a

( q−1
2 )!

( q−1
2 −a)!

q ≥ 3 odd .

The proof of the theorem is based on the following four lemmas.

Lemma 2.14. The Green functions, defined in Lemma 2.3 satisfy

G(x, y;w) =
1

w
eμ(y−x)e−w|x−y|

∑4
j=1 cj(μ, y;w)e

−waj(x,y)

β1β2e−2wz(w2 − μ2) + (w + β1μ)(w + β2μ)
.

where w :=
√

2λ+ μ2 and z := z2 − z1 is the distance between the barriers. The functions aj(x, y) are non
negative, in particular they are

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

a1(x, y) ≡ 0

a2(x, y) = |y − z1|+ |x− z1| − |y − x|
a3(x, y) = |y − z2|+ |y − z2| − |y − x|
a4(x, y) = 2 (z2 −max(x, y, z1))

+
+ 2 (min(x, y, z2)− z1)

+

13



and cj(μ, y;w) = w2cj,0(y) + wμcj,1(y) + μ2cj,2(y) where

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c1,0(y) = 1,

c2,0(y) =
(
2✶[z1,+∞)(y)− 1

)
β1

c3,0(y) =
(
2✶[z2,+∞)(y)− 1

)
β2

c4,0(y) =
(
1− 2✶[z1,z2)(y)

)
β1β2

,

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c1,1(y) = β1 + β2

c2,1(y) = −β1 − c4,0(y)

c3,1(y) = −β2 + c4,0(y)

c4,1(y) = 0

,

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c1,2(y) = β1β2

c2,2(y) = β1c3,0(y)

c3,2(y) = −β2c2,0(y)

c4,2(y) = −c4,0(y).

Proof. Analogously of the proof provided in subsection 2.2.1.

Lemma 2.15 (Partial fractional decomposition). Let a, b ∈ R
∗, a �= b, then

1

(w − ia)k+1(w − ib)k+1
= i

k∑

j=0

1

(a− b)2k+1−j

(
2k − j

k − j

)(
ij

(w − ib)j+1
− (−1)j

ij

(w − ia)j+1

)

.

Proof. The function f(x) = 1
(w−ia)k+1(w−ib)k+1 is a rational function with two poles x1 = ia, x2 = ib of order

k + 1. We followed a standard method for computing the decomposition: there exist coefficients αi,j such that

the function can be written as f(x) =
∑2

i=1

∑k+1
j=1

αi,j

(x−xi)j
. Since the αi,j are the residues in xi of the function

gi,j(x) = (x− xi)
j−1f(x), we computed them explicitly.

Lemma 2.16. If a ∈ R
∗, and k ∈ N then

F
(

1

(w − ia)k+1

)

(ω) = ik+1
√
2π (2✶R+(a)− 1)

(−ω)k

k!
eaω ✶R− (aω) .

Proof. If k = 0 it coincides with Lemma 2.12, otherwise the function 1
(w−ia)k+1 ∈ L1(R) ∩ L2(R) and one

computes its Fourier transform in ω, 1√
2π

∫

R

1
(w−ia)k+1 e

−iωwdw, through the method of residues.

Lemma 2.17. Let q ∈ N. The primitive function Iq(·) of v �→ vqe−
v2

2 (resp. Ĩq(α) =
∫

(α,+∞)
vq e−

v2

2 dv )

satisfies ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I0(α) :=
√
2πΦ(α) =

√
2πΦc(−α) (resp.

√
2πΦc(α)) q = 0,

I1(α) := −e−
α2

2 (resp. e−
α2

2 ) q = 1,

Iq(α) = I0(α)(q − 1)!! + I1(α)
∑ q

2−1

k=0 αq−2k−1 (q−1)!!
(q−2k−1)!! q ≥ 2 even,

Iq(α) = I1(α)
∑ q−1

2

k=0 α
(q−1−2k)2k

( q−1
2 )!

( q−1
2 −k)!

q ≥ 3 odd .

