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Abstract: In case of lightly loaded radial ball bearings, failure mechanisms other than fatigue such as smearing 

of raceways due to increased frictional torque and vibrations often prevail. Hence, attempts have been made 

herein for reducing the frictional torque and minimizing the vibrations of a radial deep groove ball bearing 

employing surface textures at the inner race. Nanosecond pulsed laser was used to create texture (involving 

micro-dimples having different dimple area density) on the inner race of test bearings. Using an in-house 

developed  test rig, frictional torque and vibrational parameters were measured at different speeds and light 

loads (i.e. in vicinity of 0.01C, where C is dynamic load capacity of radial ball bearing). Significant reduction in 

frictional torque and overall vibrations were found in the presence of micro-dimples on inner race at light loads 

irrespective of operating speeds. Even without satisfying the minimum load needed criteria for the satisfactory 

operation, substantial reduction in smearing marks was found on the races of textured ball bearings in 

comparison to conventional cases. 
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1  Introduction 

Grease lubricated deep groove ball bearings are widely 

employed in machines and mechanical systems in 

industries due to involved simplicity in lubrication. 

However, these bearings possess low inherent damping 

capacity due to poor retain-ability of grease/lubricant 

at the concentrated contacts of balls/races. This makes 

radial ball bearings energy inefficient and prone to 

vibrations. Figures 1(a) and 1(b) show the photographic 

views of an assembled radial ball bearing and its 

components, respectively. However, Figs. 1(c) to 1(f) 

illustrate the mechanism of grease removal from 

the track when a ball was moved on the inner race. 

This explanation demonstrates that how scarcity   

of grease prevails in practical situations resulting in 

starved lubricated bearings. Several authors have 

reported their studies involving the starved lubrication 

and have found adverse behaviours of it on bearings/ 

contacts [1–9]. In the past several decades, research 

groups globally have made attempts to improve the 

effective lubrication in the rolling bearings in spite of 

lubricant scarcity [10]. Various techniques such as 

new designs of cage, new materials of cage, surface 

coatings, and blending of nanoparticles/additives   

in the lubricants have been employed to improve  

the performances of rolling bearings and generic 

concentrated contacts [11–19]. 

In recent past years, surface textures involving certain 

type of patterning of nano/micro geometries have  
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emerged as a viable technology to improve the tribo- 

dynamic behaviors of lubricated generic concentrated 

contacts as well as contacts found in the machine 

elements [20–22]. Based on the numerical [23–32] and 

experimental [33–41] investigations on lubricated 

textured concentrated contacts under unidirectional 

motion, researchers have reported vital beneficial results 

in terms of reduction in friction coefficient/frictional 

torque and decrease in temperature rise. Moreover, 

substantial reduction in the vibration and noise have 

also been reported at the lubricated textured contacts 

for wide range of operating parameters [20, 23]. It has 

been established that texture attributes such as shape, 

size, and orientation of tiny geometries play significant 

role in the effective lubrication at the concentrated 

contacts. Micro-features/dimples of dimensions smaller 

than the Hertzian contact size have yielded better 

tribodynamic performances. Researchers have exper-

imentally investigated the role of surface textures on 

lubricated reciprocating/oscillating contacts. A decrease 

in the overall vibrations and reduction in friction 

coefficient have been reported at the lubricated textured 

concentrated contacts in comparison to conventional 

reciprocating/ oscillating contacts [42–45]. 

Effects of surface textures/dents on the fatigue life 

of heavily loaded concentrated contacts have been 

explored using numerical and experimental approaches 

[36, 46–53]. Broadly it has been concluded that enhan-

cement in fatigue life has occurred due to improved 

lubrication in the presence of oil filled tiny dimples 

present in surface textures. Presence of dimples/dents 

yielded longer pitting durability and prevented the 

scuffing at higher contact loads [48, 49]. Extended 

durations of experimental studies were conducted to 

explore the influence of surface textures on the fatigue 

life of hardened steel surfaces under heavily loaded 

rolling/sliding motions [36, 47, 50–53]. It has been 

observed that deep dents (greater than 20 μm depth) 

caused detrimental effects on fatigue life, whereas the 

presence of shallow dimples of depth < 1.0 μm have 

increased the fatigue life even at high loads [53].  

