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Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared

spectroscopy (NIRS) has been applied in many neurocognitive studies. With NIRS, neural

activation can be explored indirectly via hemodynamic changes in the imaged region. In

studies of aging, changes in baseline physiology and brain anatomy confound NIRS mea-

sures seeking to investigate age-related changes in neuronal activity. The field is thus

hampered by the complexity of the aging process itself, and statistical inferences from

functional data acquired by optical imaging techniques must be interpreted with care. Mul-

timodal integration of NIRS with both structural and baseline physiological assessments is

crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two

different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL), was used

to investigate age-related changes in activation during a lexical-semantic processing task.

Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow

in the older adults. Using baseline physiology measures as regressors in the investigation

of functional concentration changes when doing analyses of variance, we found signifi-

cant changes in task-induced areas of activity. In the right hemisphere, more significant

age-related activity was observed around the junction of the inferior frontal gyrus and infe-

rior precentral sulcus, along with engagement of Wernicke’s area. In the left hemisphere,

the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and

inferior frontal gyrus, differed between age groups. Measuring background physiological

differences and using their values as regressors in statistical analyses allowed a more

appropriate, age-corrected understanding of the functional differentiations between age

groups. Age-corrected baselines are thus essential to investigate which components of

the NIRS signal are altered by aging.

Keywords: cognitive aging, language, semantics, functional NIRS, anatomical MRI, baseline physiology,

hemodynamic response, ASL

INTRODUCTION

Given the growing proportion of elderly adults in the population
due to increased longevity, studies investigating and promoting
healthy cognitive aging are of the utmost importance. By 2050,
the number of elderly individuals will be 16% higher than the
number of children and adolescents under 15 years (1). In this
context, the number of dementia cases in the aging population
is expected to grow exponentially. Prevalence studies in all world
regions estimate that 24.3 million people currently have dementia
and predict that the number of persons with Alzheimer’s disease
will double every 20 years, rising to 81.1 million by 2040 (2). This
trend supports the importance of characterizing the mechanisms
underlying healthy cognitive aging in order to optimize healthy
aging and possibly contribute to delaying the manifestations of
dementia.

Normal aging is characterized by significant modifications of
the brain’s anatomy and physiology, which vary depending on the
brain region and component (3). The overall volume and weight
of the brain decrease with each decade of age but displays regional
variability. For example, in a five-year longitudinal study, Raz and
colleagues have examined age-related differences in regional brain
volume (4). A significant negative correlation between age and
volume of the lateral prefrontal cortex, orbitofrontal cortex, and
prefrontal white matter was observed. In the temporal associa-
tion cortices, a more moderate shrinkage with age was also found.
These anatomical changes are associated with widening sulci and
synaptic loss, but negligible neural loss has been observed.

Age also affects sensory and cognitive abilities but in a hetero-
geneous fashion, varying with cognitive domain. A first hypothesis
to explain this observation is that there is a correlation between
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structural changes and functions. Depending on the cognitive
domain (5) and individual characteristics (6), cognitive abilities
are affected differently. Among brain functions that are better pre-
served with aging, older adults have shown a good preservation of
semantic word processing and conceptual knowledge organized
to depict the relationship between words and stored knowledge
of the world. Given that the language-related brain regions (e.g.,
prefrontal and superior temporal cortices) (7–10) are affected by
age (11, 12), investigating the mechanisms underlying the relative
preservation of language abilities is essential to better under-
stand how the aging brain handles structural and physiological
decline.

A major obstacle to these studies is that interindividual vari-
ability in cognitive domains increases with aging and this makes
it difficult to apply inferences from individual observations over
the entire elderly population. To interpret this variability, one
can posit that interindividual differences are mainly due to large
variations in the anatomical and/or neurophysiological struc-
tures underpinning cognitive performance with age (13). An
alternative hypothesis is that some older adults compensate for
cognitive aging by either adapting compensatory processing pro-
cedures by means of an inter- and/or intrahemispheric func-
tional reorganization or changing cognitive strategies (5, 6, 14,
15), relying on what has been conceptualized as their cognitive
reserve (16). With the aim of revealing cognitive changes associ-
ated with age, numerous neuroimaging studies have investigated
age-related neurophysiological changes associated with functional
brain activities (17–20). Despite overall similarities in basic neu-
ronal activity in young and older adults, older individuals show
less activity in some brain regions and/or over-recruitment of
other brain regions (21) in response to complex tasks. Over-
recruitment can be interpreted as a compensatory mechanism
or as an indication of neuronal inefficiency. Thus, the challenge
in cognitive aging research is to distinguish between these two
mechanisms.

