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Abstract

Deep Learning has achieved remarkable success with Super-
vised Learning. Nearly all of these successes require very
large manually annotated datasets. Data augmentation has
enabled Supervised Learning with less labeled data, while
avoiding the pitfalls of overfitting. However, Supervised
Learning still fails to be Robust, making different predictions
for original and augmented data points. We study the addition
of a Consistency Loss between representations of original and
augmented data points. Although this offers additional struc-
ture for invariance to augmentation, it may fall into the trap
of representation collapse. Representation collapse describes
the solution of mapping every input to a constant output, thus
cheating to solve the consistency task. Many techniques have
been developed to avoid representation collapse such as stop-
ping gradients, entropy penalties, and applying the Consis-
tency Loss at intermediate layers. We provide an analysis
of these techniques in interaction with Supervised Learning
for the CIFAR-10 image classification dataset. Our consis-
tency learning models achieve a 1.7% absolute improvement
on the CIFAR-10 original test set over the supervised base-
line. More interestingly, we are able to dramatically reduce
our proposed Distributional Distance metric with the Con-
sistency Loss. Distributional Distance provides a more fine-
grained analysis of the invariance to corrupted images. Read-
ers will understand the practice of adding a Consistency Loss
to improve Robustness in Deep Learning.

Introduction
Data Augmentation has primarily been utilized to prevent
overfitting when training Deep Neural Networks in Super-
vised Learning (Shorten and Khoshgoftaar 2019, Shorten
et al. 2021, Cubuk et al. 2020). Modern Deep Neural Net-
works typically contain between 50 million and 5 billion
parameters (Kaplan et al. 2020). These highly overparame-
terized models rely on large datasets to learn from. Without
large datasets, they will learn functions with very high vari-
ance that do not generalize from the training set to unseen
test points. Data Augmentation has been used to regularize
the size of the training set such as to avoid learning spuri-
ous correlations between inputs and their labels (Geirhos et
al. 2020). Data Augmentation commonly operates by con-
structing artificial points (x’, y) from original (x,y) points.
Here the x’ denotes a transformation of the original x. The
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key in this formulation is that the augmented and original
example share the same annotated y label.

Data Augmentation is one of the best strategies to im-
prove the generalization of Deep Neural Networks. The
standard Data Augmentation algorithm is to append the ar-
tificial examples to the original dataset. The artificial exam-
ples update the network with the same learning rule as the
original data. We explore the use of a Consistency Loss be-
tween the artificial and original examples. The added loss
provides more guidance for training Deep Neural Networks,
particularly emphasizing invariance to label-preserving cor-
ruptions. Invariance describes making identical predictions
of semantically similar inputs. Rather than solely looking at
improvements on the original test set and preventing over-
fitting, we focus on achieving invariance to corruptions used
in Data Augmentation.

Robustness is another term used in the literature to char-
acterize invariance to corruptions (Hendrycks and Dietterich
2019). Robustness covers a wide range of tests based on how
the corruption is sampled. We study the relatively simple
test of using a label-preserving transformation to corrupt an
original test set. For future work, Robustness may include
adversarial examples in which the corruption is optimized
with a gradient ascent algorithm (Hendrycks and Dietterich
2019, Dong et al. 2020). In the larger picture, Robustness
also covers Distribution Shift. Distribution Shift is the phe-
nomenon in which the test set is sampled from a different
data distribution than the training set. Koh et al. collect sev-
eral examples of real-world distribution shifts in the WILDS
benchmark (Koh et al. 2021). These shifts range from deal-
ing with a shift in lighting conditions across hospitals (Bandi
et al. 2018), to novel locations for wildlife monitoring cam-
eras (Beery et al. 2020), and many more. Distribution Shift
may also include Domain Generalization, such as sentiment
analysis trained with IMDB movie reviews and tested on
Amazon product reviews (Ni et al. 2019), or image classi-
fication trained with sketch drawings and tested on photore-
alistic images (Peng et al. 2019).