It is understood based on the information provided 

in the literature that the ball bearings must be operated 

with a requisite minimum load (> 0.02C, where C is 

dynamic load capacity corresponding to each bearing) 

in order to achieve the satisfactory operation. If the 

requisite minimum load is not applied then the 

tribological and dynamic performances of the rolling 

bearings deteriorate due to the skidding of balls at 

the raceways that yield high frictional torque and large 

magnitude vibrations. Moreover, it is also found based 

on the literature review that certain surface textures 

are beneficial in terms of reducing the friction and 

vibration at lubricated concentrated contacts. Thus, 

 

Fig. 1 Photographic views of a radial deep groove ball bearing and pushing aside of grease employed in lubrication. (a) Assembled

ball bearing; (b) components of ball bearing; (c) grease filled track on inner raceway; (d) one ball positioned on track at inner raceway; 

(e) removal of grease from raceway when a ball moves; (f) track view of inner raceway after few passes of a ball. 
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idea came in mind of authors to explore the effect of 

surface texture on frictional, vibrational, and smearing 

marks (on raceways) of a radial deep groove ball 

bearing operating at the loads in the vicinity to the 

requisite minimum load. Hence, objective of this work 

was set to experimentally explore the effect of a textured 

ball bearing (with textured inner race) on frictional, 

vibrational, and smearing marks (on raceways) in 

comparison to conventional (without textured inner 

races) bearing at light loaded conditions. The radial 

deep groove ball bearing of designation SKF-BB1B 

420206 was employed in this experimental study 

due to their ease (without inception of any defects)  

in component’s disassembly and assembly for/after 

texturing over the inner race.  

2 Experimental methods and materials 

2.1 Details of sample ball bearing and texturing 

SKF make radial deep groove ball bearings (BB1B 

420206) were employed in this study, whose inner race, 

outer race, and rolling elements (balls) were made of 

bearing steel (EN31) while the cage was made of 

polyamide material. All the sample ball bearings were 

procured from the same manufacturing batch. This 

particular bearing was chosen due to the associated 

ease of disassembly/ reassembly of its components 

without causing any surface damages. The polyamide 

cage was designed with a snap-type fit that helped in 

the disassembly and reassembly of bearing components 

as photographically illustrated in Figs. 2(a)–2(p). The 

surface of the inner-race was micro-textured using  

a nanosecond pulsed fiber laser that delivered up to 

50 W of average laser power at 1,064 nm wavelength, 

with a repetition rate ranging between 25 to 500 kHz. 

Semi-spherical micro-geometries/dimples were textured 

on the inner race of the bearings with an average 

diameter of dimples ranging in 28 ± 4 μm. The patterns 

of the micro-dimples created on the inner race of test 

bearings have been schematically illustrated in Fig. 3. 

The textures having dimple area densities (DAD) of 

5%, 15%, and 25% were manufactured for explorations. 

The texture area density is the ratio of the surface area 

ablated by laser divided by total area i.e. [(number of 

dimples x area of each dimple) / total area]. The total  

 
Fig. 2 Photographic illustration of disassembly (a) to (h) and reassembly (i) to (p) of a test ball bearing. 
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dimples are evenly distributed on the race surface. The 

optimized laser parameters employed for the surface 

texturing and the other related details are listed in 

Table 1. The scanning electron microscope (SEM) images 

of textured and lapped-textured inner races were 

captured as shown in Figs. 4(a)–4(c) corresponding to 

5%, 15%, and 25% DAD. It is worth noting here that 

the surface roughness (Ra) of conventional (fresh 

untextured pieces) and textured (pieces after lapping) 

inner races of test bearings were measured and found 

in the range of 0.08–0.09 μm. 