Proof. Straightforward for q = 0, q = 1, and for q ≥ 2 one can use the integration by parts for the integral
∫
vqe−

v2

2 dv = −
∫
vq−1 d

dv

(

e−
v2

2

)

dv and obtain the recursive formula

Iq(α) = αq−1I1(α) + (q − 2)Iq−2(α)

that yields the conclusion.

We just present a sketch of the proof of Theorem 2.13. The detailed computations will be proposed in
Appendix. The ideas are similar to the proof of Proposition 2.8 and Proposition 2.9 but even more technical
and laborious.

Proof of Theorem 2.13. In subsection 2.1 we saw that the transition density of the (β1, β2)-SBM with drift μ

has an integral representation as in equation 12. Lemma 2.14 gives us the expression of the Green functions.
One can make the change of variable φ(λ) =

√

2λ+ μ2 proceeding as in Figure 2.a. We can show that zero
is an erasable singularity for the integrand, that is also holomorphic on the entire imaginary line. Since we
assumed β1μ > 0, β2μ > 0, the integrand has no poles in (0, μ2]. Therefore, being in the case of Figure 2.b1
and since an analogous of Lemma 2.7 holds, one can deform the contour to the imaginary line. One obtains the
transition density as

p(β1,β2)
μ (t, x, y) = −e−

μ2

2 t+μ(y−x) 1

2π

∫

R

e−
w2

2 te−iw|x−y|
∑4

j=1 cj(y, μ; iw)e
−iwaj(x,y)

β1β2e−2iwz(w2 + μ2) + (w − iβ1μ)(w − iβ2μ)
dw.
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If w �= 0 then
∣
∣
∣β1β2

w2+μ2

(w−iβ1μ)(w−iβ2μ)

∣
∣
∣ < 1 hence the transition density can be written as

p(β1,β2)
μ =

e−
μ2

2 t+μ(y−x)

2π

∫

R

∞∑

k=0

−(−β1β2)
k(w2 + μ2)k

[(w − iβ1μ)(w − iβ2μ)]
k+1

e−
w2

2 t

4∑

j=1

cj(y, μ; iw)e
−iw(aj(x,y,β)+2zk+|x−y|)dw,

where we can exchange integral and limit because the series of the absolute values is integrable. We now interpret

the expression for v
(β1,β2)
μ as a series of Fourier transforms

⎧

⎨

⎩

v
(β1,β2)
μ (t, x, y) = e

|x−y|2

2t

∑∞
k=0(−β1β2)

k
∑4

j=1 Fj,k(ωj,k),

Fj,k := F
(

w �→ e−
w2

2 cj(y, μ
√
t; iw)(w2 + μ2t)k · −1

(w−iβ1μ
√
t)k+1(w−iβ2μ

√
t)k+1

) (22)

The Fourier transform Fj,k(ωj,k) can be rewritten as the convolution of Fourier transforms

Fj,k(ωj,k) =
1√
2π

F
(

e−
w2

2 cj(y, μ
√
t; iw)(w2 + μ2t)k

)

∗ F
( −1

(w − iβ1μ
√
t)k+1(w − iβ2μ

√
t)k+1

)

(ωj,k). (23)

The Fourier transform F
(

−1
(w−iβ1μ

√
t)k+1(w−iβ2μ

√
t)k+1

)

is computed using Lemma 2.16 if β1 = β2, otherwise

using jointly Lemma 2.15 and Lemma 2.16. One concludes the proof using the properties of the iterated

derivatives of Gaussian densities, and introducing Jq(ω,A) = e
A2

2 +AωIq(−(ω + A)) (see Lemma 2.17) . For
more details see the Appendix.

We assumed both β1μ and β2μ to be positive because, if β1μ < 0 or β2μ < 0, the exact computation for
the density can be even more subtle. This is due to the possible presence of an additional term in the contour
integral corresponding to zeros of the denominator lying the positive real semi-axis (as in the case of the β1-SBM
with drift μ, see Figure 2.b2). These cases will be treated in a incoming paper on the exact simulation of a
Brownian diffusion with drift with several discontinuities [4].

Another possible approach in order to solve the (6) could be to apply the technique used in [21] in case of
Brownian motion with drift between two barriers, but our approach seems to be more fruitful.