Training Deep Neural Networks with an added Consis-
tency Loss has seen a surge in interest. This has mostly been
in application to Unsupervised Learning. In order to avoid
collecting and annotating new (x,y) pairs for Supervised
Learning, researchers have instead relied on Data Augmen-
tation. As mentioned previously, Data Augmentation can



create several (x’,y) points from an original (x,y) annotation.
In Unsupervised Learning, there are no ground-truth y anno-
tations. However, Data Augmentation enables supervision
based on the criteria that an original example and its derived
augmented sample are semantically equivalent. For exam-
ple, take an unlabeled image that would be annotated as a
“dog” if the manual labor to do so was available. This image
would still be a “dog” after being rotated 10 degrees or hori-
zontally flipped. We note that this notion of semantic equiv-
alence may require more care for different downstream ap-
plications. For example, downstream Computer Vision tasks
such as bounding box detection (Carion et al. 2020) or key-
point estimation (Zheng et al. 2021), require more care in
determining label equivalence post-augmentation, compared
to image classification, which is the focus of this paper.

Most Contrastive Self-Supervised Learning algorithms
additionally use semantic dissimilarity in addition to sim-
ilarity comparisons. This is added to prevent representation
collapse. Representation collapse describes the phenomenon
where the model maps every input to a constant output.
This trivial solution solves the consistency task, although
the learned data representation is useless. Contrastive Self-
Supervised Learning algorithms typically avoid representa-
tion collapse by using large negative batches to normalize
the Consistency Loss (Chen et al. 2020, He et al. 2020).

We look to other solutions to avoid representation col-
lapse. Large batch sizes limit the size and training time of
our models. Firstly, we find that the added Supervised Loss
term is strong enough to avoid collapse, depending on the al-
pha weighting the two loss functions. Secondly, we explore
dividing the Supervised and Consistency Losses to operate
at logit and vector representation levels, respectively. The
vector consistency model achieves better accuracy on the
original CIFAR-10 test set, although the logit consistency
model is better with respect to our Distributional Distance
score. Finally, we preview several modifications we intend
to build on in future work. These include stopping gradients,
entropy regularization, and multi-stage, rather than multi-
task, learning.

Our primary contributions are as follows:

• We provide empirical results of an added Consistency
Loss with Supervised Learning for CIFAR-10 image clas-
sification.

• From these results, we draw novel conclusions about the
sensitivity of a multi-task loss weighting, vector similarity
scoring, gradient stopping, and entropy regularization.

• We propose a novel Distributional Distance metric as a
proxy for invariance in addition to corrupted test set accu-
racy.

Related Work
Data Augmentation
Our work is primarily related to Data Augmentation. Data
Augmentation has been a very useful technique to prevent
overfitting (Krizhevsky et al. 2012), and is increasingly be-
ing used in learning without manual labeling (Chen et al.
2020, He et al. 2020). Our work is similar to research in

controlling the application of Data Augmentation. Cubuk et
al. pioneered this work with AutoAugment, optimizing hy-
perparameters with respect to Data Augmentation through
a controller trained with Reinforcement Learning (Cubuk
et al. 2019). Cubuk et al. further simplified the problem of
Augmentation optimization with RandAugment (Cubuk et
al. 2019), which we use heavily in our experiments.

Contrastive Learning
Our work is also highly related to Contrastive Learning.
Contrastive Learning has been especially useful in Unsuper-
vised Learning, such as Unsupervised Data Augmentation
(Xie et al. 2019), as well as Self-Supervised Learning, such
as SimCLR (Chen et al. 2020) and MoCo (He et al. 2020).
Our work is more closely related to Supervised Contrastive
Learning from Khosla et al. (Khosla et al. 2020). These au-
thors are looking to merge the information in manual label-
ing with contrastive loss functions. Differently from Isola et
al., we separate the loss functions into a multi-task learning
framework and do not use negative regularization.

Robustness
Consistency Learning with Augmented Data is designed to
improve Robustness in Deep Learning. Robustness is one of
the largest outstanding limitations of Deep Learning and has
been covered by many works. We were particularly inspired
by the findings of Hendrycks and Dietterich (Hendrycks
and Dietterich 2019), showing that not only are Deep Neu-
ral Networks vulnerable to adversarial attacks, but common
corruptions as well. Our work is related to approaches such
as AugMix (Hendrycks et al. 2020), AugMax (Wang et al.
2021), and DAIR (Huang et al. 2021) that use Data Aug-
mentation to achieve more robust Deep Learning models.

