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Abstract

In recent years, methods have been developed to study the existence, stability and bifurca-
tions of pulses in singularly perturbed reaction-diffusion equations in one space dimension, in
the context of a number of explicit model problems, such as the Gray-Scott and the Gierer-
Meinhardt equations. Although these methods are in principle of a general nature, their ap-
plicability a priori relies on the characteristics of these models. For instance, the slow reduced
spatial problem is linear in the models considered in the literature. Moreover, the nonlinearities
in the fast reduced spatial problem are of a very specific, polynomial, nature. These properties
are crucially used, especially in the stability and bifurcation analysis. In this paper, we present
an explicit theory for pulses in two-component singularly perturbed reaction-diffusion equations
that significantly extends and generalizes existing methods.

Dedicated to Klaus Kirchgässner, in gratitude for his inspiration and stimulation

1 Introduction

The existing theory for the existence and stability of symmetric, stationary pulse solutions to two-
component singularly perturbed reaction-diffusion equations has in essence been developed in the
context of two explicit models, the Gray-Scott (GS) model for autocatalytic reactions [15, 7] and
the Gierer-Meinhardt (GM) system modelling morphogenesis [14]. The (generalized) GM equation
is directly included in the general class of two-component, singularly perturbed systems considered
here,

{

Ut = Uxx − [µU − ν1F1(U ; ε)] + ν2
ε F2(U, V ; ε)

Vt = ε2Vxx − V + G(U, V ; ε),
(1.1)

the particular structure of which emphasizes the new, generalized aspects of this system compared
to the specific well-studied GS/GM-type models. More details on this specific form can be found
in section 1.1.

In this paper, we consider equation (1.1) on the unbounded domain R, so U(x, t), V (x, t) : R×R>0 →
R>0; we restrict ourselves to positive solutions. Moreover, we assume that µ > 0, ν1,2 ∈ R and
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F1 : R>0 → R, F2, G : R>0 × R≥0 → R are nonlinear functions obeying mild regularity assump-
tions, see section 1.1. The parameter 0 < ε ≪ 1 is assumed to be asymptotically small, i.e. the
results established in this paper will be valid for ‘ε > 0 small enough’. While strictly speaking
not part of the domain of F2 and G, the trivial background state (U, V ) ≡ (0, 0) is assumed to be
asymptotically stable, see also Remark 1.6. The Gray-Scott equation can also be brought into the
form (1.1) by a number of transformations that scale the magnitude of the patterns to O(1) with
respect ε and that shift the Gray-Scott background state (1, 0) to the normalized state (0, 0) in (
refe:PDEslow) [3, 9].

The model problem (1.1) can be considered as the most general (semilinear) two component, sin-
gularly perturbed reaction-diffusion system –see equations (1.3) and (1.4)– that may exhibit O(1)
pulse patterns (Remark 1.2), apart from an explicit co-dimension 1 condition on the structure of the
linearized model near the trivial background state that determines the limiting behavior of the pulse.
This condition –that roughly states that near this background state the ‘slow’ U -component only
couples into the ‘fast’ V -equation in a nonlinear way– has mainly been imposed for technical reasons;
see however Remark 1.5. A derivation and more precise motivation of the model will be given in
section 1.1, together with a list of specific assumptions on the parameters and nonlinearities in (1.1).

The class of equations covered by (1.1) significantly extends the GS and GM type models. In
this paper, we will develop an explicit theory for the existence and the stability of symmetric,
stationary pulse solutions to (1.1) that have positive U and V -components and that have O(1)
(sup-)norm with respect to ε (Remark 1.2). We will especially highlight the effect of generalizing
two –as it will turn out– quite restrictive properties shared by the GS and GM models. Firstly,
these models do not allow for nonlinear behavior in U in the slow U -equation outside the fast
pulse region, i.e. the slow U -equations of the GS/GM models are linear in U for V = 0. In other
words, both the GS and the (generalized) GM equations correspond to system (1.1) with ν1 = 0 –
the nonlinearity in the U -equation is decomposed in a V -independent term (F1) and a term that
vanishes at V = 0, hence F2(U, 0) = 0 (see section 1.1 and especially assumption (A3)). In the
literature, this linearity in the slow U -system is crucially exploited in the stability analysis of pulse
solutions to both GS- as well as GM-type models: this analysis relies heavily on the fact that the
stability problem can be solved explicitly in terms of exponential functions in the slow U -fields
[3, 4, 18, 22, 23, 41]. Note that systems incorporating a slow nonlinearity (ν1 6= 0) were already
encountered in [26], although no pulse-type solutions were considered in this paper. Secondly, in
almost all previous studies the nonlinear term G(U, V ) in (1.1) is a simple, explicit power of V as
function of V (it is in fact quadratic in V in the GS and the standard GM equation) – see [42, 27] for
some exceptions involving a saturation term. This also forms an essential ingredient of the analy-
sis, since it enables one to explicitly solve the fast reduced stability problem (see [3, 4] and section 3).

One can thus say that the existing methods for the explicit analysis of homoclinic pulses in two
component, singularly perturbed reaction-diffusion equations are applicable to the subclass of (1.1)
in which ν1 = 0 and G(U, V ) = g(U)V d for d > 1 and some function g(U) – see also Remark 1.2.
The theory to be developed in this paper goes beyond these rather severe restrictions. Moreover,
the richness of the novel phenomena introduced by the extended class (1.1) is shown by way of an
explicit example in the companion paper [38] – see also Remark 1.1.

In section 2, the existence of stationary singular pulses for system (1.1) is established by the meth-
ods of geometric singular perturbation theory, under mild and natural assumptions; in particular,
we assume that the fast V -system admits a homoclinic pulse solution. Similar to related results in
[3, 7], pulses correspond to intersections of the slow unstable manifold W u

s ((0, 0)) and a take off
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curve To in the half-plane {(u, p) : u > 0} associated to the reduced slow existence problem (i.e.
V ≡ 0, ε = 0 and U = u(x) in (1.1)). As a consequence, system (1.1) may in general exhibit various
homoclinic pulse solutions – see Figure 2 in section 2. The precise existence result is summarized
in Theorem 2.1. From section 3 onwards, the (linear) stability of a homoclinic pulse is analyzed
using Evans function techniques. The slow reduced linear stability problem is no longer of constant
coefficient type, as is the case in the GS/GM type models studied in the literature: both the slow
and fast reduced linear problems have the structure of classical Sturm-Liouville problems. This fact
is strongly used in the analysis. It is shown that the Evans function associated to the (spectral)
stability of the pulse can be decomposed into a fast and a slow component. The main result of
this analysis –which is obtained through a nonlocal eigenvalue problem (NLEP)– is Theorem 4.4,
which provides an explicit expression for the slow component ts,+ of the Evans function in terms of
the nonlinearities F1,2, G of (1.1) and the leading order approximation of the pulse (as established
by Theorem 2.1). Since it is established in Corollary 5.2 that all nontrivial eigenvalues correspond
to zeroes of ts,+, Theorem 4.4 thus provides an explicit analytical control over the stability of the
pulses given by Theorem 2.1.

Even though the pulse is constructed in a most general setting under mild assumptions on the
nonlinearities F1,2 and G, a number of (relatively) simple instability results is obtained by detailed
analysis of the function ts,+ in the neighbourhood of known eigenvalues of the fast reduced problem,
these results are presented in section 5. The instability of the homoclinic pulse can be established
by determining the sign of certain explicit expressions (Corollary 5.7, Theorem 5.13). Some of these
expressions can be interpreted and determined directly in terms of the existence problem, or more
specifically, by considering the slow unstable manifold W u

s ((0, 0)) and the take off curve To that
establish the existence op the pulses (Theorem 2.1). In the linear ν1 = 0 case, W u

s ((0, 0)) always
has positive p(= ux)-coordinate so thatW u

s ((0, 0))∩To must lie in the positive quadrant of the slow
reduced {(u, p) : u > 0} half-plane. In general, W u

s ((0, 0)) ∩ To may have negative p-coordinates
– in such cases the U -component of the pulse has a maximum on both sides the fast V -pulse, see
Figure 4c. It is established in Corollary 5.7 that these pulses are unstable. Moreover, the sign of
the relative slopes of the take-off curve To with respect to the slow unstable manifold W u

s ((0, 0))
at their intersections also gives a direct instability criterion: this sign changes at successive inter-
sections, but only those intersections with negative sign can be stable – see Lemma 5.12, Theorem
5.13 and Figure 8. Analysis of the slow component of the Evans function near the trivial eigenvalue
λ = 0 reveals close relations between bifurcations in the existence problem and pulse instabilities,
see Corollary 5.8 and Corollary 5.10.

Finally, in section 6, we discuss some implications of the general approach developed here .

Remark 1.1 The present general results are both inspired by and reflected in the analysis in the
companion paper [38], where the theory is developed in the explicit setting of a Gierer-Meinhardt
problem with a ‘slow nonlinearity’:

{

Ut = Uxx − [µU − ν1U
d] + ν2

ε V
2

Vt = ε2Vxx − V + V 2

U .
(1.2)

For a specific system like this, it is possible to go beyond the previously mentioned instability
results, especially since it is possible to get an even more explicit ‘analytical control’ over the
reduced Sturm-Liouville problems associated to the stability of the pulses – in [38] a crucial role
is played by associated Legendre functions. As a consequence, it is possible to obtain conditions
in terms of the model parameters for which the homoclinic pulse is stable. Moreover, numerical
analysis of the resulting Hopf bifurcations reveals rich nonlinear behaviour such as stable standing
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Figure 1: A stable oscillating pulse, as observed in the slowly nonlinear Gierer-Meinhardt system
(1.2), studied in [38] (see also Remark 1.1). The left figure shows the position of the tip of the
pulse as a function of time. In the right picture, the u-component of the pulse is shown in a
space-time plot. These results were obtained by direct numerical simulation of the PDE system,
for (µ, ν1, ν2, d) = (0.9, 1, 2, 2) and ε = 0.02.

localised pulses that bifurcate from the pulses considered here and of which the maximum oscillates
up and down in a complex –periodic, quasi-periodic, chaotic– fashion, see Figure 1. This novel
and intriguing behaviour has not been observed in the literature on GS/GM-type models. In a
forthcoming paper [39], the nature of the Hopf bifurcation of pulses in system (1.2) is studied. It
is established that this Hopf bifurcation can be both sub- and supercritical, as is expected in the
general setting of system (1.1). The Hopf bifurcation in GM-type models is always subcritical, as
is analytically confirmed in [39].

Remark 1.2 In this paper we only consider pulse solutions for which the fast V -component makes
one homoclinic excursion away from the stable rest state. Thus, we do not consider localised multi-
pulse patterns that are also very common to GS/GM-type models [7, 3]. More importantly, we also
do not consider pulse solutions of ‘mesa’ or FitzHugh-Nagumo type. Such pulses can be described
as bi-heteroclinic (or multi-heteroclinic), since they consist of (at least) two heteroclinic jumps
through the fast spatial field separated by a ‘long’ plateau in which the pattern evolves slowly (in
space); see [16, 17, 20, 21, 25] and the references therein.

Remark 1.3 The Schnakenberg model, the third standard model considered in the literature [34],
is very similar to the GS and GM models, in the sense that the slow reduced system also does not
contain nonlinearities and that the nonlinearity associated to G(U, V ) is again exactly quadratic as
function of V . Although the Schnakenberg model does not have a trivial stable background state,
it can be (and has been) studied by methods that are very similar to those developed for the GS
and GM equation [19, 40].
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1.1 The model

The most general two component reaction-diffusion system on the real line, i.e. for x̂ ∈ R, reads
{

Ut̂ = dUUx̂x̂ + a11U + a12V + H1(U, V )
Vt̂ = dV Vx̂x̂ + a21U + a22V + H2(U, V )

(1.3)

in which H1,2(U, V ) : R2 → R are nonlinear terms that do not include linear components in U or V .
Stable pulse solutions must be bi-asymptotic to a spectrally stable ‘trivial state’ (U, V ) ≡ (Ū , V̄ ). It
can be assumed, by a simple translation of U and V , that (Ū , V̄ ) = (0, 0) –which does not necessarily
need to be a solution to (1.3), see Remark 1.6–. This trivial state is stable if a11 + a22 < 0 and
a11a22 − a12a21 > 0. The system is assumed to be singularly perturbed, i.e. it is assumed that
U(x̂, t̂) is slowly varying as function of x̂ compared to the (relatively fast) spatial variation of V (x̂, t̂)
– see also Remark 1.5. In other words, we assume that 0 < dV ≪ dU , or, without loss of generality,
that dV = ε2 ≪ 1, with 0 < ε ≪ 1 asymptotically small, and dU = 1. This introduces the fast
spatial variable ξ̂ = x̂/ε, in which (1.3) has the form

{

ε2Ut̂ = Uξ̂ξ̂ + ε2 [a11U + a12V + H1(U, V )]

Vt̂ = Vξ̂ξ̂ + a21U + a22V + H2(U, V ).
(1.4)

Since Û(x, t) is assumed to be bounded on R, we formally conclude from the first equation in (1.4)
that U(ξ̂, t̂) must approach a constant value Ū in the limit ε → 0; in other words, the singularly
perturbed nature of (1.4) causes U to be constant in leading order as function of the fast spatial
variable ξ̂. As a consequence, in the singular limit ε → 0 the existence problem for stationary
patterns reduces to a family of fast reduced existence problems for V = vf (ξ),

vf,ξ̂ξ̂ + a21Ū + a22vf +H2(Ū , vf ) = 0, (1.5)

parameterized by Ū ∈ R; note that this is an integrable planar system.

In this paper, we focus on the most simple pulse solutions: stationary solutions that are biasymp-
totic to the stable background state (0, 0) of (1.4), that are symmetric in ξ̂ (or x̂), and that only
make one ‘jump’ through the fast field (which is to leading order described by (1.5)) – see also Re-
mark 1.2. By the above asymptotic arguments, system (1.4) can only have such a pulse solution if
there are values of Ū for which (1.5) has a ‘fast’ homoclinic orbit vf,h(ξ̂; Ū). The main co-dimension
1 assumption underlying the reduction of the most general system (1.3)/(1.4) to the model prob-
lem (1.1) is that this homoclinic solution is biasymptotic to the critical point (vf , vf,ξ̂) = (0, 0)

of (1.5), i.e. that limξ̂→±∞ vf,h(ξ̂; Ū) = limξ̂→±∞
d
dξ̂
vf,h(ξ̂; Ū) = 0. In principle, this is quite a

restrictive condition. Since Ū 6= 0 in general, it directly implies that a21 must be 0. Nevertheless,
the methods developed in this paper can also be applied to systems for which limξ→±∞ vf,h(ξ̂; Ū)
depends on Ū , and only approaches 0 on the slow spatial scale, as Ū → 0. However, the analysis
does become more involved for those systems: outside the fast homoclinic jump region described
by (1.5), the component V will not be constant, but will evolve slowly (as function of x̂), ‘slaved’
to the slow U -component – see Remark 1.5. To highlight the impact of allowing for fully general
nonlinearities in (1.1) compared to the restricted cases of the GM and GS equations, we focus on
a class of systems (1.3)/(1.4) with a21 = 0. In other words, we focus on the general class of two
component, singularly perturbed, systems in which the slow component U(x̂, t̂) only couples into
the fast V -equation through the nonlinear term H2(U, V ).

Since a21 = 0, the assumption that the trivial state (U(ξ̂, t̂), V (ξ̂, t̂) ≡ (0, 0) is spectrally stable
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reduces to a11 < 0 and a22 < 0. By introducing t = −a22t̂ and ξ =
√−a22ξ̂, equation (1.4) can

now be written as
{

ε2Ut = Uξξ + ε2 [−µU + F (U, V ; ε)]
Vt = Vξξ − V + G(U, V ; ε)

with

µ =
a11
a22

> 0, F (U, V ; ε) = − 1

a22
[a12V +H1(U, V )] , G(U, V ; ε) = − 1

a22
H1(U, V ).

