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Abstract. Hypertope is a generalization of the concept of polytope, which in

turn generalizes the concept of a map and hypermap, to higher rank objects.
The regular hypertopes with spherical residues, which we call regular locally
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1. Introduction

Much of the recent work in the area of polytopes and hypertopes was inspired
by the influential paper [17] by Branko Grünbaum from, in which he defines the
concept of a polystroma (coming from a Greek word for a layer or stratum) which
generalizes the concept of a polytope by stripping it of its geometric properties
while retaining its combinatorial structure.

This concept, further developed and formalized in [13, 27], evolved through a
number of publications by various authors in the eighties and nineties to that what
was eventually named an abstract polytope. The comprehensive text [25] on the
subject by McMullen and Schulte was published in 2002.

Of particular interest are highly symmetric such objects, known as regular ab-
stract polytopes, which can be built from quotients of Coxeter groups with linear
diagrams satisfying a certain condition known as the intersection property. In [16],
Fernandes, Leemans and Weiss showed that it is natural to generalize this further,
using the concept of a thin residually connected incidence geometry, by allowing
objects that can be constructed from quotients of any Coxeter group. When the
groups have non-linear Coxeter diagrams additional conditions (specified in Sec-
tion 2) must be satisfied in order for such objects to have natural properties which
generalize the concepts of both polytope and hypermap. While regular hypermaps
had been thoroughly studied (starting with the seminal paper [10] by Corn and
Singerman) and much data, including the determination of all regular and chiral
hypermaps of small genus, is available in the literature (see for example [8]), very
little is known about their higher dimensional analogues, the hypertopes. With
this paper we hope to show how fundamental and how rich the theory of regular
hypertopes is.
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The structure of the paper is as follows. In Section 2 we give a brief overview
of the basic theory (more details can be found in recent paper [16] by the same
authors) and state some essential theorems that we will make use of in subsequent
sections. We introduce the concept of a locally spherical hypertope but will only
be interested in regular such objects in this paper. In Section 3 we give some
general results on quotients of Coxeter groups and show how they can be used to
construct regular locally spherical hypertopes. These hypertopes must be of either
spherical, euclidean, or hyperbolic type and are respectively covered in Sections 4,
5, and 6. In Section 4 we list all finite hypertopes of spherical type. In Section
5, we show that finite locally spherical hypertopes of euclidean type are toroids
and review the relevant literature for the types of toroidal hypertopes that have
already been classified, as well as for general results about normal subgroups of
euclidean Coxeter groups. In Section 6 we survey the literature on locally spherical
polytopes of hyperbolic type and provide some new examples of locally spherical
hypertopes which are proper in the sense that their Coxeter diagrams are not linear.

2. Preliminaries

The concept of a hypertope, introduced recently in [16], is a generalization of
an abstract polytope. There are different but equivalent ways to define (abstract)
polytopes, one of which being that its faces form a partially ordered set that is a
thin, residually connected geometry. This had been generalized in [16] to include
structures built from a set of (what we still call) faces that do not form a partially
ordered set.

We start with the definition of an incidence system Γ := (X, ∗, t, I) as a 4-tuple
having

• X as a set whose elements are called the elements, or faces, of Γ;
• I as a set whose elements are called the types of Γ;
• t : X → I as a type function, associating to each element x ∈ X of Γ a type
t(x) ∈ I;
• ∗ as a binary relation on X called incidence, that is reflexive, symmetric

and such that for all x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.

The incidence graph of Γ is the graph whose vertex set is X and where two vertices
are joined provided the corresponding elements of Γ are incident, omitting loops. A
flag is a set of pairwise incident elements of Γ. The type of a flag F is {t(x) : x ∈ F}
and the rank of F is |F |. An i-face is an element of type i and a chamber is a flag
of type I. An element x is incident to a flag F , and we write x ∗ F for that,
provided x is incident to all elements of F . An incidence system Γ is a geometry
or incidence geometry if every flag of Γ is contained in a chamber. The rank of Γ
is the cardinality of I. If Γ = (X, ∗, t, I) is an incidence geometry and F is a flag
of Γ, the residue of F in Γ is the incidence geometry ΓF := (XF , ∗F , tF , IF ) where
XF := {x ∈ X : x ∗ F, x 6∈ F}; IF := I \ t(F ); tF and ∗F are the restrictions of t
and ∗ to XF and IF .

An incidence system Γ is connected if its incidence graph is connected. It is
residually connected when each residue of rank at least two of Γ (including Γ itself)
has a connected incidence graph. It is called thin when every residue of rank one
of Γ contains exactly two elements. A hypertope is a thin, residually connected
geometry. Residues of hypertopes are hypertopes.
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We are particularly interested in the study of hypertopes having the highest
possible level of symmetry. We will need to consider a notion of automorphism
that allows permutation of types. Let Γ = (X, ∗, t, I) be an incidence system. An
automorphism of Γ is a permutation α of X such that

• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);
• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

The automorphism α induces a bijection on I. An automorphism α of Γ is called
type preserving when for each x ∈ X, t(α(x)) = t(x). The set of type-preserving
automorphisms of Γ is a group denoted by AutI(Γ). The set of automorphisms of
Γ is a group denoted by Aut(Γ).