2.4 Limit cases

For particular choices of the parameters formulas (20) and (21) reduce to the more simple cases studied before.
For β2 = 0, the correspondent barrier z2 is completely permeable, so it is like if it disappears, hence one

would expect to obtain the density of the β1-SBM with drift.
Without directly substituting β2 = 0 in the final expression of the transition density, one can notice in equation
(22) that only Fj,0(ωj,0) for j ∈ {1, 2} do not vanish. Moreover equation (22) turns out to be equation (19) with
β = β1 such that β1μ > 0.

Even for z2 → +∞ one would expect to obtain the density of the β1-SBM with drift. In fact if the second
barrier is very far from the starting point of the process, at every finite time the trajectory has no way to see
the latter barrier and is effected only by the reflection coefficient β1.
Less heuristical and more direct would the following approach. First notice that, since z2 → +∞, a3(x, y), a4(x, y)
and z go to +∞ which implies ωj,k → ∞ as soon as k �= 0 or j �= {1, 2}. Then consider the expression for Fj,k:
in equation (22), it is a Fourier transform of a L2-function, hence it is in L2. It can be shown that it admits
a limit at infinity, hence this limit has to be zero. Therefore the not vanishing terms in equation 22 are again
given by j = 1, 2 and k = 0.

3 Exact simulation

To simulate exactly a process means to simulate it from its law sampling exactly from its finite dimensional
distributions without approximations (beyond the machine’s). Exact sampling of a random variable can be
achieved using the rejection sampling method, introduced in [22].

The rejection method allows to sample from the density h of a random variable X ∼ h(x)dx knowing how
to sample another one Y ∼ g(x)dx if h ≤ Mg for M a finite strictly positive constant. The sample y = Y
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is accepted as a sample of X if and only if u <
h(y)

Mg(y) , where u is the sample of a uniform random variable

U ∼ U[0,1]. Notice that ✶{U<
h(Y )

Mg(Y )} is a Bernoulli random variable with random parameter h(Y )
Mg(Y ) . Moreover

the densities h(x) and g(x) do not need to be normalized.
In our framework, the one-dimensional projection at time t of a (β1, β2)-SBM has a density whose ratio with

respect to the well known transition probability density of the Brownian motion is a series, as we saw in equation
(15). What happens if the density cannot be evaluated exactly, since it is an infinite sum? The technique we
are going to propose allows to evaluate only a finite number of terms of the series, and at the same time, to
maintain the exactness of the sampling.

3.1 Generalized rejection sampling method

Let us introduce our method by explaining a toy example for simulating exactly a Bernoulli random variable

X ∼ Bp with unknown parameter p ∈ [0, 1]. If the parameter is known, then clearly X
(d)
= ✶{U≤p}, hence an

exact simulation consists in sampling the uniform random variable U ∼ U[0,1] and checking if the sample is
smaller (or bigger) than p to decide if X = 1 (or X = 0).

Lemma 3.1. Suppose p is an unknown parameter which is approximated by a sequence (pn)n and the rate of
convergence is at least (δn)n where (δn)n is a decreasing vanishing sequence (i.e. |p − pn| < δn). Then it is
possible to simulate exactly a Bernoulli of parameter p since X := ✶{∃n; |U−pn|>δn, U<pn} ∼ Bp .

Proof. First of all we need to show that, a.s., there exists an n such that |U − pn| > δn. Notice that a.s.
|U − p| > 0. Since δn → 0, a.s. there exist n0 such that |U − p| > 2δn0 . Therefore there exist an n (for
monotonicity it works for n ≥ n0) such that a.s. |U − pn| > δn.
Now, since

{U < p} = {∃n ∈ N; |U − pn| > δn, U < pn} =
⋃

n∈N

{U < pn − δn} ,

then p = P(U < p) = P(X = 1).