Next, we decompose F (U, V ; ε) into a part that depends only on U and a part that is 0 if V = 0,

F (U, V ; ε) = F (U, 0; ε) + [F (U, V ; ε)− F (U, 0; ε)]
def
= ν1F1(U ; ε) +

ν2
ε
F2(U, V ; ε), (1.6)

where ν1,2 ∈ R (not necessarily O(1) in ε) have been introduced to control the relative impact
of the nonlinear, non-GS/GM term F1(U) and the nonlinear coupling term F2(U, V ). Hence, we
arrive at (1.1) written in the fast spatial variable ξ,

{

ε2Ut = Uξξ − ε2[µU − ν1F1(U ; ε)] + εν2F2(U, V ; ε)
Vt = Vξξ − V + G(U, V ; ε).

(1.7)

Apart from the condition on the (non)appearance of terms that are linear in U in the V -equation,
(Remarks 1.5 and 3.1), the model problem (1.1) can thus be seen as a general two component,
singularly perturbed model, in which O(1) pulses can exist. A priori, one could argue that the
term ν2/ε in (1.6) also introduces a further restriction, but this is not the case since ν2 will be
allowed to be O(ε) in the analysis. The F2-term in (1.1)/(1.7) has been artificially ‘blown up’
by a factor of 1/ε for clarity of presentation – which can be explained most clearly by looking at
(1.1). The fast V component enters into the slow U -equation of (1.1) through an asymptotically
large term of O(1/ε) – as is also the case in the GS, generalized GM and Schnakenberg models.
Since V (x, t) is strongly localized to a domain of size O(ε) in the x-scaling, this is quite natural:
if the interaction term in the U -equation would be smaller, then the direct impact of V on the
evolution of U would be asymptotically small. As was already remarked, this situation can, and
will, be studied by considering |ν2| ≪ 1 in (1.7), see Corollary 5.15. It will be found that (1.7)
may have pulse solutions in this case, but that these pulse must be unstable: (1.7) in essence
decouples into two scalar equations, the coupling is not strong enough to counteract the unstable
eigenvalues of the scalar U, V -subsystems. In other words, by artificially ‘blowing up’ the F2-term in
(1.1), we automatically focus on the most relevant region in the parameter space associated to (1.1).

Since we have introduced ambiguities by the introduction of ν1,2 in (1.6), and since we so far
not discussed the precise nature of the nonlinear terms, we now list the basic assumptions we im-
pose on the parameters µ, ν1, ν2 and the nonlinearities F1, F2, G in (1.1)/(1.7) in the subsequent
analysis:

Definition 1.4 A statement of the form ‘f(x) ; c · g(x) as x → x0’ is true whenever the limit
limx→x0

1
g(x) f(x) = c exists and is well-defined.
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(A1) µ, ν1,2 are real and nonsingular in ε; furthermore, µ > 0.
(A2) • F1(U ; ε) ; Uf1 as U ↓ 0 for some f1 > 1;

and F1 is smooth both on its domain and as a function of ε.
(A3) Writing F2(U, V ; ε) = F2,1(U ; ε)V + F2,2(U, V ; ε),

• F2,1(U ; ε) ; F̃2,1(ε)U
γ1 as U ↓ 0 for some γ1 ≥ 0 and F̃2,1(ε) ∈ R;

• F2,2(U, V ; ε) ; F̃2,2,u(V ; ε)Uα1 as U ↓ 0 for some α1 ∈ R;

• F2,2(U, V ; ε) ; F̃2,2,v(U ; ε)V β1 as V → 0 for some β1 > 1;
and F2 is smooth both on its domain and as a function of ε.

(A4) • G(U, V ; ε) ; G̃u(V ; ε)Uα2 as U ↓ 0 for some α2 ∈ R;

• G(U, V ; ε) ; G̃v(U ; ε)V β2 as V → 0 for some β2 > 1;
and G is smooth both on its domain and as a function of ε.

Assumption (A2) defines F1(U ; ε) and ν1 uniquely, while F2(U, V ; ε) and ν2 are not (yet), but
will be uniquely defined with assumption (B3). The possibly singular behavior of the functions
F2,2(U, V ; ε) and G(U, V ; ε) for U and/or V small (assumptions (A3,4)) is in accordance with the
behavior of the nonlinearities in the generalized GM model, see also Remark 3.1. In fact, the
generalized GM model corresponds to (1.1)/(1.7) with

ν1 = 0, ν2 = 1, F2,1(U ; ε) ≡ 0, F2,2(U, V ; ε) = Uα1V β1 , G(U, V ; ε) = Uα2V β2 , β1, β2 > 1. (1.8)

Remark 1.5 As was already noted, if a21 6= 0, it follows from (1.5) that the fast V -component of
the homoclinic pattern (Uh(ξ), Vh(ξ)) does not go to 0 as ξ leaves the fast field, but instead will be
‘slaved’ to the slowly evolving U -component and thus only approaches 0 on the slow spatial scale.
It has been shown for a model problem [6] that such a situation can be studied along the lines of the
present approach. Thus, letting go of the condition a21 = 0 a priori mostly introduces additional
technicalities (see also Remark 3.1). However, allowing a21 to be 6= 0 may possibly generate
more than just ‘additional technicalities’. A linear U -term in the V -equation may introduce the
possibility of having homoclinic pulse patterns with spatially oscillating, i.e. non-monotonously,
decaying ‘tails’. We are not aware of any analytical, or even numerical, study of this type of
localized patterns in singularly perturbed reaction diffusion equations. At the introduction of the
asymptotically large ν2/ε pre-factor in (1.6), we argued that the fast V -component must couple
in an asymptotically strong fashion into the slow U -equation. If V is slowly varying, and thus no
longer at leading order constant (i.e. 0) outside the fast field, one has to think carefully about
the magnitude and/or impact of the nonlinear coupling term F2(U, V ) in the U -equation. Thus,
our choice to impose the co-dimension 1 condition a21 = 0 is motivated by our preference to avoid
‘additional technicalities’, however, this more technical case may exhibit novel phenomena and/or
may eventually ask for the development of a novel theoretical approach.

Remark 1.6 We explicitly allow the nonlinearities F2 and G to be singular in U as U ↓ 0, see
assumptions (A3) and (A4) on the exponents α1,2. This implies that (U, V ) = (0, 0) is not nec-
essarily a solution to (1.1). However, the specific form of (1.1) was derived from (1.3) based on
considerations on the stability of the trivial state. While strictly speaking this line of reasoning
loses validity for singular F2 and G, the specific context of the pulse construction (see section 2)
allows for a more ’loose’ notion of stability of the trivial state. Since it will turn out that that V = 0
to exponential order long before U ↓ 0 in x̂, it is only necessary that limU→0 limV→0H1,2(U, V ) = 0,
which follows from assumptions (A3) and (A4).
As to questions concerning nonlinear stability, the presence of a singularity as U → 0 does have an
important influence on the treatment of the subject; however, these questions fall outside the scope
of this paper. A more elaborate discussion on the influence of singular terms on well-posedness and
nonlinear stability can be found in [3], Remark 1.3.
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2 The existence of pulses

In this section, we study the existence of positive, symmetric, stationary pulse solutions (U(ξ, t), V (ξ, t) =
(Uh(ξ), Vh(ξ)) to (1.7) (or equivalently (1.1)). In the fast spatial coordinate ξ, the associated ODE
takes the form















uξ =
√
εp

pξ =
√
ε [−ν2F2(u, v; ε) + ε[µu− ν1F1(u; ε)]]

vξ = q
qξ = v −G(u, v; ε)

(2.1)

This equation inherits the reversibility symmetry of (1.7) in the form of

ξ → −ξ, p→ −p, q → −q. (2.2)

Especially since we focus on symmetric pulses, this symmetry will play a crucial role in the forth-
coming analysis. The singularly perturbed system (2.1) has a family of integrable planar ODEs as
fast reduced limit,

vf,ξξ = vf −G(u0, vf ; 0) or

{

vf,ξ = qf
qf,ξ = vf −G(u0, vf ; 0)

, u0 > 0 (2.3)

with integrals

Hv(u0) =
1

2
q2f − 1

2
v2f +

∫ vf

0
G(u0, ṽ; 0) dṽ, (2.4)

parameterized by u0. Note that by the assumption (A4) on G(u, v; ε) (section 1.1), (vf , qf ) = (0, 0)
is a critical point of saddle type for all u0. The following additional assumption on G(u, v; 0) will
be used throughout the paper.

(A5) For all u0 > 0 there exists a positive solution vf,h(ξ;u0) to (2.3) which is homoclinic to
(vf , qf ) = (0, 0).

Assumption (A5) implies that, for all for all u0 > 0, the level set {Hv(u0) = 0} (2.4) through
the saddle point (0, 0) must intersect the v-axis at vM > 0. If there are multiple intersections, vM
is defined uniquely as the smallest (positive) solution. Due to the translation invariance, vf,h(ξ;u0)
is not yet determined uniquely as function of ξ. Since we consider symmetric pulses in the paper,
we fix vf,h(ξ;u0) by assuming that

vf,h(0;u0) = vM ,
d

dξ
vf,h(0;u0) = 0. (2.5)

It is essential for the existence of (positive, symmetric, stationary) pulse solutions (Uh(ξ)), Vh(ξ))
to (1.7) that there are open regions in u0 for which (2.3) has homoclinic solutions to (0, 0): the fast
component Vh(ξ) is to leading order determined by an orbit vf,h(ξ;u0) for a certain u0 = u∗ (see
[3, 7] and the subsequent analysis). It is in principle not necessary that such a u0-region includes the
full positive half line. Therefore (A5) is not a crucial assumption to the fullest extent, in the sense
that the theory developed here can be straightforwardly extended to equations of the type (1.7)
that do not satisfy this condition for all u0 > 0. However, if (A5) is not satisfied, then especially
the bifurcation analysis would become much more involved, since homoclinic orbits will appear and
disappear as u∗ approaches a boundary of one of these regions. These additional bifurcations are
not relevant for the method, but do severely diminish the transparency of presentation.
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The structure of this section is as follows: we first present an intuitive sketch of the geometri-
cal procedure by which the existence of pulse can be established (that is strongly based on [3]).
Based on this, we then formulate our main existence result (Theorem 2.1).

By assumption (A4) on G(U, V ; ε), system (2.1) has a two-dimensional invariant, normally hy-
perbolic (slow) manifold M, given by

M = {(u, p, v, q) : v = q = 0, u > 0}, (2.6)

where we restrict ourselves to the positive u-half space since we have allowed G(U, V ; ε) to be singu-
lar at U = 0 ((A4), [3]). By Fenichel theory [11, 12], M must have (three-dimensional) stable and
unstable manifolds, Ws(M) and Wu(M), that are O(

√
ε) close to the (three-dimensional) stack of

level sets {Hv(u0) = 0} (2.4) associated to the fast reduced limit (2.3). Note that this also implies
that both Ws(M) and Wu(M) must intersect the hyperplane {q = 0} transversally.

The pulse patterns (Uh(ξ), Vh(ξ)) considered here (Remark 1.2) correspond to homoclinic orbits
Γh(ξ) = (uh(ξ), ph(ξ), vh(ξ), qh(ξ)) to the critical point (0, 0, 0, 0) of (2.1). These orbits must be
contained in the intersection Ws(M) ∩ Wu(M) of the stable and unstable manifolds Ws(M)
and Wu(M) of M. These manifolds may (and most often will) have countably many (two-
dimensional) intersections [3]. Here, we restrict ourselves to the first intersections of Ws(M)
and Wu(M) on which the most simple, one-circuit, homoclinic orbits lie (Remark 1.2). It can
be shown by a straightforward Melnikov calculation that the two-dimensional first intersections
I+1 = Wu(M) ∩ {q = 0} and I−1 = Ws(M) ∩ {q = 0} must intersect in a one-dimensional
manifold

I+1 ∩ I−1 = {(u0, 0, vf,h(0;u0) +O(
√
ε), 0);u0 > 0} ⊂ {p = q = 0},

parameterized by u0 (see [3]). To each u0 > 0 corresponds a solution Γ(ξ;u0) = (u(ξ;u0), p(ξ;u0), v(ξ;u0), q(ξ;u0))
to (2.1) that is biasymptotic to M (with Γ(0;u0) ∈ I+1 ∩ I−1). Note that this is a natural result:
the intersection corresponds to symmetric solutions Γ(ξ;u0) to (2.2); their components u(ξ;u0) and
v(ξ;u0) are even as function of ξ and have a local extremum at ξ = 0. Moreover, if it exists, the
homoclinic orbit Γh(ξ) must correspond to one of the orbits Γ(ξ;u0), i.e. Γh(ξ) = Γ(ξ;u∗) for a
certain u∗ > 0.

Since the u- and p-coordinates only vary slowly in (2.1), the u- and p-components of each or-
bit Γ(ξ;u0) ∈ Ws(M) ∩ Wu(M) remain to leading order constant during the passage of Γ(ξ;u0)
through the fast field. To determine u∗, it is necessary to compute the accumulated change ∆u(u0)
in u(ξ;u0) and ∆p(u0) in p(ξ;u0) during a ‘jump’ of Γ(ξ;u0) through the fast field. To do so, we
first give a more precise definition of the fast field,

If
def
=

[

− 1

ε
1

4

,
1

ε
1

4

]

. (2.7)

The boundary of If has been placed at the transition zone in which |ξ| = ε−
1

4 ≫ 1 and |x| = ε
3

4 ≪ 1,
the precise location of ∂If is not essential [3, 5]. In particular the quantity ∆p(u0) plays an
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important role in the analysis, and can be determined as

∆p(u0) =
∫ ε−

1
4

−ε−
1
4
pξ dξ

=
√
ε
∫ ε−

1
4

−ε−
1
4
[−ν2F2(u, v; ε) + ε[µu− ν1F1(u; ε)]] dξ

= −ν2
√
ε
∫ ε−

1
4

−ε−
1
4
F2(u(ξ;u0), v(ξ;u0); ε) dξ +O(ε

5

4 )

= −ν2
√
ε
∫ ε−

1
4

−ε−
1
4
F2(u0, vf,h(ξ;u0); 0) dξ +O(ε

3

4 )

= −ν2
√
ε
∫∞
−∞ F2(u0, vf,h(ξ;u0); 0) dξ +O(ε

3

4 ),

(2.8)

where we have used the regular perturbation result that both |u(ξ;u0)− u0| and |v(ξ;u0)−vf,h(ξ;u0)|
are O(

√
ε) for ξ ∈ If with vf,h(ξ;u0) the homoclinic solution of the fast reduced limit system (2.3);

note also that F2(u0, vf,h(ξ;u0); 0) decays exponentially in ξ as |ξ| → ∞ (since F2(u, 0; 0) = 0 (A3)
and vf,h(ξ;u0) decays exponentially). We define

Dp(u0) =

∫ ∞

−∞
F2(u0, vf,h(ξ;u0); 0) dξ, (2.9)

so that ∆p(u0) = −ν2
√
εDp(u0) + o(ε

3

4 ). Hence, p(ξ;u0) = O(
√
ε) in If , which implies that

∆u(u0) =

∫ ε−
1
4

−ε−
1
4

uξ dξ =
√
ε

∫ ε−
1
4

−ε−
1
4

p(ξ;u0) dξ = O(ε
3

4 ), (2.10)

i.e. that u(ξ;u0) does not vary at O(
√
ε). We can now remove the remaining ambiguities involv-

ing the sign of the product of ν2 and F2 by determining the leading order behaviour of F2 by gauging

(B3) Dp(u) ; 1 · udp as u ↓ 0 for some dp ∈ R;

see the discussion immediately below Theorem 2.1 for a motivation of this definition. From the
above, it follows that the orbits Γ(ξ;u0) ‘take off’ from M O(ε

3

4 ) close to the curve

To =
{

p = 1
2ν2

√
εDp(u), u > 0

}

⊂ M (2.11)

and ‘touch down’ again on its symmetrical image

Td =
{

p = −1
2ν2

√
εDp(u), u > 0

}

⊂ M. (2.12)

The curve To, respectively Td, represents the leading order approximation of the collection of base
points of the Fenichel fibers in Wu(M), resp. Ws(M), that are elements of Wu(M)∩Ws(M) – see
[3] for more details. Hence, the slow evolution of Γ(ξ;u0) ⊂ Wu(M) ∩Ws(M) after, respectively

before its jump through the fast field, i.e. for ξ > ε−
1

4 resp. ξ < −ε− 1

4 , is to leading order governed
by a solution of the flow on (the invariant manifold) M that has (u0, p0) ∈ Td, resp. ∈ To, as
boundary (initial, resp. end) conditions. Since F2(u, 0; ε) ≡ 0 (assumption (A3)), the flow on M is
governed by

us,xx = µus − ν1F1(us; ε), or

{

us,x = ps
ps,x = µus − ν1F1(us; ε)

, u > 0, (2.13)

where x is the original slow spatial coordinate of (1.1) (i.e. x = εξ). Equation (2.13) is integrable
with integral

Hu(ε) =
1

2
p2s −

1

2
µu2s + ν1

∫ us

0
F1(ũ; ε) dũ. (2.14)

10
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Figure 2: The dynamics on the slow manifold M, governed by (2.13). The jump through the fast
field is indicated by a red dashed line.