A hypertope Γ is regular if AutI(Γ) acts regularly on the chambers (i.e. the
action is semi-regular and transitive).

The Coxeter diagram of a regular hypertope Γ = (X, ∗, t, I) is a graph whose
vertices are the elements of I and a pair of elements {i, j} are joined by an edge
with label k whenever the residue of type {i, j} is a k-gon with k > 2. Observe that
flag-transitive hypertopes with linear diagrams are precisely the regular abstract
polytopes as the linearity of diagram induces a partial order on the set of its faces.
We say that a flag-transitive hypertope is proper if it has a non-linear Coxeter
diagram. For the class of hypertopes, the Coxeter diagram coincides with the
Buekenhout diagram [4] for the diagram geometry defined by the hypertope.

A regular hypertope is irreducible if its Coxeter diagram is connected. Otherwise
it is called reducible.

Let I := {0, . . . , n − 1}. When C is a chamber of a thin geometry, we let Ci
denote the chamber i-adjacent to C, that is, the chamber that differs from C only
in its i-face. Given a regular hypertope Γ and a chamber C of Γ, for each i ∈ I let
ρi denote the automorphism mapping C to Ci. Then {ρ0, . . . , ρn−1} is a generating
set for AutI(Γ) and Gi = 〈ρj | j 6= i〉 is the stabilizer of the i-face of C. Moreover
(AutI(Γ), {ρ0, . . . , ρn−1}) is a C-group [16, Theorem 4.1], that is, {ρ0, . . . , ρn−1}
is a set of involutions generating AutI(Γ) and satisfying the following condition,
called the intersection property.

∀I, J ⊆ {0, . . . , n− 1}, 〈ρi | i ∈ I〉 ∩ 〈ρj | j ∈ J〉 = 〈ρk | k ∈ I ∩ J〉.

This property establishes that the group of type-preserving automorphisms of a
regular hypertope is a smooth quotient of a Coxeter group. The Coxeter diagram
of a C-group (G, {ρ0, . . . , ρn−1}) is a graph with n vertices corresponding to the
generators of G and with a k-edge between the vertices i and j whenever the order
of ρiρj is k and k > 2 (usually the label is omitted when k = 3).

From now on, we will omit the generators from the notation of a C-group and
simply denote it by G whenever from the context it is clear what the generating
set is.

The subgroups Gi , i ∈ {0, . . . , n− 1}, of the group 〈ρ0, . . . , ρn−1〉 generated by
involutions, are called the maximal parabolic subgroups of 〈ρ0, . . . , ρn−1〉. We denote
by Gi,j the subgroup of G generated by all the generators of G except ρi and ρj .
When all maximal parabolic subgroups, together with their respective generators,
are C-groups the following proposition gives the conditions on their intersections
for the group generated by all involutions to be a C-group.
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Proposition 2.1. [15, Proposition 6.1] Let G be a group generated by n involutions
ρ0, . . . , ρn−1. Suppose that Gi is a C-group for every i ∈ {0, . . . , n− 1}. Then G is
a C-group if and only if Gi ∩Gj = Gi,j for all 0 ≤ i, j ≤ n− 1.

The following proposition shows how, starting from a group G, and particu-
larly from a C-group, we can construct an incidence system whose type-preserving
automorphism group is G.

Proposition 2.2. (Tits, 1956) [29] Let n be a positive integer and I := {0, . . . , n−
1}. Let G be a group together with a family of subgroups (Gi)i∈I , X the set
consisting of all cosets Gig with g ∈ G and i ∈ I, and t : X → I defined by
t(Gig) = i. Define an incidence relation ∗ on X ×X by:

Gig1 ∗Gjg2 if and only if Gig1 ∩Gjg2 6= ∅.
Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. More-
over, the group G acts by right multiplication on Γ as a group of type preserving
automorphisms. Finally, the group G is transitive on the flags of type J with J ⊆ I
and |J | ≤ 2.

The incidence system constructed by the proposition above will be denoted by
Γ(G; (Gi)i∈I) and might not be a geometry, but if it is a geometry we call it a coset
geometry. An incidence system constructed from a C-group using Proposition 2.2
does not give, in general, a regular hypertope (some examples can be found in [16]).
It might not give a geometry at all (see Example 3.3). Nevertheless we have the
following result that proves that from a C-group we can get a hypertope when the
incidence system arising from Proposition 2.2 is flag-transitive.

Theorem 2.3. [16, Theorem 4.6] Let G = 〈ρ0, . . . , ρn−1〉 be a C-group of rank n
and let Γ := Γ(G; (Gi)i∈I) with Gi := 〈ρj |j ∈ I \{i}〉 for all i ∈ I := {0, . . . , n−1}.
If G is flag-transitive on Γ, then Γ is a regular hypertope.