2.2 Test rig and experimental aspects 

A test rig was designed and developed for conducting 

the experiments on test bearings (radial deep groove 

ball bearings). Frictional torque and vibrational 

amplitude parameters were measured in-situ using 

an S-type load cell and two proximity probes, 

respectively. Figures 5(a) and 5(b) show a CAD model  

Table 1 Laser parameters and micro-texture details. 

Type of laser Fiber laser 

Mode of operation Pulsed 

Wavelength (nm) 1,064 

Frequency (kHz) 150 

Average power (W) 17.5 

Marking speed (mm/s) 100 

Pulse width (ns) 2 

Fluence (J/cm2) 16.5 

Dimple depth (µm) 15 ± 3 

Dimple diameter (µm) 28 ± 4 

Dimple area density (%) 5, 15, 25 
 

 

Fig. 4 SEM images of inner races after micro-texturing and after 

lapping. (a) With 5% dimple area density; (b) with 15% dimple 

area density; and (c) with 25% dimple area density. 

and a photographic view of the test rig, respectively. 

The DC electric motor and test bearing mounted shafts 

were connected using a jaw coupling to minimize the 

transmission of vibrations and heat flow towards the 

test bearing. The rotational speed was controlled by  

a DC motor controller. The inner races of the test 

bearings were press-fitted to the shaft while the outer 

 

Fig. 3 Schematic illustration of textured surface and micro-dimple patterns on inner raceways. (a) With 5% dimple area density; 

(b) with 15% dimple area density; and (c) with 25% dimple area density. 
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races were held stationary in a floating housing. The 

bearing housing rotation was arrested using the 

S-type load cell for measuring the frictional torque.  

The vibrational displacements during rotation were 

measured in vertical and horizontal directions using 

two proximity sensors. The load cell and proximity 

sensors were calibrated before each set of experiments. 

The output from the proximity sensors were in mV. 

Load cell and proximity sensors were connected to  

a data acquisition system (DAQ) as can be seen in  

Fig. 5(c). A laptop connected to the DAQ was used for 

recording the data during the experiments. The raw 

data of vibrational amplitude as a function of time is 

obtained from the sensor. The displacement from 

voltage output was mapped to enable the measurement 

of vibrational amplitude. Fast Fourier transform (FFT) 

was applied to the collected vibrational data to evaluate 

the vibrational magnitudes as function of frequency. 

Commercially available general-purpose grease was 

used for lubrication of test bearings. The properties 

of the grease are listed in Table 2. Steady state (i.e. 

constant temperature at outer race) has been arrived 

for all sets of operating conditions before recording 

the results. Depending on the values of input data, 

steady state temperature reached after lapse of time 

varying in the range of 30 to 60 min. Based on this 

observation, it was decided to conduct each experiment 

for duration of 60 min. The operating parameters  

are also listed in Table 3. Reaching of steady state 

temperature has been shown in Figs. 6(a) and 6(b) for 

the cases of bearings having conventional and textured 

inner races, respectively, at a set of operating parameter.  

Table 2 Properties of grease. 

Soap Lithium 

Base oil Mineral oil 

Base oil viscosity at 40 °C (mm2/s) 120–130 

Base oil viscosity at 100 °C (mm2/s)  12–13 

National lubricating grease institute (NLGI) grade 3 

Penetrations number (10-1 mm) 220–280 

Table 3 Operating parameters. 

Operating parameter Value 

Load (N) 20, 40, 60 

Hertzian pressure PH (GPa) 1.2, 1.6, 1.9 

Speed (rpm) 500; 800; 1,100; 1,400

Speed (m/s) 1.2, 2.0, 2.5, 3.4 
 

 

Fig. 5 Details of experimental set-up. (a) 3D CAD model of test rig; (b) photographic view (view-1) of test rig with names of components; 

and (c) data acquisition system (DAS) with photographic view (view-2) of test rig with names of components. 



1754 Friction 9(6): 1749–1765 (2021) 

 | https://mc03.manuscriptcentral.com/friction 

 

 

Fig. 6 Temperature variation at outer race of two test bearings 

with time while achieving the steady state condition. (a) Conventional 

inner race and (b) textured inner race. 