Since |x| = ε
3

4 on ∂If , the above boundary conditions can (to leading order) be considered as
conditions on (us(x), ps(x)) at x = 0. Note that (2.13) does still depend on ε, i.e. it is not the slow
reduced limit associated (2.1): in the form (us(x), ps(x), 0, 0), the solution of (2.13) also is an exact
solution of (2.1), in the slow variable x since M is invariant for the full system (2.1). In fact, since
ux = 1

εuξ =
1√
ε
p in (2.1), ps in (2.13) corresponds to 1√

ε
p in (2.1), so that the boundary conditions

on (us(x), ps(x)) correspond in leading order to

(us(0), ps(0)) =
(

u0,±1
2ν2Dp(u0)

)

. (2.15)

By the stability of the background state (U, V ) ≡ (0, 0) and assumption (A2), the critical point
(0, 0) of (2.13) is a saddle point with (one dimensional) stable, and unstable, manifolds Ws

s((0, 0); ε)
and Wu

s ((0, 0); ε). Near M, the orbits Γ(ξ;u0) ⊂ Wu(M)∩Ws(M) are with exponential accuracy
governed by solutions us(x) of (2.13) that satisfy the boundary conditions (us(0), ps(0)) ∈ To,d,
hence it follows that Γ(ξ;u0) is homoclinic to (0, 0, 0, 0) if u0 = u∗ > 0 is such that Γ(ξ;u∗) takes
off from Wu

s ((0, 0)) and touches down at Ws
s((0, 0)). In other words, the homoclinic orbit Γh(ξ)

corresponds to a Γ(ξ;u∗) with u∗ determined as the u-coordinate of an intersection of To and
Wu

s ((0, 0)); note that To ∩ mathcalW u
s ((0, 0)) and Td ∩Ws

s((0, 0)) have the same u-coordinates by
the symmetry (2.2) – see Figure 2.

The manifoldsWu
s ((0, 0)) resp. Ws

s((0, 0)) are by definition spanned by the solutions (uus (x; ε), p
u
s (x; ε))

resp. (uss(x; ε), p
s
s(x; ε)) of (2.13). Note that uss(x) = uus (−x) and pss(x) = −pus (−x) by the re-

versibility symmetry. As with the definition of the fast reduced homoclinic orbit vf,h(ξ;u0) – see
(2.5) – we need to be more precise here and eliminate the translational invariance from the orbit
(uus (x; ε), p

u
s (x; ε)). This can be done by fixing the location of the point x = 0 as (uus (0; ε), p

u
s (0; ε)) =

(uu0 , p
u
0) ∈ Wu

s ((0, 0)); now (uus (x; ε), p
u
s (x; ε)) and therefore (uss(x; ε), p

s
s(x; ε)) are uniquely deter-

mined as solutions of (2.13). Note that the precise position of the point (uu0 , p
u
0) ∈ Wu

s ((0, 0)) is
in general not relevant. However, in an explicit setting, a natural choice for (uu0 , p

u
0) often presents
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itself; see the discussion on the relative configurations of Wu
s ((0, 0)) and Ws

s((0, 0)) following the
statement of Theorem 2.1.

As manifoldsWu
s ((0, 0)) andW

s
s ((0, 0)) cannot cross to the negative half-plane (in u), bothWu

s ((0, 0))
and Ws

s((0, 0)) are subsets of {Hu = 0}∩{u ≥ 0}. A necessary, leading order condition on the crit-
ical value(s) u∗ for which Γ(ξ;u∗) is homoclinic to (0, 0, 0, 0) can be obtained by combining (2.15)
with (2.14) and setting ε to 0, i.e. by imposing that (us(0; 0), ps(0; 0)) ∈ {Hu(0) = 0}, yielding

µu2 − 2ν1

∫ u

0
F1(ũ; 0) dũ = 1

4ν
2
2 D

2
p(u) =

1
4ν

2
2

[∫ ∞

−∞
F2(u, vf,h(ξ;u); 0) dξ

]2

. (2.16)

Since this relation does neither distinguish between To and Td nor betweenW
u
s ((0, 0)) andW

s
s ((0, 0)),

there may be solutions u∗,j of this equation that do not correspond to homoclinic orbits Γh(ξ). Us-
ing (2.15) we define p∗ = +1

2ν2Dp(u∗).

As a final prerequisite for the upcoming theorem, we combine the above defined solutions (uus (x; ε), p
u
s (x; ε))

which span the slow unstable manifold Wu
s ((0, 0)) with the (possibly multiple) solution(s) u∗ of

(2.16) by introducing translational shift(s) x∗, for which the following leading order expression
holds:

(uus (−x∗; 0), pus (−x∗; 0)) = (u∗, p∗) = (uss(x∗; 0),−pss(x∗; 0)). (2.17)

Note that the value of the shift(s) x∗ is directly related to the choice of (uu0 , p
u
0).

Theorem 2.1 Assume that conditions (A1-5) and (B3) hold and let ε > 0 be small enough. Let
K be the number of non-degenerate solutions u = u∗,k > 0 of (2.16) such that (u∗,k, p∗,k) =
(u∗,k,

1
2ν2Dp(u∗,k)) ∈ Wu

s ((0, 0); 0). If K = 0 then there are no symmetric, positive, one-circuit
homoclinic solutions to (0, 0, 0, 0) in (2.1). If K 6= 0, there are K distinct positive, symmetric,
one-circuit homoclinic orbits Γh,k(ξ) = (uh,k(ξ), ph,k(ξ), vh,k(ξ), qh,k(ξ)) ⊂ Wu(M) ∩Ws(M), k =
1, 2, ...,K, in (2.1) with internal reflection point ξ = 0, so that Γh,k(0) = (uh,k(0), 0, vh,k(0), 0). In
the fast field, Γh,k(ξ) is to leading order determined by the homoclinic solution vf,h(ξ;u∗,k) of (2.3):
there is an O(1) constant C1 > 0 such that

∣

∣uh,k(ξ)−u∗,k
∣

∣,
∣

∣ph,k(ξ)
∣

∣,
∣

∣vh,k(ξ)−vf,h(ξ;u∗,k)
∣

∣,
∣

∣qh,k(ξ)− d

dξvf,h(ξ;u∗,k)
∣

∣ < C1

√
ε for ξ ∈ If (2.18)

cf. (2.7). In the slow field, Γh,k(ξ) approaches Wu
s ((0, 0); ε) ⊂ M, respectively Ws

s((0, 0); ε) ⊂ M
exponentially fast for ξ → −∞, resp. ξ → ∞: there exist O(1) constants C2,3 > 0 such that
•
∣

∣vh,k(ξ)
∣

∣,
∣

∣qh,k(ξ)
∣

∣ < C2e
−C3|ξ| for ξ ∈ R\If ;

• there are shifts x∗,k ∈ R and solutions
(

uu∗,k(x), p
u
∗,k(x)

)

=
(

uus (x− x∗,k), pus (x− x∗,k)
)

of (2.13),

such that
(

uu∗,k(−ε
3

4 ), pu∗,k(−ε
3

4 )
)

=
(

uh,k(−ε−
1

4 ), 1√
ε
ph,k(−ε−

1

4 )
)

=
(

u∗,k +O(
√
ε), p∗,k +O(

√
ε)
)

and
∣

∣uh,k(ξ)− uu∗,k(εξ)
∣

∣,
∣

∣

1√
ε
ph,k(ξ)− pu∗,k(εξ)

∣

∣ < C2e
C3ξ for ξ < −ε− 1

4 ; (2.19)

•
(

us∗,k(ε
3

4 ), ps∗,k(ε
3

4 )
)

=
(

uh,k(ε
− 1

4 ), 1√
ε
ph,k(ε

− 1

4 )
)

=
(

u∗,k+O(
√
ε),−p∗,k+O(

√
ε)
)

with
(

us∗,k(x), p
s
∗,k(x)

)

=
(

uu∗,k(−x),−pu∗,k(−x)
)

and

∣

∣uh,k(ξ)− us∗,k(εξ)
∣

∣,
∣

∣

1√
ε
ph,k(ξ)− ps∗,k(εξ)

∣

∣ < C2e
−C3ξ for ξ > ε−

1

4 . (2.20)

The orbits Γh,k(ξ) correspond to the homoclinic pulse patterns
(

Uh,k(ξ), Vh,k(ξ)
)

in (1.7) that are
symmetric with respect to ξ = 0 through Uh,k(ξ) = uh,k(ξ), Vh,k(ξ) = vh,k(ξ), k = 1, ...,K.

12



See also Figure 2.

Proof: The essential ingredients of the proof have already been sketched above. The fact that
(2.1) concerns a more general class of systems than the generalized GM model does not influence
the geometric approach, therefore, we refer to [3] for the full details. 2

The (implicit) definition of the signs of F2(U, V ) and ν2 in assumption (B3) implies that To ⊂
{us ≥ 0, ps ≤ 0} for us small enough and ν2 < 0. In the case that Wu

s ((0, 0)) ⊂ {us ≥ 0, ps ≥ 0}
this for instance immediately implies that To and Wu

s ((0, 0)) cannot have intersections near the
saddle (0, 0) if ν2 < 0. In fact, it follows that there cannot be homoclinic pulse patterns in this
case, i.e. Wu

s ((0, 0)) ⊂ {us ≥ 0, ps ≥ 0} and ν2 < 0, if it is known that expression Dp(u) cannot
change sign – which is the case for both the GS and the (generalized) GM models, see [7, 3] and
section 5.3. Thus, the definition of the signs of F2(U, V ) and ν2 through (B3a) provides a more
direct insight in the relevance of a solution u∗ of (2.16), since it gauges the relative positions of To
and Wu

s ((0, 0)) as function of ν2.

Clearly, the condition that (u∗,k, p∗,k) ∈ Wu
s ((0, 0); 0) is central to the construction of the pulse

pattern
(

Uh,k(ξ), Vh,k(ξ)
)

. Therefore, it is relevant to note that there are two distinct configura-
tions. If Wu

s ((0, 0))∩{ps = 0} = ∅, then clearly Wu
s ((0, 0))∩Ws

s((0, 0)) = ∅ and Wu
s ((0, 0)) ⊂ {us ≥

0, ps ≥ 0} (and Ws
s((0, 0)) ⊂ {us ≥ 0, ps ≤ 0}). On the other hand, if Wu

s ((0, 0)) ∩ {ps = 0} 6= ∅,
then (by the symmetry) Wu

s ((0, 0)) and Ws
s((0, 0)) must have the same, unique, intersection uM > 0

with the us-axis and thus merge in a homoclinic orbit to (0, 0) – note that this can only happen
in the non-GS/GM case with ν1 6= 0. In this case it is natural to determine

(

uus (x; ε), p
u
s (x; ε)

)

uniquely by choosing x = 0 as the location of the internal reflection point of the homoclinic orbit,
i.e. to set

(

uus (0; ε), p
u
s (0; ε)

)

= (uu0 , p
u
0) = (uM , 0). Once this gauge choice is made, the sign of

x∗ determines whether the jump through the fast field occurs before or after the slow component
of the pulse passes through the maximum of the slow homoclinic orbit, i.e. whether the jump is
downwards (x∗ > 0) or upwards (x∗ < 0); see Figure 4a resp. 4c for an illustration of these two
configurations in the context of the model (1.2) studied in the companion paper [38]. It will be
shown in section 5 (Corollary 5.7) that the second configuration is always unstable.

IfWu
s ((0, 0))∩{ps = 0} = ∅, there is no natural unique way to gauge the choice of

(

uus (0; ε), p
u
s (0; ε)

)

.
This is undesirable since in extension the value (and sign) of x∗ (2.17) is not fixed. This will turn
out to be the cause of technical complications in some parts of the stability analysis, see sec-
tion 5.1. However, the following Lemma allows us to make an unambiguous gauge choice for
(

uus (0; ε), p
u
s (0; ε)

)

= (uu0 , p
u
0) in either case. The idea is to alter the vector field defined by F1,2 and

G beyond a certain u-value, ’bending’ the unstable and stable slow manifolds towards each other
such that they do intersect.

Lemma 2.2 Without loss of generality, we may assume that Wu
s ((0, 0)) ∩ {ps = 0} 6= ∅ and

therefore choose
(

uus (0; ε), p
u
s (0; ε)

)

= (uu0 , p
u
0) = (uM , 0). This fixes the sign of x∗ as sgn(x∗) =

sgn(p∗).

Proof. Given the functions F1,2 and G for which assumptions A(1-5) and B3 hold, consider an
open neighbourhood U ∈ R

4 of the set
{

(u, p, v, q) ∈ R
4 |u ≤ u∗,K

}

where u∗,K is largest solution

to (2.16), see Theorem 2.1. For each function trio (F̃1,2, G̃) ∈ Omega with

Omega =
{

F̂1,2 and Ĝ are smooth and (F̃1,2(U), G̃(U)) = (F1,2(U), G(U))
}

,
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Figure 3: The slow manifold with its dynamics as in Figure 2, but altered for u > u∗ in such a way
that the (new) slow stable and unstable manifolds W̃s

s((0, 0)) and W̃s
u((0, 0)) intersect at (ũM , 0).

x

Uh Vh 

(a) (b)

x

Vh Uh

(c)

Figure 4: The stationary homoclinic pulse Γh(x) = (Uh(x), Vh(x)) as a solution to (1.2) for x∗ > 0
(4a), x∗ = 0 (4b) and x∗ < 0 (4c), as studied in the companion paper [38].

Theorem 2.1 can be applied in the same way and will yield the same results. Now, we alter the
original vector field defined by F1,2 and G, i.e. pick a suitable function trio (F̃1,2, G̃) ∈ Omega such
that the associated slow stable manifold W̃s

s((0, 0)) actually does intersect the u-axis beyond u∗,K
and therefore coincides with W̃s

u((0, 0)) by symmetry. In the new, altered vector field, the function
ũss(x) defines a homoclinic orbit, see Figure 3. We make the natural choice (ũu0 , p̃

u
0) = (ũM , 0),

see the discussion after Theorem 2.1; this also redefines x∗ accordingly as x̃∗. From the choice
p̃u0 = p̃s0 = 0 it follows that x̃∗ > 0 when p̃∗ > 0 and vice versa, see (2.17). 2

Note that the modification of F1,2 and G may induce new intersections of W̃ u
s ((0, 0)) and To, see

Figure 3. These intersections are artificial and –of course– do not correspond to homoclinic orbits
in the original system.