Methodology
The primary objective of these experiments is to see the
improvement of Consistency Learning with Data Augmen-
tation. More particularly, we study performance on im-
age classification. Image classification is a common task in
Computer Vision in which tensor representations of images
made up of RGB pixel matrices are assigned categorical
class labels. We experiment with the CIFAR-10 academic
benchmark for image classification (Krizhevsky 2009).

In the following equations, we pass predictions into a KL-
divergence loss function, abbreviated as KL. This is a com-
mon technique to measure the distance between probability
distributions, such as logit representations of image labels.
We subscript the predicted ys to denote how they have been
augmented. In this case, we only subscript with RandAug
(Cubuk et al. 2019), but we leave this notation for the gener-
ality of targeting generalization to a specific augmented dis-
tribution. For example, we may want to compare the consis-
tency to Rotation-augmented images in future work, or par-
ticular domains for achieving Domain Generalization. Our
predicted ys without any subscript denotes that the input im-
age has not been augmented. Equation 1 illustrates a stan-
dard Supervised Learning loss function. Equation 2 illus-
trates the added Consistency Loss between original and aug-



Figure 1: Illustration of the Consistency Loss framework we explore in this study. Section (a) visualizes the RandAugment
transformation of an original image. Section (b) denotes the forward pass of a Deep Neural Network. In our experiments, we
mostly use the EfficientNetB7 (Tan and Le 2019) architecture to process images. The representation from EfficientNetB7 is then
passed through 3 fully connected layers. Section (c) references the logit representation of a predicted image. The argmax of this
representation shown in Section (c) is used to determine the prediction, which is denoted in Section (b). Section (d) references
an intermediate vector representation from the Neural Network. We explore an added Consistency Loss in representations (c)
and (d) in our experiments.

mented images. Equation 3 uses the bar notation to symbol-
ize consistency on vector representations, rather than logit
outputs. Equation 4 introduces the [SG], stop-gradient, op-
erator motivated by avoiding representation collapse.

Loss = KL(ŷRandAug, y) (1)

Loss = KL(ŷRandAug, y) + α ∗KL(ŷ, ŷRandAug) (2)

Loss = KL(ŷRandAug, y) + α ∗KL(y, yRandAug) (3)

Loss = KL(ŷRandAug, y) + α ∗KL(ŷ, ŷRandAug[SG])
(4)

Distributional Distance
We propose a novel contribution of using Distributional Dis-
tances to measure invariance to augmentation. This metric
can be generalized to arbitrary notions of semantic equiva-
lence. Distributional Distance is calculated by vectorizing
the entire dataset and then averaging the vector distances
produced by the compared models. Vectorizing the dataset
refers to iterating through each instance and running a for-
ward pass to compress the high-dimensional inputs into
intermediate vector representations. These vectors can be
stored on the disk for comparison, or distance can be com-
puted online to save memory. Intermediate vector represen-
tations produced by Deep Neural Networks are illustrated in

Figure 1(d). We use L1 distance in our experiments for the
sake of simplicity and leave angular, cosine, or hamming
vector distances for future work. The objective of comput-
ing Distributional Distance is to drill deeper into the data
representation, rather than just the final prediction. We use
the DD(A, B) notion to symbolize the Distributional Dis-
tance of A and B. Distributional Distance is a symmetric
metric, meaning that DD(A, B) is equivalent to DD(B, A).
In our experiments, we compute Distributional Distance at
the logit level.

Our models are explicitly trained to minimize the Dis-
tributional Distance between the original CIFAR-10 data
and the RandAugment-transformed CIFAR-10 data. We ad-
ditionally compute the distance to a Rotate-transformed
CIFAR-10 set for the sake of comparison. Ideally, learning
invariance to RandAugment should generalize to Rotation
and other augmentations. However, we do not achieve that
goal with our Consistency Loss. We additionally report the
Supervised test accuracy as another proxy for performance,
although the emphasis of this paper is Robustness and learn-
ing to be consistent with label-preserving augmentations.