0 1
pu u+ δn u′u′ − δnpn

pn − δn pn + δn

0 1pu u+ δn pn

pn − δn pn + δn

0 1p uu′ − δnpn

pn − δn pn + δn

Figure 3: The pictures illustrate the way to sample a Bernoulli random variable X of unknown parameter p: if
u < p then X := 1, otherwise X := 0. In the first image u < pn − δn hence u < p (resp. u′ > pn + δn hence
u′ > p). The second images show that, if u < pn − δn < u + δn < pn (resp. pn < u′ − δn < pn + δn < u) then
u < p (resp. u′ > p) anyway.

The scheme of the algorithm then will be:

1. sample from U , we obtain u

2. find n such that |u− pn| > δn,

3. if u < pn, then u < p hence X := 1 otherwise X := 0 (see Figure 3).

This idea allows us to extend the rejection sampling method for sampling X ∼ h(x)dx knowing an approxi-
mation of the density h(x).
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Theorem 3.2 (Generalized rejection sampling method). Assume one knows how to sample the random variable
Y with (unnormalized) density g(x). Then one can sample the random variable X with (unnormalized) density
h(x) under the following assumptions:

(i) the ratio between the functions g and h is bounded:

∃M > 0 such that 0 < f(y) :=
1

M

h(y)

g(y)
≤ 1 for all y ∈ R;

(ii) there exists a sequence of explicitly computable functions (fn)n converging to f at a decreasing explicitly
computable rate (δn)n.

Then X ∼ (Y | ∃n; U < fn(Y )− δn) i.e. an exact simulation is possible.

Proof. It is well known from the standard rejection sampling that X ∼ (Y |U < f(Y )) (see for example [20]).
Lemma 3.1 ensures that we can simulate exactly without knowing f(Y ) with complete accuracy. The accept-
ability of the draw y = Y as a sample from X is a Bernoulli with parameter f(y) and we can compute explicitly
a sequence converging to this quantity fn(y)(=: pn) and its rate of convergence (δn(y))n. Thus the rejection
sampling scheme based on Lemma 3.1 is the following

1. sample u from a uniform random variable U ∼ U[0,1],

2. sample from the density g: we get y = Y ,

3. take y as a sample of X if u < f(y), otherwise reject and start again. More precisely:

3a. find n such that |u− fn(y)| > δn,

3b. check whether fn(y) > u,

3c. if yes accept X = y, if not reject it.

3.2 Sampling from the density of the (β1, β2)-SBM

We now apply Theorem 3.2 for sampling from the density at time t of the (β1, β2)-SBM starting at x. We
already noticed in Proposition 2.8 that its density is absolutely continuous with respect to the one of the
Brownian motion p(0,0)(t, x, y) with ratio

v(β1,β2)(t, x, y) =

∞∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)e
− (aj(x,y)+2zk)2

2t e−|x−y| aj(x,y)+2zk

t . (24)

Since we can only evaluate the sum of the series v(β1,β2)(t, x, y) with some error, we check if the hypothesis (i)
and (ii) of Theorem 3.2 are satisfied.

Lemma 3.3. There exists an upper bound for v(β1,β2)(t, x, y) uniform in x and y:

sup
x,y∈R

∣
∣
∣v(β1,β2)(t, x, y)

∣
∣
∣ ≤ v :=

(1 + |β1|)(1 + |β2|)
1− |β1β2|

.

Proof.

|v(β1,β2)(t, x, y)| ≤
( ∞∑

k=0

|β1β2|k
)⎛

⎝

4∑

j=1

|cj(y, β1, β2)|

⎞

⎠ =

∑4
j=1 |cj(y, β1, β2)|
1− |β1β2|

=
(1 + |β1|)(1 + |β2|)

1− |β1β2|
=: v.
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We denote the truncated series at the first N terms by

v
(β1,β2)
N (t, x, y) :=

N∑

k=0

(−β1β2)
k

4∑

j=1

cj(y, β1, β2)e
− (aj(x,y)+2zk)2

2t e−|x−y| aj(x,y)+2zk

t ,

and the rest by RNv(β1,β2)(t, x, y) = v(β1,β2)(t, x, y)− v
(β1,β2)
N (t, x, y).

Lemma 3.4. The rest of the truncated series is bounded uniformly in x, y:

|RNv(β1,β2)(t, x, y)| ≤ v |β1β2|N+1.