Finally, we formulate a result on the occurrence of homoclinic saddle node bifurcations, which will
especially be relevant in the upcoming stability analysis. We again refer to [3] for (details on the
geometry behind) its proof.
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Corollary 2.3 Assume that conditions (A1-5) and (B3) hold and let ε > 0 be small enough.
Assume that u = u∗,sn > 0 is a degenerate solution of (2.16), i.e. that both (2.16) and its u-
derivative

2µu− 2ν1F1(u; 0) =
1
2ν

2
2 Dp(u)

d

du
Dp(u) (2.21)

hold for a certain parameter combination (µsn, ν1,sn, ν2,sn) to leading order in ε. Assume further-
more that (u∗,sn, p∗,sn) = (u∗,sn, 12ν2Dp(u∗,sn)) ∈ Wu

s ((0, 0); 0) and that u∗,sn is a quadratic zero of
(2.16). Then the parameter combination (µsn, ν1,sn, ν2,sn) determines a saddle node bifurcation of
homoclinic orbits: by changing one of the parameters µ, ν1, or ν2 (and keeping the other two fixed),
two distinct homoclinic orbits Γh,l(ξ) and Γh,l+1(ξ) of (2.1) merge and annihilate each other.

Remark 2.4 It the forthcoming stability analysis – see especially sections 3.2 and 5 – it will be
necessary to have a measure for the decay rate of vf,h(ξ;u∗) and vf,h(ξ;u∗,k) as ξ → ±∞. It follows
from (2.3) in combination with assumption (A4) that vf,h(ξ;u∗) decays like e∓ξ for ξ → ±∞.
Therefore, we define vf,∞ by

vf,h(ξ;u∗) ; vf,∞(u∗) e
∓ξ as ξ → ±∞. (2.22)

Note that vf,∞ 6= 0 is determined uniquely, since vf,h(ξ;u∗) has been determined uniquely (2.5); it
has the same value for ξ → ±∞ since vf,h(ξ;u∗) is even as function of ξ (2.2), (2.5). Likewise, we
define us,∞ by

uss(x; ε) ; us,∞ e−
√
µx as x→ ∞, (2.23)

where uss(x; ε) is the nonzero solution to (2.13) that spans the stable manifold Ws
s((0, 0); ε) – note

that the limit exists by assumption (A2).

3 Linearization and the reduced problems

In the forthcoming sections we consider the stability of one of the K homoclinic pulse patterns in
(1.1) or (1.7) – Theorem 2.1 –, denoted by either (Uh(x), Vh(x)) or (Uh(ξ), Vh(ξ)).

3.1 The linear stability problem

With a small abuse of notation, re-introduce u(ξ) and v(ξ) by

U(ξ, t) = Uh(ξ) + u(ξ)eλt, V (ξ, t) = Vh(x) + v(ξ)eλt, (3.1)

with λ ∈ C. The linearized stability of (Uh(ξ), Vh(ξ)) is thus determined by

{

ε2λu = uξξ − ε2[µu− ν1
dF1

dU (Uh)u] + εν2
∂F2

∂U (Uh, Vh)u + εν2
∂F2

∂V (Uh, Vh)v

λv = vξξ − v + ∂G
∂U (Uh, Vh)u + ∂G

∂V (Uh, Vh)v
(3.2)

which can also be written as a system by introducing the vector φ(ξ) = (u(ξ), p(ξ), v(ξ), q(ξ))T ,
with p = 1√

ε
uξ and q = vξ as

φ̇ = A(ξ;λ, ε)φ, (3.3)
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where the dot represents d
dξ . Here,

A(ξ;λ, ε) =











0
√
ε 0 0

√
ε
(

−ν2 ∂F2

∂U (Uh, Vh) + ε
[

µ+ λ− ν1
dF1

dU (Uh)
])

0
√
ε
(

−ν2 ∂F2

∂V (Uh, Vh)
)

0

0 0 0 1

−∂G
∂U (Uh, Vh) 0 λ+ 1− ∂G

∂V (Uh, Vh) 0











.

(3.4)
It follows from the smoothness and decay rates in V as V → 0 assumed in (A1,3) that ∂F2

∂V (U, 0) =

F2,1(U)+
∂F2,2

∂V (U, 0) = F2,1(U) and that ∂F2

∂U (U, 0) = 0. Likewise, by (A1,4), ∂G
∂U (U, 0) =

∂G
∂V (U, 0) =

0. Since Vh(ξ) becomes exponentially small as ξ approaches the boundaries ξ = ±ε− 1

4 of the fast

field If , by the approximation results (2.19), (2.20) on Uh(ξ) for |ξ| > ε−
1

4 (Theorem 2.1) and
by the reversibility symmetry (2.2), it follows that A(ξ;λ, ε) approaches the intermediate, slowly
varying matrix

As(εξ;λ, ε) =











0
√
ε 0 0

ε
√
ε
[

(µ+ λ)− ν1
dF1

dU (us∗(|εξ|))
]

0 −ν2
√
εF2,1(u

s
∗(|εξ|)) 0

0 0 0 1
0 0 λ+ 1 0











(3.5)

in the slow field |ξ| > ε−
1

4 – see section 3.4. It clearly also follows from (2.19), (2.20) (and
assumptions (A1-4)) that there are positive O(1) constants C̃2 and C̃3 such that

‖A(ξ;λ, ε)−As(εξ;λ, ε)‖ ≤ C̃2e
−C̃3|ξ| for |ξ| > ε−

1
4 . (3.6)

Both matrices A(ξ;λ, ε),As(x;λ, ε) approach the constant coefficient matrix

A∞(λ, ε) =









0
√
ε 0 0

ε
√
ε(λ+ µ) 0 −ν2

√
εF2,1(0) 0

0 0 0 1
0 0 λ+ 1 0









(3.7)

as ξ, x→ ±∞ (A3). Due to the block diagonal, upper triangular structure of A∞(λ), its eigenvalues
{±Λf ,±εΛs} with

Λf (λ) =
√
1 + λ, Λs(λ) =

√

µ+ λ. (3.8)

are not influenced by the coupling term −ν2
√
εF2,1(0). Hence, it follows that Re Λf (λ) > Re εΛs(λ)

outside an O(ε) neighborhood of the essential spectrum

σe = {λ ∈ R : λ ≤ max (−µ,−1)} ⊂ C (3.9)

associated to the linear stability problem (3.2)/(3.3) – recall that σe corresponds to those values
of λ for which one of the Λf,s(λ)’s is purely imaginary [32]. The impact of the coupling term
−ν2

√
εF2,1(0) on the eigenvectors of A∞(λ) is at most of O(

√
ε) as long as λ is not O(

√
ε) close to

σe:

Ef,±(λ, ε) =
(

− ν2εF2,1(0;ε)
1+λ−ε2(λ+µ)

, ∓ ν2
√
εF2,1(0;ε)

1+λ−ε2(λ+µ)

√
1 + λ , 1 , ±

√
1 + λ

)T
,

Es,±(λ, ε) =
(

1 , ±√
ε
√
µ+ λ , 0 , 0

)T
.

(3.10)

The essential difference between the present stability analysis and the existing literature on the sta-
bility of pulses in GS/GM-type models [3, 4, 18, 22, 23] is made explicit by the terms ν1

dF1

dU (us∗(|εξ|))
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and −ν2
√
εF2,1(u

s
∗(|εξ|)) of As(εξ;λ), i.e. by the fact that there is an intermediate slowly varying

matrix between A(ξ;λ, ε) and A∞(λε): in general the matrix A(ξ;λ, ε) thus does not approach
its constant coefficient limit state A∞(λ, ε) exponentially fast on the fast spatial scale. In other
words, the GS/GM-type models are (very!) special in the sense that ν1 = 0 and F2,1(0) = 0, so
that there is an exponentially accurate estimate like (3.6) on ‖A(ξ;λ, ε)−A∞(λ, ε)‖ for ξ ∈ R\If .
This fact is crucially used in the stability analysis: it allows one to solve (3.3) outside If with
an exponential accuracy in terms of simple exponentials (based on (3.8), (3.10)). Moreover, this
behavior is also central to the construction of an Evans function D(λ; ε) associated to (3.3) and it
subsequent decomposition into a slow and a fast Evans function [1, 3, 4].

In this paper, the role of A∞(λ, ε) will be taken over by the slow intermediate matrix As(εξ;λ, ε)
for ξ /∈ If . The construction of the Evans function D(λ) associated to (3.3) will also be based on
the matrix As(εξ;λ, ε). This Evans function will be decomposed in a slow and a fast component
using the fast exponential estimate (3.6) – see section 4. In the construction of D(λ), the role of
the simple exponentials associated to A∞(λ, ε) will be taken over by the fundamental intermediate
solutions of the linear system associated to As(εξ;λ, ε). This system will be studied in section 3.4.
However, we will first study the fast reduced limit systems associated to (3.2)/(3.3).

Remark 3.1 The assumption that β2 > 1 in (A4) excludes the possibility of having terms like
UV in the V equation, i.e. the nonlinear term G(U, V ) of the V -equation is not allowed to be
like its counterpart F2(U, V ) in the U -equation (A3). Similar to the effect of a linear term in U
in the V -equation for the existence problem – see section 1.1 and Remark 1.5 – terms like UV
in the V -equation will lead to slowly varying terms in the fast stability equation. Once again
(Remark 1.5), this can in principle be handled, see for instance [5] in which an explicit (Ginzburg-
Landau type) system with a coupling term the type UV has been analyzed along the lines of the
present approach. However, since it introduces additional technicalities (and thus obscures the
presentation), we refrain from going into the details.

3.2 The homogeneous fast reduced Sturm-Liouville problem

It follows from (2.18) in Theorem 2.1 that the linear stability problem (3.2) reduces in the region
If and in the limit ε→ 0 to the fast reduced limit problem

λv = vξξ − v +
∂G

∂U
(u∗, vf,h(ξ;u∗))u(0) +

∂G

∂V
(u∗, vf,h(ξ;u∗)) v, ξ ∈ R, (3.11)

where we have used that u(ξ) only varies slowly and thus approaches a constant value u(0) in If
in this limit. Equation (3.11) is an inhomogeneous Sturm-Liouville problem. In this section, we
study the associated homogeneous problem

(Lf (ξ)− λ)w
def
= wξξ +

[

∂G

∂V
(u∗, vf,h(ξ;u∗))− (1 + λ)

]

w = 0, with lim
ξ→±∞

w(ξ) = 0. (3.12)

In the NLEP analysis of the Evans function associated to the stability of a pulse in GS/GM-type
models [3, 4], the homogeneous fast reduced linearized stability problem (3.12) has a very special
form: as function of V , G(U, V ) simply behaves as V β1 (with β2 > 1 in the (generalized) GM
setting (1.8) and β2 = 2 for the GS and the standard GM model). As a consequence, (3.12) can
be solved exactly (in terms of hypergeometric functions [3, 4] or associated Legendre functions, see
the companion paper [38]). This fact is an essential ingredient of the NLEP analysis in this type of
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models. Of course this is quite a special, and thus a priori restrictive feature of the GS/GM-type
models. As was already remarked in the introduction, this restriction forms the second main in-
gredient of our motivation to develop the present more general (stability) theory.

To do so, we first note that for functions G(U, V ) as described by assumption (A4) and vf,h(ξ;u∗) as
homoclinic solution to (2.3), equation (3.12) has the form of a classical (singular) Sturm-Liouville
eigenvalue problem. The following lemma summarizes results on this type of problems in the
literature (see for instance [36]).

Lemma 3.2 Let H : R≥0 → R be such that the differential equation wxx = ρw−H(w), ρ > 0 has a
solution wh which is homoclinic to (w,wx) = (0, 0), and write h(x) = H ′(wh(x)). For a differential

operator of the form L(x) = d
2

dx2 + h(x)− ρ, consider the eigenvalue problem [L(x)− λ]w = 0 with
boundary conditions limx→±∞w(x) = 0. Moreover, define Λ =

√
ρ+ λ; arg(Λ) ∈ (−π

2 ,
π
2 ]. Then

the following holds:

(i) There is a finite number of real eigenvalues λj, j = 0, 1, · · · , J for which λ0 > 0, λ1 = 0 and
0 > λ2 > · · · > λJ > −ρ. Equivalently, there is a finite number of real eigenvalues Λj for
which Λ0 >

√
ρ, Λ1 =

√
ρ and

√
ρ > Λ2 > · · · > ΛJ > 0.

(ii) The associated eigenfunctions wj(x) have j distinct zeroes and are even resp. odd as a function
of x if j is even resp. odd. Moreover, d

dxwh(x) is an eigenfunction for λ1 = 0 (or Λ1 = 1); in

other words, w1(x) ∈ span
{

d

dxwh(x)
}

.

(iii) The eigenfunctions wj(x), j = 0, · · · , J form an orthogonal set:

〈wj , wk〉 =
∞
∫

−∞

wj(x)wk(x) dx = 0 for j 6= k, and ‖wj‖2 =
√

〈wj , wj〉 6= 0;

these eigenfunctions can be determined uniquely by the condition

wj(x) ; 1 · e−Λjx as x→ ∞ (3.13)

(iv) The spectrum associated to the eigenvalue problem [L(x)−λ]w = 0 is given by σλ = (−∞,−ρ)∪
{λ0, · · · , λJ} or equivalently σΛ = iR>0 ∪ {Λ0, · · · ,ΛJ}.

(v) For every λ /∈ σλ, there is a unique solution wR
λ (x) (which depends smoothly on λ) such that

wR
λ (x) ; 1 · e−Λx as x→ ∞. (3.14)

Moreover, the pair {wR
λ , w

L
λ} with wL

λ(x) = wR
λ (−x) spans the solution space of the eigenvalue

problem [L(x)− λ]w = 0.

For (3.12) we can apply the above Lemma with ρ = 1, obtaining a set of fast eigenvalues λf,j and
their associated eigenfunctions wf,j(ξ). Moreover, we observe that for ρ = 1, Λ = Λf (3.8).

Next, we consider the Wronskian

W(λ)
def
= det

(

wL
λ(ξ) wR

λ (ξ)
d
dξw

L
λ(ξ)

d
dξw

R
λ (ξ)

)

(3.15)
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Λ f ,0

Λ f ,1 = 0

Λ f , 2

-1

W(Λ)

Λ

Figure 5: A sketch of the Wronskian W(λ) associated to (3.12) in the case of the model problem
(1.2), for λ ∈ R.

associated to (3.12). For notational convenience we only consider W as function of λ here and
in the upcoming lemma. In the forthcoming analysis we will however often switch between the
equivalent expressions W(λ) and W(Λf ). This Wronskian can be defined as a smooth, in fact
analytic, function of λ for all λ ∈ C outside the (closure of the) essential spectrum associated to
(3.12), i.e. for λ /∈ (−∞,−1], but including the (eigen)values λ = λf,j (Lemma 3.2), by setting
W(λf,j) = 0, j = 0, ..., J [36]. Note that W(λ) is in fact an Evans function [1]. In combination with
Lemma 3.2, the following result on W(λ) enables us to generalize the GS/GM-type hypergeometric
functions approach to the present setting.

Lemma 3.3 Let W(λ) be the Wronskian associated to (3.12) and let λ /∈ (−∞,−1], then

W(λ) ; (−1)j+1‖wf,j‖22(λ− λf,j) as λ→ λf,j , j = 0, ..., J.

See Figure 5 for a sketch of a W(λ) for real λ > −1.

Proof. Since we know that W(λ) is a smooth function of λ near its zeroes λf,j , the proof can
be based on a (finite) Taylor expansion of W(λf,j + δ) for δ = λ−λf,j ∈ C small. To do so, we first
need to approximate wR

λ (ξ) for λ = λf,j + δ. Therefore, we introduce the (regular) approximation

wR
λf,j+δ(ξ) = wf,j(ξ) + δw1,j(ξ) +R(ξ; δ), (3.16)

in which R(ξ; δ) represents the error terms. This expansion can in general not give a valid approx-
imation of wR

λf,j+δ(ξ) for ξ → ∞. However, it follows directly from Poincaré’s expansion theorem

(see for instance [37]) that for every ρ ∈ [0, 1) there is a positive O(1) constant Cρ such that

|wR
λf,j+δ(ξ)− (wf,j(ξ) + δw1,j(ξ))| = |R(ξ; δ)| < Cρδ

2(1−ρ), (3.17)
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for |ξ| < O(δ−ρ). Note that the standard (and natural) result that R(ξ; δ)| = O(δ2) on O(1) ξ-
intervals corresponds to the case ρ = 0 in (3.17). To determine the leading order correction w1,j(ξ),
we substitute (3.16) into (3.12) and obtain the inhomogeneous problem

(Lf (ξ)− λf,j)w1,j = wf,j(ξ) +O
(

δ1−2ρ
)

(3.12) on the domain |ξ| < O(δ−ρ). It is clear that for the above to be a leading order expression,
ρ < 1

2 must hold. This equation cannot have a solution that is bounded on R, since the operator
Lf (ξ)− λ is not invertible at λ = λf,j and the inhomogeneous term b(ξ) = wf,j(ξ) clearly does not
satisfy the solvability condition 〈b, wf,j〉 = 〈wf,j , wf,j〉 = 0, see also section 3.3. However, this is
not a problem: we are constructing an approximation of a solution wR

λ (ξ) and this solution need
not be bounded on R for λ 6= λf,j (Lemma 3.2). Since wf,j(ξ) is a solution of the homogeneous
problem, we apply the variation of constants method, i.e. we introduce the unknown function cj(ξ)
by w1,j(ξ) = cj(ξ)wf,j(ξ) and obtain an equation for cj :

c̈jwf,j + 2ċjẇf,j = wf,j .