An incidence system constructed from a C-group G = 〈ρ0, . . . , ρn−1〉 whose maxi-
mal parabolic subgroups areGi = 〈ρj | j 6= i〉 will be denoted by Γ(G; {ρ0, . . . , ρn−1}).

If we apply the construction of Proposition 2.2 to string C-groups, that is, groups
with linear Coxeter diagram then we necessarily get a polytope (as shown in the
following theorem). For this reason there is a one to one correspondence between
string C-groups and regular abstract polytopes.

Theorem 2.4. [1, 27] Let G = 〈ρ0, . . . , ρn−1〉 be a string C-group of rank r and
let Γ := Γ(G; {ρ0, . . . , ρn−1}). Then Γ is thin, residually connected and regular.
Moreover, Γ has a linear Coxeter diagram.

Note that constructing polytopes from a set of generators of a string C-group
and from the same set of generators taken in reverse order, in general results in two
different polytopes; the two polytopes are said to be dual. As hypertopes, we will
consider them “the same”. Indeed, as incidence geometries, they have the same set
X of elements. Only the type function changes. A re-ordering of the types does
not change the combinatorial structure of the hypertope. Hence, we classify the
hypertopes up to isomorphism and re-ordering of the types. Consequently, in what
follows the classification of hypertopes is given up to a graph isomorphism of their
Coxeter diagrams.
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Example 2.5. As an example of a proper (infinite) hypertope H we give that
of a semi-regular tessellation of E3 by cubes of two colours. The hypertope is
constructed from the Coxeter group with the following diagram (the generators ρi
are represented by dots labelled by i):

•

•3
4
•1

0
ooooooo

2OOOOOOO

•

Bi-colouring the cubes of the cubic tesselation of E3 alternatively by red and
yellow, we define elements of type 0 as the red cubes, elements of type 2 as the
yellow cubes, elements of type 3 as the points of the lattice Z3 ⊂ E3 and elements
of type 1 as the edges joining vertices at distance 1 of each other. Incidence is
defined as follows: A 3-element is incidence to an i-element (i = 0, 1, 2) if it is
contained in that element. A 1-element is incident to an i-element (i = 0, 2) if it is
an edge of the corresponding cube. A 0-element is incident to a 2-element if they
have a square in common.

Every Coxeter group is a type-preserving automorphism group of a regular hy-
pertope [29, Section 3] which we will call the universal hypertope associated with
the Coxeter group. The type-preserving automorphism group of every regular hy-
pertope H, as explained above, is a quotient of a Coxeter group C. The universal
hypertope associated with the Coxeter group C is then called the universal cover
of the hypertope H and the Coxeter diagram of H is the diagram of its universal
cover. The hypertope H is said to be of type C. We note that there is basically no
difference between Coxeter diagrams and the diagrams of regular hypertopes.

An irreducible regular hypertope (resp. polytope) is of euclidean type if its Cox-
eter diagram is the same as the Coxeter diagram of an infinite irreducible Coxeter
group of euclidean type (resp. with linear diagram). Similarly, an irreducible reg-
ular hypertope (resp. polytope) is of spherical type if its Coxeter diagram is the
same as the Coxeter diagram of a finite irreducible Coxeter group (resp. with lin-
ear diagram). Therefore, a hypertope is of euclidean type (resp. spherical type)
if and only if the type-preserving automorphism group of its universal cover is an
irreducible affine (resp. finite) Coxeter group.

A regular hypertope is spherical if its Coxeter diagram is a union of diagrams of
finite irreducible Coxeter groups. A locally spherical regular hypertope is a hypertope
whose proper residues are spherical hypertopes. These definitions are in agreement
with definitions of spherical and locally spherical polytopes in [25, Section 6B].

A projective hypertope (resp. polytope) is a regular hypertope obtained by fac-
toring a spherical hypertope (resp. polytope) by a central symmetry (provided it
exists).

In Section 6 we will define a hypertope to be of hyperbolic type only for lo-
cally spherical hypertopes and see that locally spherical hypertopes are one of the
spherical, euclidean, or hyperbolic type.

In the remainder of the paper we will restrict the discussion to irreducible locally
spherical hypertopes.
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3. Quotients of regular locally spherical hypertopes

In the classification of regular hypertopes with a given diagram, quotient rela-
tions play an important role. In what follows, we extend to regular hypertopes
some results that are known for abstract regular polytopes. The following theorem
is a generalization of Theorem 2E17 of [25] called the quotient criterion.

Theorem 3.1. Let G := 〈ρ0, . . . , ρn−1〉 be a group generated by involutions and
H := 〈δ0, . . . , δn−1〉 be a C-group. If the mapping σ : G → H with σ(ρi) = δi
for each i = 0, . . . , n − 1 is an homomorphism which is one-to-one on Gi for each
i = 0, . . . , n− 1, then G is also a C-group.