Proof.

|RNv(β1,β2)(t, x, y)| ≤
( ∞∑

k=N+1

|β1β2|k
)⎛

⎝

4∑

j=1

|cj(y, β1, β2)|

⎞

⎠ = v |β1β2|N+1.

We can apply Theorem 3.2 with

fn(y) :=
1

v
v(β1,β2)
n (t, x, y) and δn := |β1β2|n+1.

We are then able to sample from the density y �→ p(β1,β2)(t, x, y) in equation (15) through the generalized
rejection sampling algorithm and therefore we are able to simulate exactly the Markov process (β1, β2)-SBM
(for example see Figure 4).

To increase the efficiency of the rejection algorithm, we apply the following principle: assume we have just

computed
∣
∣
∣f

β,t,x
N (y)− u

∣
∣
∣ and noticed that it is smaller than δN , we then take the first index N̂ greater than

the quantity (log δN )
−1

log
∣
∣
∣f

β,t,x
N (y)− u

∣
∣
∣. Moreover it is better to fix an integer Nmax in order to stop the

algorithm in case it does not find the desired conditions 3a. in Theorem 3.2. This index Nmax should be such
that the rest of the series is sufficiently small for considering the truncated sum as a good approximation (due
to Lemma 3.4 an upper bound for the error is v |β1β2|Nmax). In any case the simulation turns out to be always
exact (that is the acceptance or rejection is obtained for an index smaller than Nmax) if |β1β2| is not too close
to 1. In that case we may increase the index Nmax in such a way that δNmax

is small.

t

X t

Figure 4: Exact simulation of a path of the
(0.7,−0.2)-SBM starting at time 0 in x = −0.3.
The barriers are z1 = 0 and z2 = 1.

Figure 5: Comparison between the function y �→
p(

1
2 ,− 1

2 )(1, 0.5, y) obtained from 50000 exact sim-
ulations through generalized rejection sampling
method and the plot of its truncated version at
the tenth term (Nmax = 10). The barriers are
z1 = 0 and z2 = 1.
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Let us compare now the approximation of the density y �→ p(β1,β2)(t, x, y) in equation (15) obtained truncating
the series at the Nmax-th term and an histogram of a large number of exact samples from the untruncated density
computed through the generalized rejection sampling method. For simplicity, we always take time t = 1, starting
point x = 0.5 and we assume that the barriers are fixed in z1 = 0 and z2 = 1.

We represent in Figure 5, as typical situation, the function y �→ p(
1
2 ,− 1

2 )(1, 0.5, y). In this case, 100% of the
50000 simulations are exact. The average number of terms of the series that are necessary in order to decide if
to accept or reject the simulations is smaller than 2 (1.6). From now on we will denote this number as Nrej .
The transition density in this case is mainly concentrated inside of the interval between the barriers (z1, z2)
since β1 > 0 and β2 < 0. Choosing Nmax = 10 the truncated series differs from the untruncated one at most of
v |β1β2|11 ∼ 6 · 10−7.

Figure 6: Comparison between the function y �→
p(0.3,−0.7)(1, 0.5, y) obtained from 50000 exact sim-
ulations through generalized rejection sampling
method and the plot of its truncated version at
the tenth term (Nmax = 10). δ10 = 3.5 · 10−8 and
Bv = 2.8. The barriers are z1 = 0 and z2 = 1.
The average acceptance number is Nrej = 1.28.

Figure 7: Comparison between the function y �→
p(−0.7,0.3)(1, 0.5, y) obtained from 50000 exact sim-
ulations through generalized rejection sampling
method and the plot of its truncated version at
Nmax = 10. The barriers are z1 = 0 and z2 = 1.
The average acceptance number Nrej is 1.27.