This implies that

ċj(ξ) =
1

w2
f,j(ξ)

[∫ ξ

0
w2
f,j(η) dη + c1,j

]

,

where c1,j is a constant of integration. Writing c1,j = ĉ1,j −
∫∞
0 w2

f,j(η) dη, we investigate the

behaviour of ċj(ξ) as ξ → δ−ρ. From Lemma 3.2, we know that wf,j(ξ) ; e−Λf,jδ
−ρ

as ξ → δ−ρ.
Therefore,

ċj(ξ) ; e2Λf,jδ
−ρ

[

∫ δ−ρ

0 w2
f,j(η) dη −

∫∞
0 w2

f,j(η) dη + ĉ1,j

]

=
[

−
∫∞
δ−ρ w

2
f,j(η) dη + ĉ1,j

]

e2Λf,jδ
−ρ

= − 1
2Λf,j

+ ĉ1,je
2Λf,jδ

−ρ

(3.18)
as ξ → δ−ρ. Since the solution wR

λf,j+δ(ξ) (3.16) does not grow exponentially as ξ → δ−ρ (3.14), it

necessarily follows that w1,j(ξ) does neither. Therefore, cj(ξ) can at most grow as 1
wf,j

, which is as

eΛf,jξ. From this, it follows that ĉ1,j = 0 and therefore

c1,j = −
∫ ∞

0
w2
f,j(η) dη so that ċj(ξ) = − 1

w2
f,j(ξ)

∫ ∞

ξ
w2
f,j(η) dη. (3.19)

We now return to the Wronskian (3.15). Since wR
λf,j+δ(ξ) = wf,j(ξ) (1 + δcj(ξ)) +R(ξ; δ), we can

use Lemma 3.2 (ii),(v) to obtain

wR
λf,j+δ(ξ) = wf,j(ξ) (1 + δcj(ξ)) +R(ξ; δ), (3.20)

wL
λf,j+δ(ξ) = (−1)jwf,j(ξ) (1 + δcj(−ξ)) +R(−ξ; δ), (3.21)

d
dξw

R
λf,j+δ(ξ) =

dwf,j

dξ (ξ) (1 + δcj(ξ)) + δwf,j(ξ)
dcj
dξ (ξ) +

dR
dξ (ξ; δ), (3.22)

d
dξw

L
λf,j+δ(ξ) = (−1)j

[

dwf,j

dξ (ξ) (1 + δcj(−ξ))− δwf,j(ξ)
dcj
dξ (−ξ)

]

− dR
dξ (−ξ; δ), (3.23)

Since w
L/R
λ (ξ) depends smoothly on λ (cf. Lemma 3.2), the Poincaré expansion theorem can

be applied to d
dξw

R
λf,j+δ to obtain the result that for every ρ̂ ∈ [0, 1) there is a Cρ̂ such that

|dRdξ (ξ; δ)| < Cρ̂δ
2(1−ρ̂). Choosing ρ̂ = ρ < 1

2 enables us to treat dR
dξ as a higher order term. Using
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the above expansions for the Wronskian, we obtain

W(λf,j + δ) = (−1)j
(

wf,j
dwf,j

dξ − dwf,j

dξ wf,j

)

(1 + δcj(ξ) + δcj(−ξ))

+ δ (−1)jw2
f,j(ξ)

[

dcj
dξ (ξ) +

dcj
dξ (−ξ)

]

+O(δ2)

= δ (−1)jw2
f,j(ξ)

[

dcj
dξ (ξ) +

dcj
dξ (−ξ)

]

+O(δ2), (3.24)

in which we refrained from explicitly writing down all O(δ2) = O(|λ − λf,j |2) correction terms.
Using (3.19), we see that

w2
f,j(ξ)

[

dcj
dξ (ξ) +

dcj
dξ (−ξ)

]

= −
∫ ∞

ξ
w2
f,j(η) dη −

∫ ∞

−ξ
w2
f,j(η) dη = −

∫ ∞

−∞
w2
f,j(η) dη = −‖wf,j‖22

using again Lemma 3.2 (ii). 2

Clearly, the Wronskian W(λ) has an extremum for λ ∈ R between two successive eigenvalues.
Based on the previous Lemma it can easily be established that this extremum is a maximum be-
tween λ2j+1 < λ2j and a minimum between λ2j < λ2j−1. The following Lemma determines the
limit behavior of W(λ) for λ ∈ R large, see also Figure 5.

Lemma 3.4 Let W(λ) be the Wronskian associated to (3.12) and let λ ∈ R\(−∞,−1], then

W(λ) ; −2
√
λ as λ→ +∞.

Proof. Define δ = 1/Λf > 0 (Λf ∈ R). It can be shown by the methods of the above proof that
for δ small enough, i.e. Λf > 0 large enough,

wR
λ (ξ) = e−Λf ξ(1 +O(δ)), and wL

λ(ξ) = eΛf ξ(1 +O(δ)).

on an O(1) ξ-domain ⊃ {ξ = 0}. Hence, for Λf large enough,

W(Λf ) = det

(

eΛf ξ(1 +O(δ)) e−Λf ξ(1 +O(δ))
Λfe

Λf ξ(1 +O(δ)) −Λfe
−Λf ξ(1 +O(δ))

)

= −2Λf (1 +O(δ)),

which is equivalent to the statement of the lemma by the definition of Λf (3.8). 2

3.3 The inhomogeneous fast reduced Sturm-Liouville problem

Since the inhomogeneous problem (3.11) is linear (and can thus be rescaled), we define vin(ξ;λ) as
the bounded solution of

(Lf (ξ)− λ) v = −∂G
∂U

(u∗, vf,h(ξ;u∗)). (3.25)

Note that this is only possible if u(0) 6= 0; the situation where u(0) = 0 will be treated in section
5 (which is related to the case B−(λ) = 0 there). It follows from the general theory on Sturm-
Liouville problems that vin(ξ;λ) is uniquely determined for λ /∈ σf ([36]). Since {wL

λ(ξ), w
R
λ (ξ)} =

{wR
λ (−ξ), wR

λ (ξ)} span the solution space associated to the homogeneous problem (Lemma 3.2),
vin(ξ;λ) can be determined explicitly (in terms of wR

λ (±ξ)).
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Lemma 3.5 The bounded solution of (3.25) is given by vin(ξ;λ) = A(ξ)wR
λ (ξ) + A(−ξ)wR

λ (−ξ),
with

A(ξ) = A(ξ;λ) = − 1

W(λ)

∫ ξ

−∞

∂G

∂U
(u∗, vf,h(ξ̃;u∗))w

R
λ (−ξ̃) dξ̃. (3.26)

Note that it immediately follows from this expression and assumption (A4) in combination with
the properties of vf,h(ξ;u∗) that vin(ξ;λ) decays exponentially fast to 0 as ξ → ±∞ (and as ξ
approaches the boundaries of If (2.7)).

Proof. By the variation of constants approach, we introduce the unknown functions AL/R(ξ)
by vin(ξ) = AL(ξ)wL

λ(ξ) +AR(ξ)wR
λ (ξ). Substitution in (3.25) yields

ȦL/R =
∓1

W(λ)

∂G

∂U
(u∗, vf,h(ξ;u∗))w

∓
λ (ξ),

so that

AL/R(ξ) = AL/R(0)∓ 1

W(λ)

∫ ξ

0

∂G

∂U
(u∗, vf,h(ξ̃;u∗))w

∓
λ (ξ̃) dξ̃.

Both the operator Lf (ξ) and the inhomogeneous term in (3.25) are even as function of ξ. This

implies that also vin(ξ;λ) must be even, so that AR(ξ) = AL(−ξ) def
= A(ξ) and AR(0) = AL(0). A

straightforward analysis yields that vin(ξ) can only be bounded if

A(0) = − 1

W(λ)

∫ 0

−∞

∂G

∂U
(u∗, vf,h(ξ̃;u∗))w

L
λ(ξ̃) dξ̃,

which is a converging integral by assumption (A4). 2

A priori, there is a singularity in the solutions vin(ξ;λ) as λ→ λf,j , due to the fact that (Lf (ξ)−λ)
is not invertible at λf,j (and that thus W(λf,j) = 0, Lemma 3.3). However, by the Fredholm
alternative, (3.25) will have solutions for λ = λf,j with j odd, since wf,j(ξ) is odd as function of ξ
(Lemma 3.2) and the (even) inhomogeneity of (3.25) thus satisfies the solvability condition.

Corollary 3.6 For j even,

vin(ξ;λ) ;

(

wf,j(ξ)

‖wf,j‖22

∫ ∞

−∞

∂G

∂U
(u∗, vf,h(ξ̃;u∗))wf,j(ξ̃) dξ̃

)

· 1

λ− λf,j
as λ→ λf,j , (3.27)

while limλ→λf,j
vin(ξ;λ) exists for j odd.

Proof. Using the fact that wf,j(ξ) is even/odd as function of ξ for j even/odd, identity (3.27) can
be obtained directly by combining Lemma’s 3.3 and 3.5, both for j even and for j odd – in the
latter case, the integral in (3.27) vanishes. 2

It will be necessary to also have an explicit characterization of vin(ξ;λ) for λ near λf,1, the crucial
(odd) case j = 1 for which λf,1 = 0.

Lemma 3.7 For λ = λf,1 = 0, vin(ξ;λ) is not uniquely determined: here,

vin(ξ; 0) =
∂

∂u
vf,h(ξ;u)|u=u∗

+ Cv̇f,h(ξ;u∗), (3.28)

in which C ∈ R is a free parameter.
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It is also possible to obtain leading order approximations of vin(ξ;λ) for λ near λf,j with j ≥ 3 odd.
However, we refrain from going into these details.

Proof. The fact that ∂
∂uvf,h(ξ;u)|u=u∗

is a solution of (3.25) follows immediately from taking
the derivative with respect to the parameter u (or u0) in (2.3). Uniqueness is lost by adding the
kernel v̇f,h(ξ;u∗) associated to the operator Lf (ξ). 2

3.4 The intermediate, slowly varying problem

Consider the intermediate (linear) problem

ψ̇ = As(εξ;λ, ε)ψ (3.29)

to the right of If , that is for ξ > ε−
1

4 . Its solution space is four-dimensional. For λ /∈ σe (3.9), one
can decompose the basis of this space into two fast solutions ψf,±(ξ;λ, ε) that vary with ξ and two
slowly varying solutions ψs,±(εξ;λ, ε). The fast solutions ψf,±(ξ;λ, ε) are at leading order deter-
mined by the lower diagonal 2× 2 block of As(εξ;λ, ε) (3.5) and thus at leading order determined
by their (v, q)-components: the (u, p)-components are only weakly driven by the asymptotically
small coupling term −ν2

√
εF2,1(us,∗(εξ)) in (3.5). The existence of a fast converging solution ψf,−

with an exponential decay that is governed by the most negative eigenvalue −Λf of the limiting
matrix A∞(λ, ε) (3.8) follows directly by classical methods (see also [1, 13]). Note that ψf,− is
uniquely determined up to a normalization constant (see below). This is not the case for its fast
diverging counterpart ψf,+, of which the growth is determined by +Λf for ξ large enough (one
can for instance add a multiple of ψf,− to ψf,+). However, its existence can be settled by the
same methods as for ψf,−. In fact, ψf,+ can be chosen such that for x large, i.e. for ξ ≫ 1

ε , its
decomposition with respect to the four basis solutions of the limiting constant coefficient problem
associated to A∞(λ, ε) (section 3.1) does not contain ‘slow’ behavior (governed by the eigenvalues
±εΛs). Nevertheless ψf,+ needs to be chosen from a family of options, also after normalization.
Note that these assertions are all standard within the framework of the Evans function approach –
see [1, 13, 3, 4]. Note also that in general ψf,+(ξ) 6= ψf,−(−ξ).

In the upcoming analysis , it will be convenient to normalize the solutions ψf,±(ξ;λ, ε) as

ψf,±(ξ;λ, ε) ; Ef,±(λ; ε) e
±Λf ξ as ξ → ∞ (3.30)

with Λf and Ef,±(λ; ε) as defined in (3.8), (3.10).

It follows from the structure of As(εξ;λ, ε) (3.5) that the slow solutions ψs,± have trivial v and q

components, so that ψs,±(εξ;λ, ε) = (us,±(εξ;λ, ε), ps,±(εξ;λ, ε), 0, 0)
T . Note that ψs,± is consid-

ered here as function of the slowly varying spatial variable x = εξ; more specifically, ps,± is defined
as d

dxus,±. By construction, and by the approximations of Theorem 2.1, us,±(x;λ, ε) is a solution
of

uxx −
[

(µ+ λ)− ν1
dF1

dU
(us∗(x))

]

u = 0 for x > ε
3

4 . (3.31)

Since
us∗(x) = uu∗(−x) = uus (−x− x∗) = uss(x+ x∗) = uss(y),

with y = x+ x∗ (section 2 and Theorem 2.1), (3.31) can be rewritten as

(Ls(y)− λ) û
def
= ûyy +

[

ν1
dF1

dU
(uss(y))− (µ+ λ)

]

û = 0 for y > y∗, (3.32)
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where y∗ = x∗ + ε
3

4 . Except for the condition on y, this is a Sturm-Liouville problem of the type
(3.12). As a consequence, Lemma 3.2 can be applied to (3.32) with ρ replaced by µ so that Λ = Λs.
Hence, for λ /∈ σe (3.9) we can define the converging function ûs,−(y;λ, ε) as the solution of (3.32)
that satisfies

ûs,−(y;λ, ε) ; 1 · e−Λsx = eΛsx∗ · e−Λsy as y → ∞. (3.33)

Note that it is not necessary to exclude the values of λ that are eigenvalues for the full problem,
i.e. (3.32) with y ∈ R: in that case ûs,− can be defined as the (normalized) eigenfunction. Of
course, us,− is related to ûs,− through us,−(x;λ, ε) = ûs,−(x + x∗;λ, ε). Its diverging counterpart
ûs,+(y;λ, ε) can be obtained by the same methods as above, or as in the proof of Lemma 3.2 (note
that the existence of these diverging solutions is not a part of this Lemma). As above, the diverging
solution is again not uniquely determined and in general not equal to ûs,−(−y;λ, ε). In fact, this
is impossible at an eigenvalue of the full problem, since in that case ûs,−(−y;λ, ε) does not grow
exponentially as y → ∞. For future reference, we gauge the diverging solution ûs,+ such that

ûs,+(y;λ, ε) ; 1 · e+Λsx as y → ∞. (3.34)

Both basis functions ψs,±(x;λ, ε) can now be defined for λ /∈ σe; recall that ψs,±(x;λ, ε) are only

defined for x > ε
3

4 . As above, we assume that ψs,±(x;λ, ε) are normalized such that

ψs,±(x;λ, ε) ; Es,±(λ; ε) e
±Λsx as x→ ∞ (3.35)

(3.8), (3.10); note that this is equivalent to (3.33) for ψ−,s(x;λ).