Proof. By Proposition 2.1 we need to prove that Gi ∩ Gj = Gi,j for every i, j ∈
{0, . . . , n − 1}. Let x ∈ Gi ∩ Gj . Then σ(x) ∈ Hi ∩Hj . Since by hypothesis H is
a C-group, Hi ∩Hj = Hi,j (by Proposition 2.1). Therefore σ(x) ∈ Hi,j and σ(x)
has a pre-image in Gi,j . Then, σ induces one-to-one homomorphism on Gi and
one-to-one homomorphism on Gj so that x is the only pre-image of σ(x) in Gi and
in Gj . Therefore x ∈ Gi,j . �

Let Γ := (X, ∗, t, I) be an incidence system and N a normal subgroup of AutI(Γ).
The quotient of Γ with respect to N is an incidence system Γ/N := (X̄, ∗N , tN , I)
where

• X̄ is the set {F ·N |F ∈ X} of orbits of N in X;
• for F1, F2 ∈ X, (F1 · N) ∗N (F2 · N) if and only if there exist a face F in
F1 ·N and a face G in F2 ·N such that F ∗G;
• and tN (F ·N) = t(F ).

Theorem 3.2. Let U be a regular hypertope and U := 〈δ0, . . . , δn−1〉 be its type-
preserving automorphism group. Let N / U be such that N ∩ Ui = {1} for all
i = 0, . . . n − 1. Let Hi = 〈δjN : j ∈ {0, . . . , n − 1} \ {i}〉 for all i = 0, . . . n − 1.
If Γ (U/N ; {H0, . . . ,Hn−1}) is a flag-transitive coset geometry then it is a regular
hypertope and it is isomorphic to U/N .

Proof. The group U/N with the generators {δ0N, . . . , δn−1N} is a group generated
by involutions and since N ∩ Ui = {1} for all i = 0, . . . n − 1, the mapping σ :
U/N → U with σ(δiN) = δi satisfies the hypotheses of Theorem 3.1. Therefore
U/N is a C-group. Theorem 2.3 then implies that U/N is a hypertope. �

The following example shows that in the previous theorem flag-transitivity is
required for the quotient to be a geometry.

Example 3.3. Starting from the hypercube, a spherical polytope of type B4 =
〈ρ0, ρ1, ρ2, ρ3〉 (see Table 1 for notation), we can construct the universal spherical
hypertope of type D4 = 〈ρ̃0, ρ1, ρ2, ρ3〉, where ρ̃0 = ρρ01 , in the following way. The
1-skeleton of the hypercube is a bipartite graph whose vertex-set can therefore be
coloured using two colours, say black and white. Elements of type 0 (respectively
1) are the black (respectively white) vertices. Elements of type 3 are the cubes1 of
the hypercube. Elements of type 2 are the square faces of the hypercube. Factoring
D4 by its normal subgroup N = 〈(ρ̃0ρ1ρ2ρ3)3〉 = {±1} (the group generated by a
longest element in D4 represented in the following figure by a red path) has the
effect of identifying pairs of opposite vertices, and pairs of disjoint cubes.

1Note that not all symmetries of the cubes appear in that geometry, only half of them as they
have to preserve the colours of the vertices.
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Now, given a cube C and the cube disjoint from it, there are four pairs of opposite
white vertices and four pairs of black vertices incident to them. Take a pair of white
vertices W and a pair of black vertices B such that their incidence in the whole
geometry is via the edge joining the two disjoint cubes. The set {C,W,B} is a flag
of D4/N that is not contained in any chamber of D4/N . Hence this quotient does
not give a hypertope.

Theorem 3.4. . Let H := H(G; {ρ0, . . . , ρn−1}) be a regular locally spherical
hypertope and U = (U ; {δ0, . . . , δn−1}) be its universal cover. Then there exists a
subgroup N / U such that N ∩ Ui = {1} for each i = 0, . . . , n − 1 and G ∼= U/N .
Finally, H ∼= U/N .

Proof. The mapping δi → ρi, for i = 0, . . . , n− 1, induces an epimorphism σ : U →
G and N := Ker(σ) has the required properties. �

4. Regular hypertopes of spherical type

A regular hypertope of spherical type is a quotient of a universal hypertope of
spherical type by a normal subgroup (by Theorem 3.4). As in the case of Cox-
eter groups, it is sufficient to classify irreducible regular hypertopes, the reducible
ones being direct sums of irreducible hypertopes, corresponding to the connected
components of the Coxeter diagram. Coxeter diagrams of irreducible regular hy-
pertopes of spherical type are those of the finite irreducible Coxeter groups, the list
of which can be seen in Table 1. In [22] all normal subgroups of finite and affine
Coxeter groups are characterized using graph homomorphisms. A homomorphism
ϕ : G → H is a graph homomorphism between Coxeter groups G = 〈ρ0, . . . , ρr−1〉
and H = 〈δ0, . . . , δn−1〉, if the following conditions are satisfied.