It is worth reporting here that before start of each 

experiment, the components and test bearings were 

ultrasonically cleaned using propanol followed by 

drying at room temperature. Well before start of 

experiment, each test bearing was lubricated using 2 g 

of grease. Thereafter, the frictional torque and vibrations 

were recorded for analysis/interpretation after reaching 

to steady state condition of bearing (i.e. outer race 

reaching to a constant temperature). 

3 Results and discussion 

3.1 Frictional torque 

The measured values of the frictional torque with 

conventional (without textured inner race) and textured 

bearings (with textured inner race having different 

DAD) at different operating parameters are shown in 

Fig. 7. The substantial reduction in the frictional torque 

can be observed with textured bearings as compared 

to conventional. The textured bearings with 5% DAD 

have yielded reduction in frictional torque in the 

range of 5%–35% in comparison to conventional case. 

However with 15% DAD, the minimum and the 

maximum reductions in the frictional torque values 

with respect to the conventional are found around 

13% and 47%, respectively. At higher DAD (25%), the 

minimum and maximum frictional torques reduction 

have been recorded around 6% and 40%, respectively. 

In light of these observations, the textured bearing 

having 15% DAD is found best performing from the 

reduction in frictional torque perspective. For exploring 

the reasons behind this performance improvement, 

after finishing the experiments at a set of operating 

parameter (Load = 60 N, Speed = 1,400 rpm), the SEM 

investigation of textured and conventional inner races 

were performed. The captured SEM micro-images 

have been shown in Figs. 8(a)–8(d). In these images, 

it can be seen that inner races of conventional 

(Fig. 8(a)) and textured (with 25% DAD, Fig. 8(d)) 

bearings got severely damaged than the cases of 5% 

(Fig. 8(b)) and 15% (Fig. 8(c)) DADs. This has been 

 

Fig. 7 Frictional torque of conventional and textured inner races test ball bearings at different operating parameters. 
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interpreted as more physical contacts (asperity-to- 

asperity contacts) have taken place between balls 

and inner races in the cases of conventional and 25% 

DAD. Large number of asperity-to-asperity contacts 

yielded deep smearing/scratch marks (Fig. 8(a)) on 

conventional race surface resulting in high frictional 

torque. However in case of 25% DAD (Fig. 8(d)), 

pitting marks and filling/damage of dimples on inner 

race are visible. This indicates that it has happened 

due to increase in contact stress and deterioration in 

effective lubrication at ball/race interface. Increase in 

stress at the contact has happened due to removal  

of relatively more surface area in case of 25% DAD. 

Moreover, it is understood that best results with 

DAD of 15% has occurred due to improvement in the 

lubrication mechanisms as explained in Figs. 9(a)–9(c). 

In presence of texture on inner race, mainly three 

modes of lubrication at the interfaces of balls/race 

were expected as schematically explained in Fig. 9. 

The pair of dimpled surface (inner race) and running 

counter surface (balls) might have formed innumerable 

micro-fluid film bearings (Fig. 9(a)). The pressure 

generated at innumerable locations in tiny fluid film 

bearings might have supported the loaded body over 

the thin film. In this way, the physical contacts between 

the balls and textured race might have got avoided (or 

reduced) resulting in reduction of frictional torque. 

The dimples also might have acted as innumerable 

micro-oil reservoirs and debris/contaminants trappers, 

which must have provided the oil for smearing at the 

interface in case of severe mixed lubrication or/and in 

presence of scarcity of oil. These mechanisms have 

been schematically explained in Figs. 9(b) and 9(c). 

Cumulatively, the micro-textured surfaces have played 

vital role in improving the performance behaviors of 

the ball bearings.  

The comparison of SEM micrographs in Figs. 10(a)  

 

Fig. 9 Mechanisms responsible for lubrication improvement in 

presence of texture. 

and 10(b) reveals presence of severe scratches on the 

balls of conventional bearing as compared to the 

textured case. This observation also indirectly indicates 

that film thickness of lubricating oil has improved in 

presence of texture, which caused lesser asperity to 

asperity interactions, thus, less scratch marks on the 

balls of textured bearing. It is worth noting here that 

the texture has resulted in better retainability of oil at 

the inner race, which has improved the lubrication 

and accordingly enhancement in the performance 

behaviors as compared to conventional case. The 

retainability of lubricant at the textured inner race has 

also been observed based on the photographic evidence 

of inner race after conducting an experiment.  