In Figure 6 and 7 we propose skewness parameters with different absolute values and pointing respectively
inward and outward. All our simulations are exact andNrej ∼ 1.3 is low as expected. In these cases δn = 0.21n+1

and v = 2.8. We can observe in Figure 6 that the process tends to stay between the barriers because when it
reaches the barrier z1 it has probability 1+β1

2 = 0.65 to be reflected to this region and when it reaches z2 the

probability is 1−β2

2 = 0.85. If the process leaves (z1, z2), then the probability to be before z1 is larger than to
be after z2 because 1− β1 > 1 + β2.
In Figure 7 the parameters β1 = −0.7 and β2 = 0.3 induce that the process is more likely to be outside the
region between the barriers because it is reflected outside this region with probability 1−β1

2 = 0.85 in z1 and
with probability 0.65 in z2.
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Figure 8: Comparison between the function y �→
p(−0.8,−0.6)(1, 0.5, y) obtained from 50000 exact
simulations through generalized rejection sampling
method and the plot of its truncated version at
Nmax = 10 with δ10 = 3.12 · 10−4 (and v = 5.54).
The barriers are z1 = 0 and z2 = 1. The average
acceptance number is 3.58.

Figure 9: Comparison between the function y �→
p(1,−0.4)(1, 0.5, y) obtained from 50000 exact sim-
ulations through generalized rejection sampling
method and the plot of its truncated version at
Nmax = 20. The barriers are z1 = 0 (completely
reflecting) and z2 = 1 (semipermeable). The aver-
age acceptance number is 2.36.

Figure 8 represents a case of β1β2 > 0. From the simulated density function it is confirmed the behaviour
we expected: the process after a time t will be more likely to stay on the the left (respectively right if the
parameters are positive) side of the barriers. We chose the parameters β1 < β2 in such a way that the process
would more likely stay in (−∞, z1).

Another interesting example is the case of a completely reflecting barrier and a partially reflecting one: in
Figure 9 we choose β1 = 1 and β2 < 0, i.e. z1 totally reflecting and z2 semipermeable with semipermeabiliy
coefficient β2 = −0.4. The process shows the tendency to stay in the between the barriers (z1, z2), while it will
have probability zero to be in (−∞, z1).

Appendix: details in the proof of Theorem 2.13

We now propose with more details the steps between the convolution of Fourier transforms (22) and the final
result of Theorem 2.13.

Equation (23) is the convolution of two Fourier transforms, hence one needs to compute first the Fourier
transforms separately and then the convolution.

Lemma 3.5. The Fourier transform F of the function w �→ e−
w2

2 cj(y, μ
√
t; iw)(w2 + μ2t)k is

F(v) =

2∑

h=0

cj,2−h(y)
k∑

m=0

(
k

m

)

(μ
√
t)2(k−m+1)−h(−1)m+h d2m+h

dv2m+h
e−

v2

2 , (25)

where the functions cj and cj,h for j = 1, 2, 3, 4, h = 0, 1, 2 are given in Lemma 2.14.

Proof. Simply recall that

cj(y, μ
√
t; iw) =

2∑

h=0

(μ
√
t)2−hcj,2−h(y)i

hwh,

and that

ihF
(

e−
w2

2 wh(w2 + μ2t)k
)

=
k∑

m=0

(
k

m

)

(μ
√
t)2(k−m)ihF

(

e−
w2

2 w2m+h
)

.
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Finally one computes the Fourier transforms

ihF
(

e−
w2

2 w2m+h
)

(v) = i2(m+h) d2m+h

dv2m+h
e−

v2

2 = (−1)m+h d2m+h

dv2m+h
e−

v2

2

and concludes.

If β1 �= β2, as corollary of Lemma 2.15 and Lemma 2.16 one has

F
(

w �→ −1

(w − iβ1μ
√
t)k+1(w − iβ2μ

√
t)k+1

)

(ω) =

=

√
2π

(β1 − β2)2k+1(μ
√
t)2k+1k!

·
k∑

n=0

(2k − n)!

n!(k − n)!
(β1 − β2)

n(μ
√
t)nωn

[

g(ω, β2μ
√
t)− (−1)ng(ω, β1μ

√
t)
]

,

(26)

where we defined the function

g(ω,A) := (2✶R+(A)− 1) eAω
IR− ((2✶R+(A)− 1)ω)

Since β1μ, β2μ are both positive then g(ω, βiμ
√
t) = eβiμ

√
tω
IR−(ω), but we give here the proof in the general

case βiμ
√
t �= 0.