• for each i ∈ {0, . . . , r − 1} either ϕ(ρi) = δj for some j ∈ {0, . . . , n− 1} or
ϕ(ρi) = 1H ; and
• for each i ∈ {0, . . . , n− 1}, δi = ϕ(ρj) for some j ∈ {0, . . . , r − 1}.

The following theorem characterizes the normal subgroups of the finite Coxeter
groups. Recall that in a Coxeter group, a product of all the generating reflections
gives a so called Coxeter element. Taking a different order of generators in a product
produces conjugate Coxeter elements. Thus, they have same order h and if h is
even, any Coxeter element to the power h/2 is an involution. The normal subgroup
N = {±1} in the theorem below is the group generated by the longest element of
the Coxeter group, that is any Coxeter element to the power h/2.

Theorem 4.1. [22, Theorem 0.1] If G is an irreducible finite Coxeter group and
N is a normal subgroup of G, then either N = {±1} or N = Ker(ϕ) where ϕ is a
graph homomorphism between G and a finite Coxeter group.

The rotation subgroup of G denoted by G+ is always a normal subgroup of G.
The other normal subgroups of Coxeter groups arising from graph automorphisms
are listed in Tables 2 and 3 of [22].
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Theorem 4.2. There exits a unique regular hypertope for each of the diagrams An,
Dn, E6, and I2. There are exactly two regular hypertopes for each of the diagrams
Bn, E7, E8, F4, H3, and H4.

Proof. Let H be a regular hypertope of rank n having one of the diagrams of
the irreducible finite Coxeter groups listed in Table 1 (and [25, Table 3B1]). By
Theorem 3.4, H is a quotient of its universal cover U = (U ; (Ui)i∈{0,...,n−1}) by a
normal subgroup N such that N ∩Ui = {1} for each i = 0, . . . , n− 1. Tables 2 and
3 of [22] list all non-trivial normal subgroups of finite irreducible Coxeter groups
different from their rotation subgroups. All normal subgroups listed in [22, Table
3] have a non-trivial intersection with at least one maximal parabolic subgroup Ui
of the universal cover. Thus N must be one of the groups of [22, Table 2]. We now
deal with each of the diagrams in Table 1 separately.

First suppose that U is of one of the types An, Dn (n odd) and E6. Table 2
of [22] shows that there are no normal subgroups besides the rotation subgroups.
Thus H ∼= U .

Now suppose that U is the universal regular hypertope of type Dn (n ≥ 4, n
even). Let us prove that the number of chambers ofH must be 2n−1n! and therefore
that H ∼= U . We proceed by induction. Assume that n = 4. By Lemma 2.3 of
[9] the smallest hypertope with diagram isomorphic to a star-shaped diagram with
three unlabeled edges has at least 120 chambers. On the other hand the number of
chambers of the 4-hypertope of type D4 must be a divisor 23 · 4! = 192 and hence
the number of chambers must be exactly 192. Now let n > 4. Let 0, 1 and 2 be
the three types corresponding to the nodes of the Coxeter diagram, as follows.

•
•0 • • • •

2
ppppp
1NNNNN

•
Let xi be an i-face with i ∈ {0, 1, 2}. The residue of xi is a (n − 1)-simplex when
i ∈ {1, 2}. By induction assume that the residue of x0 is a regular hypertope with
2n−2(n − 1)! chambers. Let i ∈ {1, 2}. The residue of xi is a (n − 1)-simplex and
therefore has n 0-faces. Suppose that the hypertope has exactly n 0-faces. Then
x1 and x2 are both incident to all 0-faces, which is not possible as this would imply
that the residue of type {0} would have n elements, and therefore the geometry
would not be thin. Thus the hypertope has at least n + 1 0-faces and therefore
the number of chambers must be at least 2n−2(n − 1)!(n + 1). Hence its group of
type-preserving automorphisms must have the largest possible size, that is, 2n−1n!.

Let U be the Coxeter group with diagram Bn. We now prove that the number
of chambers of H is either 2nn! or 2n−1n! corresponding to the universal and the
projective regular polytopes of this type, respectively. This is equivalent to saying
that there are exactly two regular hypertopes with diagram Bn, namely U and
U/{±1}. This is well known for B4 and we now assume it is true for rank less
than n. We may assume that a vertex-figure has type Bn−1 and hence has either
2n−2(n − 1)! or 2n−1(n − 1)! chambers, while a facet has at least (n + 1) vertices.
Therefore the number of chambers of a regular hypertope of type Bn is greater
than 2n−2n! as wanted.