Figures 11(a) and 11(b) show the photographic images 

of conventional and textured inner races, respectively. 

Figure 11(b) reveals better oil/grease retainability in 

presence of texture. The oil adherence on inner races 

 

Fig. 8 SEM images of inner races of conventional and textured inner races after the experiments (operating parameters: load = 60 N, 

speed = 1,400 rpm). 
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has also been ascertained in terms of the contact angle 

measured using the Goniometer. Figures 12(a) and 12(b) 

demonstrate the contact angles measured between 

oil (base oil of grease) droplet and races before and 

after the tests. In cases of textured race (Fig. 12(b)), 

contact angle has substantially been found less than 

conventional case. This also supports the better retain-

ability of lubricant at texture race. The transmission 

 

Fig. 10 SEM images of balls of test bearings (operating parameter: load = 60 N, speed = 1,400 rpm). 

 

Fig. 11 Photographic view of inner races after the experiment (load = 60 N, speed =1,400 rpm (3.4 m/s), DAD = 15%). (a) Visual of

inner race (conventional bearing) and (b) visual of textured inner race (textured bearing). 

 

Fig. 12 Contact angle between the oil droplet and inner race. (a) Conventional race and (b) textured race. 
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electron microscopy (TEM) images of fresh and used 

greases are shown in Figs. 13(a)–13(c). It can be seen 

in these figures that relatively less damage of grease’s 

soap fibers has taken place in presence of texture. This 

indicates increase in grease life with textured bearing. 

Moreover, the mechanical efficiency of the test bearings 

at a set of operating parameters was measured. It was 

found that the efficiency of conventional bearing varied 

in the range of 96% to 97% at the load of 60 N and 

speed of 1,400 rpm. However with textured bearing, 

the efficiency was measured always above 98%.  

3.2 Vibrations  

In order to compress the paper, this section presents 

only vertical vibration results for the cases of conven-

tional and textured ball bearings measured at different 

operating parameters. Based on the vibrational analysis 

in the frequency domain, the amplitudes of the 

vibrations obtained at combinations of operating 

parameters (loads and speeds) have been presented 

in Fig. 14. It can be observed in this figure that  

vibrations have substantially reduced in the presence 

of micro-textures on inner race of bearings. This 

finding indicates towards increase in the damping 

due to improved film formation at the interfaces of 

inner race and balls in case of textured bearing. It is 

worth mentioning here that all the vibration results 

presented in this section belong to the best performing 

textured test bearing i.e. with 15% DAD. The vibration 

responses of conventional and textured ball bearings 

at operating loads (20 N (1.2 GPa), 60 N (1.9 GPa)) and 

speed (500 rpm (1.2 m/s)) have been presented in time 

and frequency domains in Figs. 15 and 16, respectively. 

Overall reduction in the vibration amplitudes in the 

presence of textured inner race in comparison to 

conventional case can be seen in time domain in Fig. 15 

irrespective of load applied on the test bearings. 

However in the frequency domain in Fig. 16, about 

46% and 25% reductions in vibrational magnitude  

in the presence of texture are found at rotational 

frequency of 8.4 Hz and at the loads of 20 N (1.2 GPa) 

and 60 N (1.9 GPa), respectively. The results embodied 

 

Fig. 13 TEM images of micro-textured surfaces of inner races after the experiments (operating parameter: load = 60 N, speed = 

1,400 rpm). 