Experimental Results
Consistency Learning
Our experiments begin with the training objectives shown
in Equations 1 and 2. This describes the Supervised Learn-
ing task, as well as a Multi-Task objective between label-
and consistency-based loss function. The results of this ex-
periment are shown in Table 1. The added Consistency Loss
improves the absolute performance on the original test set



Metric SL SL + CL
Original Train 98.9% 99.5%
Original Test 86.2% 86.9%

DD(Original, RandAugment) 0.341 0.275
DD(Original, Rotate) 0.834 0.818

DD(Rotate, RandAugment) 0.882 0.861
RandAugment Train 93.0% 97.9%
RandAugment Test 80.6% 83.1%

Rotate Train 61.3% 62.7%
Rotate Test 56.4% 57.1%

Table 1: The added Consistency Loss improves the Su-
pervised Learning baseline on every metric we consider
(highlighted in bold). We find a very encouraging reduc-
tion in Distributional Distance from the original data to
RandAugment-transformed data. Reducing this metric from
0.341 to 0.275 signals that the model makes much more sim-
ilar predictions on RandAugment-transformed images with
the added Consistency Loss.

by 0.7%. We find further improvements on the original test
set with the vector consistency described later on. More in-
terestingly, the Distributional Distance between the original
and RandAugment test sets are reduced from 0.341 to 0.275
(approximately a 20% relative decrease). This highlights the
effectiveness of using a Consistency Loss to achieve invari-
ant predictions with augmentations.

Weighting the Consistency Loss
We find hyperparameter sensitivity manifested in the Multi-
Task weighting in Equation 2. Table 2 illustrates the results
of monotonically decreasing alpha weightings from left to
right. We see a significant variance in the performance of
models depending on this hyperparameter. In future work,
we intend to explore a curriculum of scheduling this loss
weighting. For example, in the beginning of training the rep-
resentations are very different and the loss has a significantly
higher magnitude than the supervised update. However, as
training progresses this loss becomes much more manage-
able and the small loss weighting is limiting the contribution
of the loss towards convergence.

Components of Consistency Learning
In this section, we report our findings from exploring the
objectives shown in Equations 2 to 4. These objectives are
primarily designed to avoid representation collapse. We are
also motivated by the exploration of alternative construc-
tions of the Consistency Loss. We find interesting differ-
ences in the performance of vector versus logit consistency,
sensitivity to the loss weighting, and negative results with
stopping gradients.

Vector Consistency The following experiment applies the
Consistency Loss at the vector, rather than logit, representa-
tion. This is shown in Equation 3, using the bar versus hat
notation to communicate vector versus logit representations,

Metric 1e-2 5e-3 1e-3
Original Train 96.1% 99.5% 99.8%
Original Test 84.1% 86.9% 86.1%

DD(Original, RandAugment) 0.386 0.275 0.305
DD(Original, Rotate) 0.852 0.818 0.838

DD(Rotate, RandAugment) 0.902 0.861 0.89
RandAugment Train 87.9% 97.9% 96.8%
RandAugment Test 78.1% 83.1% 81.6%

Rotate Train 58.9% 62.7% 61.8%
Rotate Test 54.5% 57.1% 55.9%

Table 2: Bolded values denote superior metric results. Un-
fortunately, the added Consistency Loss shows a sensitivity
to the hyperparameter controlling the relative weighting of
the Consistency and Supervised Learning losses. This table
is showing a monotonically decreasing weighting from 0.01
(1e-2) to 0.001 (1e-3). We leave it to future work to explore
hyperparameter optimization and dynamic loss scaling.

respectively. The concept of intermediate vector representa-
tions is also illustrated in Figure 1(d). The vector representa-
tion has more dimensions of comparison, which makes the
Consistency Loss a more challenging task. The magnitude
of this loss is much larger than the Supervised Loss. To mit-
igate this, we weight this loss much smaller than the logit
Consistency Loss at 1e-5. Our best performing logit model
was weighted at 5e-3 (2x larger). The Supervised Loss is
only applied at the logit level, which has another interest-
ing property of dividing up the layers of supervision. Shown
in Table 3, we find an exciting improvement on the origi-
nal CIFAR-10 test set by applying the Consistency Loss at
the vector level. However, we do not improve the Distribu-
tional Distance over the logit consistency model. These re-
sults are biased by calculating Distributional Distance at the
logit level. We think it is best to achieve logit-level invari-
ance before drilling deeper into the representation such as
these intermediate vectors.