The remaining cases can be dealt with Magma [2]. If U has a linear diagram F4,
H3, or H4 then using Table 1 we see that in each case there is only one possibility
for N , that is {±1}. Thus for each diagram there are exacly two possibilities for H,
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Diagram Group Order Universal Projective

hypertope hypertope

An (n ≥ 1) • • • • • • • • [3n−1] (n+ 1)! {3n−1} -

•
Dn (n ≥ 4) • • • • • • •

yyy
EEE
•

[3n−3,1,1] 2n−1 · n! {3n−3, 3
3} -

Bn (n ≥ 3) • • • • • • • 4 • [3n−2, 4] 2n · n! {3n−2, 4} {3n−2, 4}n

Ip2 (p ≥ 3) • p • [p] 2p {p} -

E6 • • • • •

•
[32,2,1] 12 · 6! {22,1} -

E7 • • • • • •

•
[33,2,1] 8 · 9! {32,1} {32,1}9

E8 • • • • • • •

•
[34,2,1] 192 · 10! {42,1} {42,1}15

F4 • • 4 • • [3, 4, 3] 1152 {3, 4, 3} {3, 4, 3}56

H3 • • 5 • [3, 5] 120 {3, 5} {3, 5}5

H4 • • • 5 • [3, 3, 5] 14400 {3, 3, 5} {3, 3, 5}15

Table 1. Locally spherical hypertopes of spherical type

.

either the universal or the projective hypertope isomorphic to U/{±1}. If U has one
of the diagrams E7 or E8 using Table 1 we see that either H ∼= U or H ∼= U/{±1}.
Using Magma, we can easily check that all these cases give hypertopes. �

Theorem 4.3. All proper residues of regular hypertopes of spherical type are spher-
ical hypertopes.

Proof. Only projective hypertopes can have projective residues, but for that to
happen a Coxeter element needs to be in a proper residue which is impossible. �

Hence all locally spherical regular hypertopes of spherical type are either spher-
ical or projective hypertopes. Table 1 gives the complete list.

Observe that there are hypertopes (in fact polytopes) of euclidean type that have
proper sections which are projective, such as for example the polytope {{4, 3}6, {3, 4}3}
(see [28]). Other examples can be found in [18].
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5. Locally spherical regular hypertopes of euclidean type

In this section we consider regular hypertopes whose Coxeter diagrams corre-
spond to infinite irreducible Coxeter groups of euclidean type listed in the left
column of Table 2. Theorem 4.2 implies that all proper residues of regular hyper-
topes of euclidean type are either spherical or projective. Here we only consider
those with spherical residues.

Let us start with a simple but important observation following from Theorem 3.2.

Corollary 5.1. Every locally spherical regular hypertope of euclidean type is a
quotient of its universal cover by a normal subgroup that lies in the translation
subgroup of the automorphism group of its universal cover.

Proof. Let H be a hypertope of euclidean type and U its universal cover. Then,
by [22, Theorem 0.2] and Theorem 3.2, the only possibility for the normal subgroup
N of the Coxeter group of euclidean type to avoid the maximal parabolic subgroups
(in order to keep the same Coxeter diagram) is that N lies in the translation
subgroup of the Coxeter group. �

In analogy with regular toroidal polytopes (toroids), we say that a regular
toroidal hypertope of rank n+ 1 or (n+ 1)-toroid is a quotient of a regular universal
hypertope of rank n+ 1 of euclidean type by a normal subgroup of its translational
symmetries (in En). It follows from Corollary 5.1 that any finite regular hypertope
of euclidean type is a toroidal hypertope which we will briefly call a toroid.

Rank 3 toroids have been classified. They must have the following linear or
triangular Coxeter diagrams.

• 4 • 4 • • • 6 •
•

•
ppppp
NNNNN

•
The first two diagrams are those of regular tessellations on a torus and the last one
is that of a regular hypermap on a torus. The regular (and also chiral) toroidal
maps have been classified by Coxeter in [11] and hypermaps by Cacciari in [7]. Up
to duality, they belong to the following families: {4, 4}(s,0) with s ≥ 2; {4, 4}(s,s)
with s ≥ 1; {3, 6}(s,0) with s ≥ 2; {3, 6}(s,s) with s ≥ 1; (3, 3, 3)(s,0) with s ≥ 2, and
(3, 3, 3)(s,s) with s ≥ 2. The vectors in the subscripts determine in each case the
translation subgroup used, and the restriction on s guaranties that the hypertopes
are large enough so that they do not degenerate.

Finite toroidal polytopes (hypertopes with linear diagram) for higher ranks had
been classified by McMullen and Schulte in [24] (see also [25, 6D and E]). We denote
by Λn the group of all translations of En with integral translation vectors and think
of it as the lattice Zn, and by Λns the sublattice generated by s := (sk, 0n−k).