Since the matrix As is symmetric in εξ, the above solutions ψf,±(ξ;λ, ε), ψs,±(εξ;λ, ε) can be

used to define their equivalent counterparts to the left of If , i.e. for ξ < −ε− 1

4 , by using the
reflection ξ → −ξ. This fact will be exploited in the next section where the Evans function will be
constructed.

4 The Evans function and the NLEP procedure

4.1 The construction of the Evans function

The Evans function, which is complex analytic outside the essential spectrum – see [32], [1] and
the references therein – associated to system (3.3) can be defined by

D(λ, ε) = det [φi(ξ;λ, ε)] (4.1)

where the functions φi, i = 1, 2, 3, 4 satisfy boundary conditions at ±∞ (see below) and span the
solution space of (3.3). The eigenvalues of (3.4) outside σe coincide with the roots of D(λ, ε),
including multiplicities.

Lemma 4.1 For all λ ∈ C\σe, there are solutions φ
L/R
f (ξ;λ, ε) and φ

L/R
s (ξ;λ, ε) to (3.3) such that
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the set
{

φ
L/R
f (ξ;λ, ε), φ

L/R
s (ξ;λ, ε)

}

spans the solution space of (3.3) and

φLf (ξ;λ, ε) ; Ef,+ e
Λf ξ as ξ → −∞ (4.2a)

φRf (ξ;λ, ε) ; Ef,− e
−Λf ξ as ξ → ∞ (4.2b)

φLs (ξ;λ, ε) ; Es,+ e
εΛsξ as ξ → −∞ (4.2c)

φRs (ξ;λ, ε) ; Es,− e
−εΛsξ as ξ → ∞ (4.2d)

Moreover, there exist analytic transmission functions tf,+(λ, ε) and ts,+(λ, ε) such that

φLf (ξ;λ, ε) ; tf,+(λ, ε)Ef,+ e
Λf ξ as ξ → ∞ (4.3a)

φLs (ξ;λ, ε) ; ts,+(λ, ε)Es,+ e
εΛsξ as ξ → ∞ (4.3b)

where ts,+(λ, ε) is only defined if tf,+(λ, ε) 6= 0. These choices, when possible, determine φ
L/R
f and

φLs uniquely.

Proof. Although the linearized system (3.3) is not identical to its counterpart in [3], exactly the
same arguments as in [3] can be applied here. Therefore, we refer to [3] for the details of the proof.2

The relation between the functions φ
L/R
f/s defined in the above Lemma and the functions ψf/s,±

defined in section 3.4 will be specified in the next section. Using this relation, an explicit leading
order expression for the slow transmission function ts,+(λ) will be derived.

The Evans function can be determined by taking the limit ξ → ∞ of the determinant of the
functions defined in Lemma 4.1, since the Evans function itself does not depend on ξ; the latter
can be established by combining Abel’s theorem with the fact that the trace of A(ξ;λ, ε) vanishes.
This yields using (3.8) and (3.10)

D(λ, ε) = det
[{

φLf , φ
R
f , φ

L
s , φ

R
s

}]

= lim
ξ→∞

det
[{

φLf , φ
R
f , φ

L
s , φ

R
s

}]

= lim
ξ→∞

det
[{

tf,+(λ, ε)Ef,+ e
Λf ξ, Ef,− e

−Λf ξ, ts,+(λ, ε)Es,+ e
εΛsξ, Es,− e

−εΛsξ
}]

= lim
ξ→∞

tf,+(λ, ε)ts,+(λ, ε) det [{Ef,+, Ef,−, Es,+, Es,−}]

= 4ε tf,+(λ, ε) ts,+(λ, ε)
√
1 + λ

√

µ+ λ. (4.4)

Corollary 4.2 The set of eigenvalues of (3.4) is contained in the union of the sets of roots of
tf,+(λ, ε) and ts,+(λ, ε).

Note that, due to the fact that ts,+(λ, ε) only defined when tf,+(λ, ε) 6= 0, the Evans function
D(λ, ε) doesn’t necessarily vanish when tf,+(λ, ε) = 0. This is called the ‘resolution to the NLEP
paradox’ in [3] and [4]. Referring to [3], we recall that the roots of tf,+(λ, ε) are to leading order
given by the eigenvalues of the homogeneous fast eigenvalue problem (3.12), so

Lemma 4.3 There are unique λj(ε) ∈ R such that limε→0 λj(ε) = λf,j and
tf,+(λj(ε), ε) = 0 with multiplicity 1 for j = 0, ..., J .
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Proof. This statement (and, as a consequence, its proof) is analogous to that of [3], Lemma 4.1.
From Lemma 3.3 we know that the Wronksian W(λ) defined there –which is an Evans function
itself for the fast problem (3.12)– vanishes at λ = λf,j in a nondegenerate way. By construction,
tf,+(λj(ε), ε) approaches W(λ) as ε→ 0; see [1, 13, 4] for the technical details. 2

Hence, the eigenvalues of (3.12) are to leading order zeroes of the fast component of the Evans
function D(λ, ε) given in (4.4) and thus in principle candidates for being a zero of the full Evans
function.

4.2 The NLEP procedure

Since in the slow field ξ > |ε− 1

4 | the matrix A(ξ;λ, ε) (3.4) is with exponential accuracy (3.6) given
by As(εξ;λ, ε) (3.5), we can conclude that

φRs (ξ;λ, ε) = ψs,−(εξ;λ, ε) for ξ > ε−
1

4 (4.5)

by combining (3.35) with Lemma 4.1. By the reversibility symmetry,

φLs (ξ;λ, ε) = ψs,−(−εξ;λ, ε) for ξ < −ε− 1

4 . (4.6)

Both approximations are valid with exponential accuracy. Moreover, from the second part of
Lemma 4.1, we can infer that in the right slow field we can approximate φLs to exponential accuracy
as

φLs (ξ;λ, ε) = ts,+(λ, ε)ψs,+(εξ;λ, ε) + ts,−(λ, ε)ψs,−(εξ;λ, ε) for ξ > ε−
1

4 . (4.7)

The additional transmission function ts,− needs to be introduced since the asymptotic behaviour of
φLs in the right slow field is only determined by its slow growth, see Lemma 4.1. This normalization
choice does not exclude the possibility that φs,L has a slowly decaying component in the right slow
field. Since {ψf,±, ψs,±} form a basis of the solution space of the right slow field to exponential
accuracy, the slowly decaying component can be represented by ψs,−. Note that since the solution
is approximated to exponential accuracy, the possible presence of a fast decaying component is
incorporated in this exponential error estimate.

Using the above approximations, an explicit leading order expression for the transmission func-
tion ts,+ can be determined. Recall that from section 4.1 it is known that λ is a zero of the Evans
function, and thus an eigenvalue of (3.3), if ts,+(λ, ε) = 0. The Theorem below can therefore be
considered as the main result of section 4 and therefore as one of the main results of this paper.

Theorem 4.4 Let ε > 0 be small enough. Define B± and B′
± by

B±(λ) = lim
ε→0

ûs,±(y∗;λ, ε), B
′
±(λ) = lim

ε→0

d

dy
ûs,±(y;λ, ε)

∣

∣

∣

y=y∗
, (4.8)

then, up to corrections of O(ε
3

4 ),

ts,+(λ) = −B
2
−

Λs

{

B′
−

B−
+

1

2
ν2

∫ ∞

−∞

[

∂F2

∂U
(u∗, vf,h(ξ;u∗)) +

∂F2

∂V
(u∗, vf,h(ξ;u∗)) vin(ξ)

]

dξ

}

, (4.9)

with vin(ξ;λ) as given in Lemma 3.5.
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Proof. Let uLs be the u-component of φLs . The approximations (4.6) and (4.7) of uLs (ξ;λ, ε) are

valid outside If (2.7). Since If has a O(ε−
1
4 ) width in ξ and uξ = εp = O(ε), it follows that

uLs (ξ;λ, ε) can at most change an amount of O(ε
3

4 ) over If . Hence, taking the limits ξ ↑ −ε−
1
4 in

(4.6) and ξ ↓ ε−
1
4 in (4.7) yields, in combination with de definition of y (section 3.4),

ûs,−(y∗;λ) = ts,+(λ)ûs,+(y∗;λ) + ts,−(λ)ûs,−(y∗;λ) +O(ε
3

4 ).

From this, we obtain a first relation between t+(λ) and t−(λ):

B−(λ) = t+(λ)B+(λ) + t−(λ)B−(λ) +O(ε
3

4 ). (4.10)

A second leading order relation between t+(λ) and t−(λ) can be obtained by studying the accumu-
lated change in d

dξu
L
s (ξ;λ) over If . According to (3.2) and by Theorem 2.1,

∆f

(

d
dξu

L
s

)

=
∫

If
d2

dξ2
uLs dξ

= −εν2
∫

If

[

∂F2

∂U (uh(ξ), vh(ξ))u
L
s (ξ) +

∂F2

∂V (uh(ξ), vh(ξ))v
L
s (ξ) +O(ε)

]

dξ

= −εν2
∫

If

[

∂F2

∂U (u∗, vf,h(ξ;u∗))uLs (ξ) +
∂F2

∂V (u∗, vf,h(ξ;u∗))vLs (ξ)
]

dξ +O(ε7/4),

where vLs is the v-component of φLs . For ξ ∈ If , we know that uLs is constant to leading order.

Using (4.10), we see that uLs (ξ) = B− + O(ε
3

4 ) for ξ ∈ If . The second equation of (3.2) – which
describes the evolution of vLs – can therefore be written as

(Lf (ξ)− λ) vLs = −B−
∂G

∂U
(u∗, vf,h(ξ;u∗)) +O(ε

3

4 ),

which implies that (see section 3.3)

vLs (ξ;λ, ε) = B−(λ)vin(ξ;λ) +O(ε
3

4 ),

so that vL+,s(ξ;λ) is explicitly known (Lemma 3.5) to leading order. As a consequence,

∆f

(

d
dξu

L
s

)

= −εν2B−
∫

If

[

∂F2

∂U (u∗, vf,h(ξ)) +
∂F2

∂V (u∗, vf,h(ξ))vin(ξ)
]

dξ +O(ε7/4)

= −εν2B−
∫∞
−∞

[

∂F2

∂U (u∗, vf,h(ξ)) +
∂F2

∂V (u∗, vf,h(ξ))vin(ξ)
]

dξ +O(ε7/4)
(4.11)

by the convergence properties of vf,h(ξ;u∗) and vin(ξ;λ) in combination with assumption (A3) – note
that this same combination also implies that the integral converges. Of course, this accumulated
change in d

dξu
L
+,s(ξ;λ) must also be reflected by the leading order approximations (4.6) and (4.7)

as ξ ↑ −ε−
1
4 respectively ξ ↓ ε−

1
4 . Combining (4.11) with (4.6) and (4.7) yields

∆s

(

d
dξu

L
+,s

)

= lim
ξ↓ε−

1
4

d
dξ [ts,+ûs,+(εξ + x∗) + ts,−ûs,−(εξ + x∗)]− lim

ξ↑−ε
1
4

d
dξ ûs,−(−εξ + x∗)

= ε
[

ts,+(λ)B
′
+(λ) + ts,−(λ)B′

−(λ) +B′
−(λ)

]

+O(ε7/4).
(4.12)

The second relation between t−(λ) and t+(λ) follows by identifying (4.11) and (4.12).
Finally, the term B+B

′
− − B−B′

+ obtained by combining (4.10) with (4.12) and solving for ts,+
can be simplified by recognizing it as the Wronksian associated to (3.32) for the solutions ûs,±,
evaluated at y = y∗. Using Abel’s theorem, we see that the Wronskian associated (3.32) is constant
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in y. Its value can therefore be determined by taking the limit y → ∞, using (3.33) and (3.34).
Thus,

B+B
′
− −B−B

′
+ = lim

y→∞
B+B

′
− −B−B

′
+ = −2Λs.

Identity (4.9) can now be obtained by combining relation (4.12) with (4.10), using the above sim-
plification for B+B

′
− −B−B′

+. 2

The expression for ts,+ (4.9) can be studied in the ’linear’ limit, yielding the following result:

Corollary 4.5 Both as ν1 → 0 and in the limit of large positive y∗, the roots of ts,+(λ) are to
leading order given by the solutions to

ν2
2

∫ ∞

−∞

[

∂F2

∂U
(u∗, vf,h(ξ;u∗)) +

∂F2

∂V
(u∗, vf,h(ξ;u∗)) vin(ξ)

]

dξ =
√

µ+ λ. (4.13)

Note that the ’linear limit’ (4.13) indeed coincides with [3], expression (4.11), which determines the
(nontrivial) zeroes of an Evans function associated to the stability of pulses in a ‘linear’ generalized
GM-type system (i.e. F1(U ; ε) ≡ 0, F2(U, V ; ε) = Uα1V β1 , G(U, V ; ε) = Uα2V β2).

Proof. We approximate B±, B′
± for large y∗ > 0 using (3.33) and (3.34), yielding

B−(λ) ; e−Λsy∗ and B′
−(λ) ; −Λs e

−Λsy∗ as y∗ → ∞. (4.14)

From (3.32), it follows that the limit ν1 → 0 also yields the ’linear limit’, i.e. the solutions ûs,±
become pure exponentials. Therefore, any zero of ts,+ in either of these limits comes from a solution
of equation (4.13). 2

5 Implications of Theorem 4.4: (in)stability results

The explicit leading order expression for ts,+(λ) established in the previous section and stated in
Theorem 4.4 can be interpreted in certain limiting situations, such as near the known fast eigen-
values λf,j of the homogeneous problem (3.12) or for certain parameter limits. In this section, a
number of results of this type will be stated, leading to a number of explicit (in)stability results for
the full problem (3.3).

Lemma 5.1 For λ close to λf,0, we can describe the leading order behaviour of ts,+ as

ts,+(λ) ; −ν2B−(λf,0)2

2Λs(λf,0)
· T

λ− λf,0
as λ→ λf,0, (5.1)

where

T =

(∫ ∞

−∞

∂F2

∂V
(u∗, vf,h(ξ;u∗))

wf,0(ξ)
‖wf,0‖2 dξ

)(∫ ∞

−∞

∂G

∂U
(u∗, vf,h(ξ;u∗))

wf,0(ξ)
‖wf,0‖2 dξ

)

. (5.2)
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Proof. By Corollary 3.6 we see that vin(ξ;λ) is singular in λ as λ → λf,0. Combining (3.27) with
(4.9), we can describe the leading order behaviour of the slow transmission function as (5.1) with
the constant T is given by (5.2). 2

Corollary 5.2 Let ε > 0 be sufficiently small. The nontrivial roots of the Evans function D(λ, ε)
are determined by ts,+(λ, ε) (4.9). In other words, ts,+ determines the stability of the pulse Γh as
defined in Theorem 2.1.

Proof. By Lemma 4.3, the fast transmission function tf,+(λ, ε) has a single zero at λ = λf,0 to
leading order in ε. Since tf,+(λ) is smooth and it approximates the Wronskian W(λ) of Lemma 3.3
(see Lemma 4.3), we can approximate it linearly as tf,+(λ, ε) ; t̂f,+ · (λ−λf,0)+O(ε) as λ→ λf,0,
with t̂f,+ = −‖wf,0‖22 6= 0. This would suggest that λf,0 is a zero of the full Evans function (4.4).
However, combining the results of Lemma 5.1 with the fact that Λs(λf,0) =

√

µ+ λf,0, we see that
the Evans function (4.4) behaves to leading order in ε as

D(λ, ε) ; 2 ε ν2 ‖wf,0‖22T
√

1 + λf,0B−(λf,0)
2 as λ→ λf,0. (5.3)

We see that D(λf,0, ε) = 0 if and only if ν2TB−(λf,0)2 = 0. Thus, the possibility of an eigenvalue
at λ = λf,0 is determined by ts,+(λ), not by tf,+(λ). 2

Note that in general λf,0 is thus not (close to) an eigenvalue of the full problem. This –again–
relates directly to the resolution of the NLEP paradox [3, 4]. The first, positive eigenvalue λf,0
of the fast homogeneous problem (3.12) is a zero of the Evans function (4.4) and therefore an
eigenvalue of the full problem (3.3) if and only if

ν2 T B−(λf,0) = 0, (5.4)

where T as defined in (5.2); therefore, (5.4) determines a condition on the parameters of (1.1).
Moreover, the relevance of more detailed insight in the behaviour in general and the roots in
particular of B−(λ) is apparent.