 

Fig. 14 Comparisons of vibration amplitudes at rotational frequencies for conventional and micro-textured races test bearings. 
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in Figs. 17 and 18 at relatively high speed (i.e. 1,100 rpm 

(2.5 m/s)) yield larger reduction in the overall vibrations 

with textured bearings. It is understood that this had 

occurred as a result of better lubricating film formation 

at high speed (1,100 rpm) as compared to low speed 

(500 rpm). The vibration amplitudes at different 

harmonics have also been summarized in Table 4 for 

the cases of conventional and textured bearings for  

 
Fig. 15 Comparisons of vibrations of conventional and micro-textured races ball bearings in time domain at two different loads and

500 rpm (1.2 m/s speed). 
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ease in comparison from readers’ perspective. Table 4 

indicates the reduction of vibrations even at the 

harmonics with textured bearings.  

4 Conclusions 

Based on the experimental tribo-dynamic investigations 

 

Fig. 16 Comparisons of vibrations of conventional and micro-textured races ball bearings in frequency domain at two different loads

and 500 rpm (1.2 m/s speed). 
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of conventional and textured ball bearings presented 

in this paper, the following conclusions have been 

drawn: 

1) Significant reduction (15% to 47%) in the frictional 

torque have been found with textured bearing in 

comparison to conventional case. 

2) Vibration amplitudes have reduced substantially 

in the range of 25% to 46% in the presence of texture 

 

Fig. 17 Comparisons of vibrations of conventional and micro-textured races ball bearings in time domain at two different loads and

1,100 rpm (2.5 m/s speed). 
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at the inner race of bearing.  

3) Dimple area density (DAD) played vital role in 

the performance of textured bearing.  Among three 

considered DAD cases, 15% DAD has yielded better 

tribo-dynamics. 

4) Better retainability of the oil (base oil of the grease) 

 

Fig. 18 Comparisons of vibrations of conventional and micro-textured races ball bearings in frequency domain at two different loads

and 1,100 rpm (2.5 m/s speed). 
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was found at textured inner race. 

5) TEM micro-image revealed less damage of the 

grease soap fibers with textured bearing as compared 

to conventional case.  
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Table 4 Summary of vibration magnitudes at different harmonics. 
 

Harmonic 1 Harmonic 2 Harmonic 3 

Bearing 
Load 
(N) 

Speed 
(m/s) Frequency 

(Hz) 
Displacement 

(mm) 
Frequency 

(Hz) 
Displacement 

(mm) 
Frequency 

(Hz) 
Displacement 

(mm) 

1.2 8.4 0.19 16.8 0.02 25.8 0.02 

2.0 13.4 0.19 26.8 0.03 40.0 0.01 

2.5 18.4 0.20 36.8 0.03 55.2 0.01 
20 

3.4 23.4 0.14 46.8 0.03 72.2 0.02 

1.2 8.4 0.18 16.6 0.02 25.0 0.01 

2.0 13.4 0.20 26.8 0.04 40.2 0.01 

2.5 18.4 0.20 36.6 0.02 55.0 0.01 
40 

3.4 23.4 0.13 47.0 0.02 72.4 0.02 

1.2 8.4 0.18 16.8 0.02 25.2 0.01 

2.0 13.4 0.16 26.6 0.04 40.0 0.03 

2.5 18.4 0.20 36.8 0.03 55.2 0.02 

Conventional  
(or un-textured 

bearing) 

60 

3.4 23.4 0.12 46.8 0.04 72.4 0.02 

1.2 8.4 0.12 16.8 0.02 25.6 0.01 

2.0 13.4 0.13 26.8 0.02 40.8 0.02 

2.5 18.4 0.12 36.8 0.02 56.2 0.02 
20 

3.4 23.4 0.11 46.2 0.02 70.8 0.01 

1.2 8.4 0.16 16.8 0.03 25.6 0.02 

2.0 13.4 0.12 26.8 0.03 40.2 0.01 

2.5 18.4 0.12 37.0 0.02 56.6 0.01 
40 

3.4 23.4 0.09 46.6 0.02 71.6 0.01 

1.2 8.4 0.14 16.8 0.03 25.6 0.02 

2.0 13.4 0.11 26.6 0.02 40.8 0.02 

2.5 18.4 0.16 36.8 0.03 55.0 0.01 

Micro-textured 
bearing with  
15% DAD 

60 

3.4 23.4 0.10 46.6 0.03 71.6 0.02 
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