Multi-Stage Training We are mostly interested in apply-
ing the Consistency Loss in a Multi-Task framework with
the Supervised Loss. We also consider Multi-Stage train-
ing, also known as Fine-Tuning. Fine-Tuning is a very com-
mon procedure in Transfer Learning, in which a model is
first trained on one task and then trained on another task.
The key distinction is that the model only applies one of the
loss functions at a time. We continue training the Supervised
Learning model from Table 1 with 300 epochs of the added
Consistency Loss. As shown in Table 4, We see an improve-
ment over the Supervised Learning model, but this falls short
of the Multi-Task model.

Stopping Gradients As shown in Eq. 4, we stop the gra-
dients applied to one of the predictions in the Consistency
Loss. More particularly, we stop the gradients on the pre-
diction of the RandAugment-transformed image in the Con-
sistency Loss. This prediction still contributes to the overall
loss in the Supervised Learning update, but not the Consis-
tency Loss. By stopping the gradient in the second predic-



Metric Vector CL Logit CL
Original Train 99.4% 99.5%
Original Test 88.1% 86.9%

DD(Original, RandAugment) 0.304 0.275
DD(Original, Rotate) 0.803 0.818

DD(Rotate, RandAugment) 0.857 0.861
RandAugment Train 94.6% 97.9%
RandAugment Test 83.2% 83.1%

Rotate Train 63.2% 62.7%
Rotate Test 59.2% 57.1%

Table 3: Comparison of applying the Consistency Loss at
the vector versus logit representation. We find promising re-
sults applying the loss at the vector representation. Not sur-
prisingly, the logit model is better at Distributional Distance
calculated at the logit level. This may be an important detail
depending on the downstream application such as robustness
to logit-level predictions versus semantic similarity based on
vector distance.

Metric SL SL, then CL SL + CL
Original Train 98.9% 99.9% 99.5%
Original Test 86.2% 86.5% 86.9%

DD(Original, RandAugment) 0.341 0.307 0.275
DD(Original, Rotate) 0.834 0.839 0.818

DD(Rotate, RandAugment) 0.882 0.881 0.861
RandAugment Train 93.0% 97.8% 97.9%
RandAugment Test 80.6% 81.7% 83.1%

Rotate Train 61.3% 62.5% 62.7%
Rotate Test 56.4% 56.0% 57.1%

Table 4: Comparing Multi-Stage to Multi-Task Learning.
Multi-Stage Learning is a common protocol in Transfer
Learning. We might view Consistency Learning as a fine-
tuning step after Supervised Learning, however, we do not
find promising results with this technique.

Metric Stopped Gradients Baseline CL
Original Train 98.6% 99.5%
Original Test 85.6% 86.9%

DD(Original, RandAugment) 0.341 0.275
DD(Original, Rotate) 0.88 0.818

DD(Rotate, RandAugment) 0.927 0.861
RandAugment Train 92.1% 97.9%
RandAugment Test 81.1% 83.1%

Rotate Train 58.6% 62.7%
Rotate Test 53.9% 57.1%

Table 5: Results of stopping gradients in the second term of
the Consistency Loss. We do not find promising results for
this in our experiments.

tion, we are only updating the original representation to be
more like the frozen augmented counterpart. Allowing both
gradients may fall into optimization troubles as they simul-
taneously try to converge to each other. However, as shown
in Table 5, we do not find this to be the case. In our ex-
periments, stopping the gradients and using Eq. 4 does not
improve over using both gradients in Eq. 2. This is likely
due to the additional regularization of the Supervised Learn-
ing loss. In future work we intend to explore an exponential
moving average (EMA) of the RandAugment prediction, as
well as the use of a Teacher’s prediction for the RandAug-
ment counterpart in a Knowledge Distillation framework.

Conclusion
In conclusion, we have presented empirical results and con-
siderations for the use of Consistency Learning with aug-
mented data. This is a new way to utilize augmented data
in contrast to Supervised Learning updates which have the
same treatment for augmented and unaugmented data. We
have further proposed Distributional Distance as a strategy
to measure the invariance of Deep Neural Networks. Dis-
tributional Distance enables us to look beyond the test ac-
curacy or beyond similarly misclassified examples and see
exactly how far augmentations change data representations.
We have explored many additional techniques as well such
as the importance of the Multi-Task loss weighting, apply-
ing Consistency Learning to intermediate representations,
Multi-Stage versus Multi-Task Learning, and considerations
with entropy regularization. We hope that this work inspires
future interest in using Consistency Learning to achieve Ro-
bustness in Deep Learning.
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