5.1 The structure of B−(λ)

Recalling the definition of B−(λ) (4.8), we see that the roots of B−(λ) are directly related to the
structure of ûs,− as a function of λ; also recall that ûs,− is the solution of (3.32) that decreases
exponentially as y → ∞, see (3.33).

Consider the slow eigenvalue problem (3.32). Following the classical approach of [36], we intro-
duce the polar coordinate transformation

û(y) = r(y) cos θ(y), ûy(y) = r(y) sin θ(y), (5.5)

where r(y) > 0. Using the consistency condition

r(y) sin θ(y) = ûy =
d

dy
û = r′(y) cos θ(y)− r(y)θ′(y) sin θ(y), (5.6)
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the second order equation (3.32) can be transformed into the system

r′ =

[

1 + µ+ λ− ν1
dF1

dU
(uss(y))

]

r cos θ sin θ (5.7)

θ′ =

[

1 + µ+ λ− ν1
dF1

dU
(uss(y))

]

cos2 θ − 1. (5.8)

Since r is a strictly positive function, we can identify the zeroes of û(y) by studying θ(y):

û(y) = 0 Longleftrightarrow θ(y) =
1

2
π + kπ, k ∈ Z. (5.9)

Moreover, we can establish an ordering principle for θ, as stated in the following Lemma:

Lemma 5.3 Let û1, û2 be solutions to (3.32) for real λ1 resp. λ2 outside the essential spectrum
(3.9). Assume θ2(y0) < θ1(y0) for some y0 ∈ (y∗,∞), where θ1,2 are related to û1,2 by (5.5). If
λ2 > λ1, then θ2(y) < θ1(y) for all y∗ ≤ y ≤ y0.

Proof. Introduce ∆λ = λ2 − λ1 > 0. Using (5.8), we can deduce a differential equation for the
difference θ1 − θ2:

(θ1 − θ2)
′ =

[

1 + µ+ λ1 − ν1
dF1

dU
(uss(y))

]

(

cos2 θ1 − cos2 θ2
)

θ1 − θ2
(θ1 − θ2)−∆λ cos2 θ2 (5.10)

This equation has the form u′ = f u−h, where u = θ1−θ2 and h = ∆λ cos2 θ2 ≥ 0. By introducing
F (y) =

∫ y0
y f(η)dη, we see that eF (u′ − f u) = d

dy

(

eFu
)

= −h eF ≤ 0. Since eFu is decreasing and

eF (y0)u(y0) = u(y0) > 0 since θ1(y0) − θ2(y0) > 0, we can conclude that eF (y)u(y) > 0 and hence
u(y) > 0 for all y∗ ≤ y ≤ y0. 2

We use Lemma 5.3 to establish a similar ordering result for θ̂s,−(y;λ, ε), which is the ’angular
function’ associated to ûs,−(y;λ, ε) through the polar transformation (5.5). Once again we use the

fact that we can approximate θ̂s,− by an exponential for large values of y (see (3.31)), by taking y0
arbitrarily large.

Lemma 5.4 Consider real λ1, λ2 /∈ σe (3.9). If λ2 > λ1, then θs,−(y;λ2, ε) < θs,−(y;λ1, ε) for all
y ∈ (y∗,∞).

Proof. Since ûs,−(y;λ, ε) ; eΛsx∗e−Λsy as y → ∞ (3.33) and therefore d
dy ûs,− ; −Λs e

Λsx∗e−Λsy

as y → ∞, it follows that

rs,− ;

√

1 + λ+ µ e
√
λ+µx∗e−

√
λ+µ y as y → ∞,

cos θs,− ;
1√

1 + λ+ µ
as y → ∞,

sin θs,− ; −
√
λ+ µ√

1 + λ+ µ
as y → ∞

so tan θs,− ; −√
λ+ µ as y → ∞. Since we consider λ ∈ R outside the essential spectrum (3.9),

we know that 0 < 1√
1+λ+µ

< 1 so θs,−(mod 2π) ∈ (−π
2 ,

π
2 ) as y → ∞. The angle variable θ is

still defined up to a multiple of 2π: we gauge θs,− such that θs,− ∈ (−π
2 ,

π
2 ) as y → ∞. Since the
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tangent is strictly increasing on (−π
2 ,

π
2 ), it follows that if λ2 > λ1 then −√

λ2 + µ < −√
λ1 + µ

and therefore tan θs,−(y;λ1; ε) − tan θs,−(y;λ2; ε) ; K1 > 0 as y → ∞; we can conclude that
θs,−(y;λ1, ε) − θs,−(y;λ2, ε) ; K2 > 0 as y → ∞. Lemma 5.3 can now be used to establish the
statement of the Lemma. 2

The ordering principle from Lemma 5.3 can be combined with the eigenfunction hierarchy from
Lemma 3.2. This is only possible if the slow eigenvalue problem (3.31) can be extended to the
entire real line, i.e. when uss(x) is bounded for x→ ±∞. Invoking the result of Lemma 2.2, we see
that we may assume Ws

s((0, 0))∩{ps = 0} 6= ∅ without loss of generality, and that as a consequence
uss(x) may be assumed to be bounded, since the function uss(x) describes a homoclinic orbit on the
slow manifold M. This allows us to use Lemma 3.2 on (the extended) eigenvalue problem (3.31),
introducing the slow eigenvalues λs,j with their associated eigenfunctions ws,j from Lemma 3.2.

Lemma 5.5 Assume without loss of generality that Ws
s((0, 0))∩{ps = 0} 6= ∅. If λs,j+1 < λ < λs,j

then the associated function ûs,−(y;λ; ε) has at least j and at most j + 1 zeroes as a function of
y. Furthermore, if 0 < λ < λs,0, then ûs,−(y;λ; ε) > 0 if y > 0. Secondly, if λs,0 ≤ λ, then
ûs,−(y;λ; ε) > 0 for all y ∈ R.

Proof. Since Ws
s((0, 0)) ∩ {ps = 0} 6= ∅, uss(x) is bounded. This allows us to apply Lemma 3.2 in

full, introducing the slow eigenvalues λs,j with associated eigenfunctions ws,j . From Lemma 3.2 (ii)
and (iii), it follows that ws,1(y) = − d

dyu
s
s(y) for λs,1 = 0. Moreover, ws,j(y) has j distinct zeroes

– in particular, ws,0(y) is positive (Lemma 3.2 (iii)) and never zero. Using the fact that ws,0(y) is
even, we can reason analogously to the proof of Lemma 5.4 and conclude that θs,0(y) ∈ (−π

2 ,
π
2 ) for

all y – we use the same gauge for θs,j as that for θs,− in the proof of Lemma 5.4.

Furthermore, evaluating (5.8) at the ’critical’ θ-values from (5.9), we see that

θ(y) =
1

2
π + kπ, k ∈ Z Longleftrightarrow θ′(y) = −1. (5.11)

The function θ(y) thus crosses each ’critical’ value θ(y) = 1
2π + kπ, k ∈ Z only once, and in a

transversal way. Since ws,1(y) is odd, we can infer analogously to the proof of Lemma 5.4 that

cos θs,1 ; − 1√
1+µ

and sin θs,1 ; −
√
µ√

1+µ
as y → −∞. This means that θs,1 (mod2π) ∈ (π, 32π) as

y → −∞. Using the fact that ws,1(y) is has only one zero and therefore θs,1 crosses the line θ = 1
2π

only once, we see that the gauge choice allows us to omit the ”mod2π”, yielding θs,1 ∈ (π, 32π) as
y → −∞. Using Lemmas 5.3 and 5.4 (extended to the entire real line), we conclude that for all
λs,1 = 0 < λ < λs,0, the function w

R
s,λ(y) has at most one zero, see Figure 6. Furthermore, since we

know that θs,1 crosses the line θ = 1
2π exactly at y = 0 (with slope −1), the aforementioned zero of

wR
s,λ(y) can only occur for negative values of y. Moreover, analogous reasoning can be applied to

every pair (λs,j , λs,j+1): if λs,j+1 < λ < λs,j , then w
R
s,λ(y) has at least j and at most j + 1 zeroes.

Note that the above also implies that for λs,0 < λ, the function wR
s,λ(y) is never zero. Identification

of wR
s,λ(y) with ûs,−(y;λ, ε) yields the Lemma. 2

The result of Lemma 5.5 can used to make a statement about B−(λ):

Lemma 5.6 If y∗ > 0, then B−(λ) 6= 0 for all λ ≥ 0. If y∗ ≤ 0, then there is a λ ≥ 0 for which
B−(λ) = 0.
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Θ

Figure 6: The ordering of θs,−(y;λ), depicted for λ1 ≤ λ ≤ λ0. The intersections with the line
θ = π

2 are also indicated; for these values of λ, each of these intersections is to the left of y = 0.

Of course, this has an immediate consequence for pulses for which x∗ < 0 (see Figure 4c).

Corollary 5.7 Let F1,2 and G be such that Ws
s((0, 0)) ∩ {ps = 0} 6= ∅, and assume that x∗ < 0.

Let Γh be a pulse solution of (1.7) with x∗ < 0 (Theorem 2.1). Then Γh is unstable.

Proof of Lemma 5.6.
y∗ > 0 : Since B−(λ) = limε→0 ûs,−(y∗;λ, ε), the last statement of Lemma 5.5 applies for all values
of y∗ if λ ≥ λs,0. For 0 ≤ λ < λs,0, the second statement of Lemma 5.5 makes sure that whenever
y∗ > 0, ûs,−(y∗;λ, ε) 6= 0 and therefore B−(λ) 6= 0.

y∗ ≤ 0 : Consider λ ≥ 0; we set out to prove that for every y∗ ≤ 0 there is a λ ≥ 0 such
that limε→0 ûs,−(y∗;λ, ε) = 0. Define the zero-set U0 = {(λ, y0) | limε→0 ûs,−(y0;λ, ε) = 0}. Using
Lemma 5.5 and the previously proven results for y∗ > 0, we know that (U0 ∩ {(λ, y0) |λ ≥ 0}) ⊂
[0, λs,0) × (−∞, 0]. By the polar coordinate transformation (5.5), we see that U0 = Θ0, where
Θ0 =

{

(λ, y0) | limε→0 θs,−(y0, λ, ε) = π
2

}

. Taking the derivative with respect to λ of the defin-

ing equation limε→0 θs,−(y0;λ, ε) = π
2 yields

∂θs,−
∂y

dy0
dλ +

∂θs,−
∂λ = 0. For (λ, y0) ∈ Θ0 we have

∂θs,−
∂y = −1 (5.11), so dy0

dλ =
∂θs,−
∂λ for ( lambda, y0) ∈ Θ0. Now consider (λ̂, ŷ0) ∈ Θ0 and

take 0 < δ ≪ 1 small enough. Using the smoothness of θs,− as a function of λ, we can write

θs,−(ŷ0; λ̂ + δ, ε) = θs,−(ŷ0; λ̂, ε) + δ
∂θs,−
∂λ (ŷ0; λ̂, ε) + O(δ2). Using the extension of Lemma 5.4

to the entire real line, we know that θs,−(ŷ0; λ̂ + δ, ε) < θs,−(ŷ0; λ̂, ε). Taking the limit ε → 0

yields π
2 + δ limε→0

∂θs,−
∂λ (ŷ0; λ̂, ε) + O(δ2) < π

2 so limε→0
∂θs,−
∂λ (ŷ0; λ̂, ε) < 0 for all (λ̂, ŷ0) ∈ Θ0.

This implies that dy0
dλ < 0 on Θ0. Therefore, Θ0 is a smooth one- dimensional submanifold of the

the (λ, y0)-(half)plane. The continuity of ûs,−(y;λ, ε) both as a function of y and λ implies that

U0 = Θ0 is closed. Since
∂θs,−
∂y (λ, y0) = −1 when limε→0 θs,−(y0;λ, ε) = π

2 , there is a η > 0 such
that limε→0 θs,−(y0 − η;λ, ε) > π

2 and limε→0 θs,−(y0 + η;λ, ε) < π
2 . The smoothness of ûs,−(y;λ, ε)

as a function of λ implies that these inequalities also hold for an open interval containing λ. This
means that Θ0 is connected and that it does not have singular, i.e. terminal points in the interior
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Figure 7: The zero set Θ0 =
{

(λ, y0) | limε→0 θs,−(y0, λ, ε) = π
2

}

.

of the half plane {(λ, y0) |λ ≥ 0}, except for (0, 0) ∈ Θ0 – which also ensures that Θ0 is nonempty.
We conclude that as a graph over λ, the map λ 7→ y0(λ) defines a strictly decreasing function which
has the entire negative halfline (−∞, 0] as its range, see Figure 7.
Therefore, for every y0 ≤ 0 there is a λ ≥ 0 such that limε→0 θs,−(y0;λ, ε) = π

2 , which implies that
B−(λ) = limε→0 ûs,−(y∗;λ, ε) = 0 if we take y∗ = y0. 2

The fact that B−(λ) 6= 0 for λ ≥ 0 only excludes real positive zeroes of B−(λ) if y∗ > 0. In
[38], we have conjectured that B−(λ) 6= 0 for all λ ∈ C with Im(λ) 6= 0 for the explicit system
(1.2) considered there. Even for the very simple case in which ûs,− can be expressed in terms of
associated Legendre functions –as is the case in [38]–, there is no result in the literature about the
(non-)existence of complex zeroes we are aware of. In our (numerical) investigations of B−(λ) we
have not found any evidence of the possibility that B−(λ) can be zero for λ /∈ R.

5.2 The trivial eigenvalue λ = 0

While the explicit expression for ts,+ (4.9) is in the general setting hard to analyse explicitly, it is
possible to treat some specific situations in detail; in this section, we focus on the trivial eigenvalue
λ = 0. From Lemmas 5.5 and 5.6 we know that B−(0) = 0 if and only if y∗ = 0 since d

dyu
s
s(y∗) = 0

if and only if y∗ = 0. This situation can be interpreted geometrically as a quadruple intersection
of both curves To (2.11) and Td (2.12) with Wu

s ((0, 0)) ∩Ws
s((0, 0)) at (uM , 0). This implies that

p∗ = 0 (2.17) and hence Dp(u∗) = 0 (2.9), which in turn means that the u-coordinate does not
make a jump (2.8). Note that this does not necessarily mean that V -component is identically zero,
only that the U - and V -components decouple to leading order. Since λ = 0 is always a simple
eigenvalue of the pulse, we can conclude the following:

Corollary 5.8 When x∗ = 0, the trivial eigenvalue λ = 0 has multiplicity 2.

Therefore, the bifurcation which changes the sign of x∗ = y∗ + O
(

ε
3

4

)

, i.e. which changes the

qualitative properties of the homoclinic pulse from the situation depicted in Figure 4a to Figure
4c, (further) destabilizes the pulse by sending an eigenvalue through the origin; it is highly likely
that there are additional unstable eigenvalues. The fact that the trivial eigenvalue has multiplicity
2 when x∗ = 0 can also be understood by noticing that in this case there is virtually no coupling
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between the slow U - and fast V -equation: the fast V -pulse does not have an impact on the U -
component since Dp(u∗) = 0. The uncoupled Uh- and Vh-components both have a zero (as well as
a positive) eigenvalue, since their derivatives are a solution to their respective scalar equations.

The slow transmission function ts,+ can be analyzed in more detail at λ = 0, yielding the fol-
lowing Lemma.