• Polytopes of type C̃n, also known as cubic (n+1)-toroids (corresponding to
regular tessellations of n-torus by n-cubes) belong to one of the following

three infinite families {C̃n}s = {4, 3n−2, 4}s where

s = (sk, 0n−k) with s ≥ 2 and k = 1, 2, or n,

and where the quotient , by Λns , of the standard cubical lattice {4, 3n−2, 4}
with vertex-set Zn is denoted simply by {4, 3n−2, 4}s.
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• Polytopes of type F̃4, belong to one of the following two infinite families of
5-toroids {F̃4}s = {3, 3, 4, 3}s where

s = (sk, 04−k) with s ≥ 2 and k = 1 or 2,

and where similarly the quotient , by Λ4
s , of the regular tesselation {3, 3, 4, 3}

with vertex-set Z4 ∪ (( 1
2 ,

1
2 ,

1
2 ,

1
2 ) + Z4) is denoted by {3, 3, 4, 3}s

Using the methods of McMullen and Schulte and the notation as above, in [14] Ens
classified finite rank 4 toroidal hypertopes with non-linear diagrams as follows.

• Finite toroidal hypertopes of rank 4 and type B̃3, belong to one of the
following three infinite families of type {B̃3}s where

s = (2s, 0, 0) or (s, s, 0) with s ≥ 2, or (2s, 2s, 2s) with s ≥ 1.

• Finite toroidal hypertopes of rank 4 and type Ã3, belong to one of the
following three infinite families of type {Ã3}s = (3, 3, 3, 3)s where

s = (2s, 0, 0) or (s, s, 0)with s ≥ 2, or (2s, 2s, 2s) with s ≥ 1.

To complete the classification of finite locally spherical euclidean hypertopes it
is necessary, as proved in Section 3, to enumerate normal subgroups of the corre-
sponding Coxeter groups which have trivial intersection with the maximal parabolic
subgroups of the Coxeter group. In fact the enumeration of all normal subgroups
of Coxeter groups of euclidean type can be found in Section 7 of [22] and the lattice
subgroups in Table 5. Corollary 5.1 together with Maxwell’s results can be used to
construct finite toroids of each hypertope of euclidean type.

In the forthcoming paper [21] we extend the results of McMullen and Schulte on
toroidal polytopes to that of hypertopes, thus completing the geometric classifica-
tion of toroidal hypertopes in each rank.

6. Locally spherical hypertopes of hyperbolic type

A locally spherical regular hypertope is of hyperbolic type if the irreducible
residues of the type-preserving automorphism group of its universal cover are com-
pact hyperbolic Coxeter groups (that is, groups generated by hyperbolic reflections
with compact fundamental domain). Compact hyperbolic Coxeter groups exist only
in ranks 3, 4, and 5. The complete list of their diagrams is given in Table 2 (see,
for example [20, Section 6.9] or [25, 3C]). Examining all possible Schläfli symbols
for locally spherical regular hypertopes we easily see that universal locally spherical
hypertopes are either of spherical, euclidean, or of hyperbolic type.

The rank 3 hypertopes have the following Coxeter diagrams

• p • q •
where p, q are integers with 3 ≤ p, q <∞ and 1

p + 1
q <

1
2 , or

•
l•

k ppppp

m NNNNN

•

where k, l,m are integers with 3 ≤ k, l,m <∞ and 1
k + 1

l + 1
m < 1.

There are infinitely many finite rank 3 polytopes (non-degenerate maps) arising
from the tessellations of the hyperbolic plane (having the rank 3 linear diagrams
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Euclidean Hyperbolic

Ãn−1 (n ≥ 3) •
VVVVVVVVVVV

hhhhhhhhhhh

• • • • • •

[p, q] •
p • q •

3 ≤ p, q <∞, 1
p

+ 1
q

< 1
2

•
GGGGG •

D̃n−1 (n ≥ 5) • • • • • •
wwwww

GGGGG

•
wwwww •

[(k, l, m)]
3 ≤ k, l, m <∞
1
k

+ 1
l
+ 1

m
< 1

•
l•

k ppppp
m NNNNN
•

C̃n−1 (n ≥ 3) • 4 • • • • • • 4 • [(3, 3, 3, p)]
p = 4, 5

• p •

• •

•

B̃n−1 (n ≥ 4) • 4 • • • • • •
wwwww

GGGGG

•

[(3, 4, 3, 4)]
• 4 •

•
4
•

Ẽ6 • • • • •

•

•

[(3, 5, 3, p)]
p = 4, 5

[(3, 3, 3, 3, 4)]

• 5 •

•
p
•

•
���

4 •
///

•
>>>> •

����
•

Ẽ7 • • • • • • •

•

[p, 3, 5]
p = 4, 5

• p • • 5 •

[3, 5, 3] • • 5 • •

[p, 3, 3, 5]
p = 3, 4, 5

• p • • • 5 •

Ẽ8 • • • • • • • •

•

[5, 3
3]

•
• 5 •

ppppp
NNNNN
•

F̃4 • • • 4 • •
[5, 3, 3

3]
•

• 5 • •
ppppp
NNNNN
•

G̃2 • • 6 •

Ã1 • ∞ •

Table 2. Diagrams of locally spherical hypertopes of euclidean
and hyperbolic types

.
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above), and infinitely many finite (non-degenerate, proper) hypermaps arising from
the rank 3 triangular diagrams above. These had been extensively studied and
written about in literature. In the seminal paper [10], Corn and Singerman showed
that every regular (which they call reflexive) hypermap of that kind is a quotient
of the universal hypermap obtained from the group 〈x, y|xk = ym = (xy)l = 1〉 and
that the universal hypermap is regular.