If β1 = β2 Lemma 2.16 gives the formula for F
(

−1
(w−iβ1μ

√
t)2(k+1)

)

.

Let us define

G
h
m,n(ω,A) := (−1)h

(

wng(w,A) ∗ d2m+h

dw2m+h
e−

w2

2

)

(ω)

where A is a fixed real parameter and also

F
h
m,n(ω) = G

h
m,n(ω, β2μ

√
t)− (−1)nG

h
m,n(ω, β1μ

√
t).

Fj,k in equation (23) is given by

⎧

⎨

⎩

Fj,k =
∑k

n=0

∑k
m=0

(−1)m(2k−n)!
(k−n)!(k−m)!n!m!k!

(μ
√
t)2(k−m)

(β1μ
√
t−β2μ

√
t)2k+1−n

∑2
h=0 c

2−h
j (x, y)(μ

√
t)2−hFh

m,n, if β1 �= β2,

Fj,k =
∑k

m=0
(−1)m+k

(2k+1)!

(
k
m

)
(μ
√
t)2(k−m)

∑2
h=0 c

2−h
j (x, y)(μ

√
t)2−hG h

m,2k+1, if β1 = β2.

It remains to compute the function G h
m,n(ω,A). One can use that

dn

dwn
e−

w2

2 = (−1)ne−
w2

2 Hn(w)

where Hn(w) are the Hermite polynomials.

G
h
m,n(ω,A) =

(

wng(w,A) ∗H2m+h(w)e
−w2

2

)

(ω)

= (2✶R+(A)− 1)

∫

R

IR−(Aw)wne−
(ω−w)2

2 +AwH2m+h(ω − w)dw

= (2✶R+(A)− 1) e
A2

2 +Aω

∫

R

IR−(Aw)wne−
(w−(ω+A))2

2 H2m+h(ω − w)dw

(v=w−A−ω)
= (2✶R+(A)− 1) e

A2

2 +Aω

∫

R

IR−(A(v +A+ ω))(v +A+ ω)ne−
v2

2 H2m+h(−A− v)dv

= (2✶R+(A)− 1) e
A2

2 +Aω

∫

(−(2✶R+−1)∞,−(ω+A))

(v +A+ ω)ne−
v2

2 H2m+h(−A− v)dv

We can then use the binomial formula and then the explicit expression for the Hermite polynomials:

Hn(w) = n!

⌊n
2 ⌋
∑

ℓ=0

(−1)ℓ
1

2ℓ
1

ℓ!(n− 2ℓ)!
wn−2ℓ.
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Therefore

G
h
m,n(ω,A) = (2✶R+(A)− 1) e

A2

2 +Aω

∫

(−(2✶R+−1)∞,−(ω+A))

(v +A+ ω)ne−
v2

2 H2m+h(−(A+ v))dv

= (2m+ h)!

m+⌊h
2 ⌋∑

ℓ=0

(−1)ℓ

2ℓ
1

ℓ!(2(m− ℓ) + h)!
Sh
m,n,l(A,ω)

where, if I(ω,A) denotes the interval (− (2✶R+(A)− 1)∞,−(ω +A)),

Sh
m,n,l(A,ω) = (−1)h (2✶R+(A)− 1) e

A2

2 +Aω

∫

I(ω,A)

(v +A+ ω)ne−
v2

2 (A+ v)2(m−ℓ)+hdv

= (−1)h
n∑

r=0

2(m−ℓ)+h
∑

s=0

(
n

r

)(
2(m− ℓ) + h

s

)

(ω +A)n−rA2(m−ℓ)+h−sJr+s(ω,A),

where Jr+s(ω,A) = (2✶R+(A)− 1) e
A2

2 +Aω
∫

I(ω,A)
vr+se−

v2

2 dv =

{

e
A2

2 +AωIr+s(−(ω +A)) A > 0

−e
A2

2 +Aω Ĩr+s(−(ω +A)) A < 0
with Iq

and Ĩq defined in Lemma 2.17.
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