Lemma 5.9 At the trivial eigenvalue λ = 0, the slow transmission function ts,+(λ) can be expressed
as

ts,+(0) =
1

2
√
µ

ν2Dp(u∗)
u2s,∞

{

µu∗ − ν1F1(u∗; 0)−
1

4
ν22Dp(u∗)

d

du

∣

∣

∣

∣

u=u∗

Dp(u)

}

. (5.12)

Proof. First, we recall Lemma 3.7: for λ = 0, we can write vin(ξ;λ = 0) as

vin(ξ; 0) =
∂

∂u
vf,h(ξ;u)|u=u∗

+ Cv̇f,h(ξ;u∗)

where C ∈ R is a free parameter. Since vf,h(ξ, u) is an even function of ξ, the product

∂F2

∂V
(u∗, vf,h(ξ;u∗))

∂

∂ξ
vf,h(ξ;u∗)

is odd as a function of ξ, hence its integral vanishes. Therefore we can write the integrand of the
integral term occcuring in the expression of ts,+ (4.9) as

∂F2

∂U
(u∗, vf,h(ξ;u∗)) +

∂F2

∂V
(u∗, vf,h(ξ;u∗))vin(ξ) =

d

du

∣

∣

∣

∣

u=u∗

F2(u, vf,h(ξ;u)).

Using the notation introduced in (2.9), we can write the integral in (4.9) as

∫ ∞

−∞

[

∂F2

∂U
(u∗, vf,h(ξ;u∗)) +

∂F2

∂V
(u∗, vf,h(ξ;u∗)) vin(ξ)

]

dξ =

∫ ∞

−∞

[

d

du

∣

∣

∣

∣

u=u∗

F2(u, vf,h(ξ;u))

]

dξ =
d

du

∣

∣

∣

∣

u=u∗

Dp(u). (5.13)

As for the expressions B− and B′
−, we recall Lemma 3.2 (ii): the eigenfunction at λ = 0 for the

problem (Ls(y)−λ)u = 0 is (a scalar multiple of) the derivative of the function which is perturbed,
in our case

ûs,−(y∗;λ = 0) = C1
d

dy

∣

∣

∣

∣

y=y∗

uss(y) = C1
d

dx

∣

∣

∣

∣

x=x∗

uss(x), C1 ∈ R

where uss(x) is the solution to (2.13) that spans the stable manifold W s
s ((0, 0)). Using (2.23), we

can determine C1 =
1

us,∞
. Similarly, we can write

d

dy

∣

∣

∣

∣

y=y∗

ûs,−(y;λ = 0) =
1

us,∞

d2

dx2

∣

∣

∣

∣

x=x∗

uss(x).

As both B− and B′
− are defined as the limit of the above expressions as ε→ 0 (4.10), we see that

B−(0) =
1

us,∞

d

dx

∣

∣

∣

∣

x=x∗

uss(x) and B′
−(0) =

1

us,∞

d2

dx2

∣

∣

∣

∣

x=x∗

uss(x). (5.14)
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Since the flow on the stable manifold is governed by (2.13), we can write

us,∞B
′
−(0) = µu∗ − ν1F1(u∗; 0). (5.15)

Moreover, since the expressions for B− and B′
− are evaluated at x = x∗, we know that at u(x∗) = u∗

the slow manifold intersects the touchdown curve Td. Therefore, by (2.15)

us,∞B−(0) = −1

2
ν2Dp(u∗). (5.16)

Substitution of (5.13), (5.15) and (5.16) in (4.9) yields the Lemma, using the fact that us,∞ 6= 0.
2

When y∗ 6= 0 and hence B−(0) 6= 0, the trivial eigenvalue is again connected to a bifurcation
of the homoclinic pulse (Remark 2.4). Comparison of the saddle-node condition (2.21) from Corol-
lary 2.3 with the expression for ts,+(0) from Lemma 5.9 yields the following Corollary:

Corollary 5.10 Assume B−(0) 6= 0. The critical eigenvalue λ = 0 has multiplicity 2 or more –
or equivalently ts,+(0) = 0 – if and only if the homoclinic orbit Γh(ξ) of Theorem 2.1 undergoes a
saddle node bifurcation (as described in Corollary 2.3).

This way we may conclude that, apart from the saddle node bifurcation (Corollary 2.3) and the
crossing of x∗ through 0 (Corollary 5.8), the homoclinic pulse Γh can only lose or gain stability
when a pair of complex conjugate eigenvalues –with nonzero imaginary parts– crosses the imaginary
axis: the associated bifurcation is of Hopf type. In explicit settings, the bifurcation structure of
these Hopf bifurcations can be analyzed in detail, see section 4 of the companion paper [38].

5.3 Further instability results

The structure of ts,+(λ) at λ = 0 and near λ = λf,0 can be used to establish explicit conditions for
the existence of real positive zeroes of ts,+(λ). Note that the line of reasoning is similar to that in
[20], where the sign of the Evans function at λ = 0 and for λ → ∞ was combined with counting
arguments to establish the (non-)existence of intersections of the (real) Evans function with the
positive λ-axis. Compared to [20], we have additional information about the slow component of
the Evans function near its pole at λ = λf,0.

Lemma 5.11 Consider T as given in (5.2). If ν2 T > 0, there exists a positive real zero of ts,+(λ);
therefore, the homoclinic pulse Γh unstable when ν2 T > 0.

When F2 is monotonic in V and G is monotonic in U , the coefficient T is nonzero and its sign is
known (see (5.2) and recall that wf,0(ξ) > 0). In that case –which will often arise in explicit settings
such as the generalized GM model– the equation ν2B−(λf,0) = 0 determines a codimension-1 in-
stability condition, see the discussion following Corollary 5.2 on (5.4). Combining this with Lemma
5.11, we see that the homoclinic pulse Γh is unstable for either ν2 ∈ (−∞, 0] or ν2 ∈ [0,∞), de-
pending on the (fixed) sign of T .

Proof. The idea of the proof is to combine insights on the behaviour of ts,+(λ) for real λ as
λ→ ∞ with the behaviour of ts,+(λ) as λ ↓ λf,0, then use the continuity of ts,+.
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Firstly, as in the proof of Lemma 3.4, define δ = 1
λ . For δ small enough, i.e. for λ large enough,

it can be shown analogous to the proof of Lemma 3.4 that ûs,±(y;λ, ε) = e±
√
λy(1 + O(δ)) on an

O(1) y-domain ⊃ {y = 0}, using (3.33) and (3.34). Therefore, we can approximate B± and B′
± as

B±(λ) = e±
√
λy∗(1 +O(δ)) and B′

±(λ) = ±
√
λ e±

√
λy∗(1 +O(δ)),

yielding

ts,+(λ) =
e−2

√
λy∗

√
λ

{√
λ− ν2

2

∫ ∞

−∞

[

∂F2

∂U
(u∗, vf,h(ξ;u∗)) +

∂F2

∂V
(u∗, vf,h(ξ;u∗)) vin(ξ)

]

dξ

}

.

Combining Lemma 3.4 and the elements of its proof with the expression for vin from Lemma 3.5,
we obtain

vin(ξ;λ) =
1

2
√
λ

∫ ∞

−∞

∂G

∂U
(u∗, vf,h(ξ̃;u∗)) e

−
√
λ|ξ−ξ̃|dξ̃ +O(δ).

From this, we see that
∫∞
−∞

∂F2

∂V (u∗, vf,h(ξ;u∗)) vin(ξ) dξ → 0 as λ→ ∞. Since
∫∞
−∞

∂F2

∂U (u∗, vf,h(ξ;u∗)) dξ
does not depend on λ, it follows that

ts,+(λ) ; e−2λy∗ as λ→ ∞.

Secondly, we know the behaviour of ts,+ in another limit from Lemma 5.1: recall (5.1), with T
as in (5.2). Now, when ν2 T > 0, then ts,+ tends to −∞ as λ ↓ λf,0. Since there are no other
poles of ts,+ for λ > λf,0, by continuity there must be a λ∗ > λf,0 > 0 where ts,+ = 0 because ts,+
approaches zero from above for λ→ ∞. 2

Combining the statement of Corollary 5.7 with the observation that the condition x∗ < 0 is equiv-
alent with ν2Dp(u∗) < 0 (combining the definition p∗ = +1

2ν2Dp(u∗) with with Lemma 2.2), we see
that the homoclinic pulse may only be stable when ν2Dp(u∗) > 0. This observation can be used to
obtain another instability criterion:

Lemma 5.12 Assume ν2Dp(u∗) > 0, and let R be defined by

R = µu∗ − ν1F1(u∗; 0)−
1

4
ν22Dp(u∗)

d

du

∣

∣

∣

∣

u=u∗

Dp(u). (5.17)

If R > 0, the homoclinic pulse Γh is unstable.

Since R is directly related to the dervative of (2.16) with respect to u (see Corollary 2.3 and Lemma
5.9), it can be interpreted geometrically in the context of the existence problem as the relative slope
of To with respect to W u

s ((0, 0)) at their intersection (u∗, p∗). In Figure 8, we have indicated the
signs of R related to the three possible homoclinic pulses associated to the configuration depicted
in Figure 2. Lemma 5.12 directly yields the instability of the first and third intersection.

Proof. Since Lemma 5.11 ensures that the pulse is unstable when ν2T > 0, we assume ν2T < 0

without loss of generality. Using Lemma 5.9, we see that ts,+(0) =
1

2
√
µ
ν2Dp(u∗)

u2
s,∞

R, so sgn (ts,+(0)) =

sgn(R) since ν2Dp(u∗) > 0. Since ν2T < 0, we can use Lemma 5.1 to conclude that ts,+ → −∞ as
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Figure 8: The coefficient R (5.17) interpreted geometrically as the relative slope of To with respect
to Wu

s ((0, 0)) at their intersection point. Only the homoclinic pulse associated to the second
intersection can be stable (Lemma 5.12).
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(a)
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R > 0

Λ

ts,+

(b)

Figure 9: An illustration of the proof of Lemma 5.11 (9a) and Lemma 5.12 (9b). The (singular)
behaviour of ts,+ near λ = λf,0 is determined by the sign of ν2T (Lemma 5.1). In (a), this leads to
at least one root of ts,+ to the right of λf,0 > 0 since ts,+ ; e−2y∗λ as λ → ∞. In (b), ts,+ has to
cross the horizontal axis in the interval λ ∈ (0, λf,0) at least once if R > 0.

λ ↑ λf,0. If R > 0, i.e. ts,+(0) > 0, it follows that there is a λ0 ∈ (0, λf,0) for which ts,+(λ0) = 0
since ts,+(λ) is continuous for λ ∈ [0, λf,0). Since λ0 > 0 is a positive zero of ts,+(λ), the homoclinic
pulse Γh is unstable. 2

We refer to Figure 9 for an illustration of the necessary existence of unstable eigenvalues in the
case ν2T > 0 (Lemma 5.11) and the case R > 0, ν2T < 0 (Lemma 5.12). Note that R < 0 for the
only existing pulse in the explicit model (1.2), see Figure 2.3 (a) in [38].
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Combining Corollary 5.7, Lemma 5.11 and Lemma 5.12, we may conclude:

Theorem 5.13 Let Γh be a homoclinic pulse whose existence is established by Theorem 2.1. Γh

can only be stable if ν2Dp(u∗) > 0, ν2T < 0 and R < 0, where Dp(u∗), T and R are explicitly
computable expressions given in (2.9), (5.2) and (5.17).

Finally, we formulate another instability result that is again based on the fact that we know ts,+
has a pole at λ = λf,0.

Lemma 5.14 Assume ν2 6= 0 and B−(λf,0) 6= 0. Let S be defined by

S =
2

ν2

B′
−(λf,0)

B−(λf,0)
+

∫ ∞

−∞

∂F2

∂U
(u∗, vf,h(ξ;u∗))dξ. (5.18)

If |S| is large enough, then ts,+(λ) has a zero near λf,0, rendering the homoclinic pulse unstable.

Proof. Take the interval I(λf,0, δ) to be a (symmetric) δ-neighbourhood of λf,0 in R with 0 < δ ≪ 1
small enough. We can rewrite the equation ts,+(λ) = 0 using (4.9) as

∫ ∞

−∞

∂F2

∂V
(u∗, vf,h(ξ;u∗)) vin(ξ)dξ = − 2

ν2

B′
−

B−
−
∫ ∞

−∞

∂F2

∂U
(u∗, vf,h(ξ;u∗))dξ (5.19)

From Corollary 3.6 we know that the lefthand side of (5.19) behaves as 1
λ−λf,0

in I(λf,0, δ), while

the righthand side of (5.19), given by S to leading order in δ, is continuous –and to leading order
constant– in λ on the same interval. Therefore, a solution to (5.19) in the interval I(λf,0, δ) can be
found if |S| is large enough; see also Figure 10. 2

This Lemma can be used to clarify the scaling of the F2 term in (1.1) / (1.7), as argued in the
introductory section 1:

Corollary 5.15 When ν2 is small enough, in particular when ν2 = O(ε), the homoclinic pulse is
unstable.

6 Discussion

The existence and stability theory for localised homoclinic pulses in the general setting of equa-
tion (1.1) presented in this paper can be seen as the first fundamental step in the analysis of the
dynamics of interacting localised structures. Based on this work, some next steps can now be
taken. Several of these steps have already been made in the context of GS/GM-type models – see
[2, 8, 9, 18, 22, 23, 24, 30, 33, 41] and the references therein. The present paper and its companion
[38] show that there will be fundamental analytical challenges in further developing the theory in
the general setting of (1.1). Moreover, it is clear that the ‘slow nonlinearity’ of (1.1) will generate
pulse dynamics that is much richer than that of ‘slowly linear’ models – see Remark 1.1 for the
case of one localised homoclinic pulse.

38



Λ f ,0

S

Figure 10: The statement of Lemma 5.14 graphically explained. The lefthand side of (5.19), which
is singular at λ = λf,0, is indicated in blue, the righthand side of (5.19) is indicated in red and its
approximation S (5.18) by the dashed line.

A first next step –one that in fact largely inspired the present work– is the stability analysis
of localised spatially periodic patterns to systems of type (1.1) on bounded and/or unbounded
domains. Based on [30], it was found in the recent work [9] that the nature of the destabilization
of spatially periodic multi-pulse patterns with long wavelength is quite complex. It is shown in
[9] in the context of GM-type models that such patterns can be destabilized by two distinct types
of Hopf bifurcations: one in which the destabilization makes the pulses of the periodic pattern
oscillate exactly in phase with their neighbouring pulses, and one in which each destabilized pulse
starts to oscillate exactly out of phase with its neighbours. Moreover, on the unbounded domain
x ∈ R, the character of the destabilization alternates countably many times between these two
types of Hopf bifurcation as the wavelength of the underlying pattern grows, i.e. as the spatially
periodic pattern approaches the homoclinic limit. This so-called ‘Hopf dance’ has also been found
numerically by AUTO-simulations in generalized Gray-Scott models – models that even include
nonlinear diffusion in the slow U -component [9, 35]. The analysis of [9] clearly shows that the Hopf
dance, and especially the associated higher order ‘belly dance’, has its origins in the ‘slowly linear’
character of GM/GS-type models. It can be expected that the destabilization of long wavelength
periodic patterns in system (1.1) has an even richer structure. This is the subject of work in progress.

Already in the case of GS/GM-type models, interacting pulses may exhibit complicated, even
chaotic, behaviour [28, 29]. However, in the parameter regimes in which the pulse dynamics can
be studied in full analytical detail –i.e. the regime in which pulse self-replication does not occur–
the pulse interactions are of a much more simple nature, see [2, 8, 22, 23, 24, 33] and the references
therein. Nevertheless, the semi-strong pulse dynamics exhibited by GS/GM-type models are much
richer than in the weakly interacting case. Weak pulse interactions are only driven by exponentially
small tail interactions [10, 31, 32]. The semi-strong GS/GM-type dynamics are largely determined
by the slow U -component that does not approach its background state in between the fast V -pulses.
However, in the GS/GM-type models studied in the literature, the slow U -dynamics are linear, and
–exactly as in the stability analysis for homoclinic pulses– this linearity plays a crucial role in the
analysis. In the general system (1.1), also the slow U -dynamics between localised V -pulses will be
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nonlinear. In combination with the observations of [38] –especially the possibility of stably oscil-
lating pulses (Remark 1.1)– this implies that even in the semi-strong regime, the pulse dynamics
generated by systems of the type (1.1) will be much more rich and complex than encountered so
far in the literature.
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