Corollary 4C5 in [25] implies that in ranks 4 and 5 there are infinitely many
finite locally spherical polytopes of hyperbolic type. Unfortunately, examples of
these are not easy to find as the proof is non-constructive. However, a number of
polytopes for certain types can be found in literature.

Using modular reduction of the Coxeter group [3, 5, 3], with moduli given by
primes in Z[τ ] (where τ is the golden ratio), Monson and Schulte constructed in-
finitely many finite regular locally spherical polytopes of type {3, 5, 3} (see [26,
Proposition 5.1]).

There is an infinite family of locally spherical polytopes of hyperbolic type
{4, 3, 5} (described in [3, 7.1] ) with automorphism group D6

s o [3, 5], s ≥ 2, where
Ds = I2(s) denotes the dihedral group of order 2s.

There are also two locally spherical polytopes of hyperbolic type {5, 3, 5} with
respective type-preserving automorphism groups J1×J1 and J1×J1×L2(19). They
were constructed by Hartley and Leemans in [19]. Another example of the same
type is the classical regular star-polytope { 52 , 3, 5} in euclidean 4-space obtained
by a sequence of several stellations of {5, 3, 3} (see [12, 14.2]). As an abstract
polytope it is a finite locally spherical polytope of hyperbolic type {5, 3, 5}. It has
120 dodecahedral facets (which in euclidean 4-space are realized as great stellated
dodecahedra whose 2-faces are pentagrams { 52}), 120 icosahedral vertex-figures,
and the group of order 14400. The automorphism group of the polytope, which
is H4 = [5, 3, 3] = [5, 3, 5|3] (here we used the extended Schläfli symbol where
the number 3 following | indicates that the polytope has triangular holes), can be
obtained from [5, 3, 5] (the symmetry group of the regular tessellation {5, 3, 5} of
the hyperbolic 3-space) by imposing the extra relation

(ρ0ρ1ρ2ρ3ρ2ρ1)3 = id

(see [23, page 435]). Similarly { 52 , 3, 3, 5}, obtained from {3, 3, 3, 5} (see [23, Section
6]), can be seen as a locally spherical rank 5 polytope of hyperbolic type {5, 3, 3, 5}
arising from regular tessellation of hyperbolic 4-space by 120-cells) and imposing
the extra relation

(ρ0ρ1ρ2ρ3ρ4ρ3ρ2ρ1)3 = id

(see [23, pages 141-442]).
In Table 3 we give a list of small regular finite locally spherical hypertopes of rank

4 of hyperbolic type. Here, by extension of the notation for hypermaps, we denote
by (p, q, r, s) the hypertope with a square diagram whose successive edges have
labels p, q, r, and s. Furthermore, the hypertope of type {5, 3

3} is the hypertope
with diagram [5, 3

3] in Table 2. In particular, we computed the smallest example
of each type using Magma. For each hypertope we specify the type preserving
automorphism group in the second column (here we note that · stands for a non-
split extension).
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Type Group Order

(3, 3, 3, 4) 24 : A5 : 2 1920
23 o L2(7)× 2 2688
25 oA5 o 2 3840

4 · (24 oA5)o 2 7680
26 oA5 : 2 7680

(3, 3, 3, 5) A5 ×A5 o 2 7200

(3, 4, 3, 4) L2(7)× 2 336
21+4 o S3 o S3 1152

S6 × 2 1440
S6 × S3 4320

23 o L2(7)× 2× 2 5376
L2(7)× S3 × S3 6048
28 o S3 o S3 9216

(3, 5, 3, 4) 3 ·A6 × 2 2160

(3, 5, 3, 5) 25 oA5 × 2 3840
34 oA5 × 2 9720

Type Group Order

{3, 5, 3} L2(16)o 2 8160

{4, 3, 5} 25 oA5 o 2 3840
24 oA5 o 2× 2 3840
25 oA5 o 2× 2 7680
25 oA5 o 2o 2 7680

{5, 3, 5} A5 ×A5 o 2 7200
L2(16)o 2 8160

{5, 3
3} 25 oA5 × 2 3840

26 oA5 3840
26 oA5 × 2 7680

Table 3. Small regular locally spherical 4-hypertopes of hyper-
bolic type

.

Our computations searching for small rank 5 hyperbolic proper hypertopes were
inconclusive as the groups involved seem to be too large for a successful application
of the LowIndexNormalSubgroups function of Magma.
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