To investigate the complex phenomenon of aging, functional
near-infrared spectroscopy (fNIRS) has been used in cognitive
neuroscience because of its moderate running costs, portability
and potential for examinations in a natural setting (22). This
non-invasive imaging technique allows researchers to probe the
hemodynamic response evoked by neural activity in the first cen-
timeters of cortical tissues. By emitting near-infrared light (650–
950 nm) through the scalp and measuring the photons attenuated
by absorbing compounds primarily composed of oxy- and deoxy-
genated hemoglobins (HbO2 and HbR, respectively), estimates
of neural activation can be recovered (23, 24). One advantage of
fNIRS measures over the blood-oxygen level dependent (BOLD)
signal obtained from functional magnetic resonance imaging
(fMRI) is its ability to measure oxygenation level. However, in
hemodynamic-based functional neuroimaging techniques, such
as fMRI and fNIRS, neural activity is measured indirectly through
neurovascular coupling as a function of changes in cerebral blood
flow (CBF), blood volume, and oxygenation (25). Signals are there-
fore subject to interpretation difficulties due to the ambiguous
interaction of the neurophysiology and vasculature underpinning
the hemodynamic response (26–29). Thus, changes in measured
activation response are related not only to neuronal activity but

also to modifications of the underlying physiology with age. There
is evidence from the literature that global CBF decreases with
age, while the cerebral metabolic rate of oxygenation (CMRO2)
increases (13, 19, 30), and that microvascular capacity in response
to strong demand for oxygenation also declines (17). It is therefore
essential for studies to consider these confounding factors if they
aim to distinguish the observed physiological changes with age
from the underlying neuronal activation in response to a cognitive
stimulus.

Other methodological difficulties specific to the NIRS signal
are partial volume effects (24) and tissue optical properties that
change with age (31, 32). The age-related changes in tissue prop-
erties and capillary circulation in the skin (33) and how these
changes interact with light propagation in the head may bias NIRS
measurements when young and elderly individuals are compared.
Time-resolved spectroscopy (TRS) systems provide measure of
optical properties of cerebral tissues with the ability to distin-
guish between superficial layers [skin, skull, and cerebrospinal
fluid (CSF)] and brain tissue. Thus, intra- and extracerebral
hemoglobin concentrations can be determined for each individual
separately (34).

The aim of the present study was to assess the physiological and
functional changes that occur in parts of the language process-
ing network during normal aging by means of a lexical-semantic
decision task and two imaging techniques: anatomical and blood
perfusion (arterial spin labeling; ASL) MRI and fNIRS, as well
as time-domain optical imaging TRS. By integrating each indi-
vidual’s baseline CBF, oxy- and deoxyhemoglobin concentrations,
and structural characteristics, obtained with ASL-MRI, TRS, and
anatomical MRI, respectively, with the functional hemodynamic
responses from NIRS, the goal of this study was to investigate the
effect of intrinsic interindividual variability on the hemodynamic
responses measured. Specifically, we hypothesized that each indi-
vidual’s baseline physiology, reflecting his or her neurovascular
health, was related to the preservation of semantic memory and
cognitive performance. We also hypothesized that higher levels
of CBF and oxygen saturation (SatO2) from TRS measurements
should account for the percentage changes of [HbO2] and [HbR]
in response to our lexical-semantic decision task. Controlling for
these age-related factors is crucial if one wishes to distinguish the
presumed age-related neurofunctional reorganization of the brain
for cognitive ability, such as the semantic processing of words, from
the basic neurophysiological changes linked to the aging brain’s
hemodynamics.

MATERIALS AND METHODS

PARTICIPANTS AND PROTOCOL

In this study, 46 healthy French-speaking individuals divided
into two groups of elderly people (n = 23), aged 65–75 (mean
age = 69.6 ± 4.1), and young people (n = 23), aged 20–35 (mean
age = 23.4 ± 2.7), were recruited. Because language knowledge is
embedded in the social and cultural context, we restricted our par-
ticipants to French speakers from Quebec. The elderly cohort was
chosen from this specific age bracket because of the delicate tran-
sition to old age (>65) and the increased prevalence of cognitive
decline (from 4.97 to 24.19%) after the age of 80 (35). The study
was approved by the ethics committee of the Institut universitaire
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de gériatrie de Montréal (IUGM) and all participants gave their
written consent. Exclusion criteria were claustrophobia, hyperten-
sion or any cardiovascular disease, smoking, thyroid dysfunction,
diabetes, taking any medication known to be vasoactive, as well
as psychiatric or neurological illness. Participants were all right-
handed according to the Edinburgh Handedness Inventory (36,
37). For the measurement of baseline cerebral blood perfusion,
they were also asked to abstain from drinking coffee the day of
acquisition (38, 39).

Participants were screened for their level of cognitive per-
formance by standardized cognitive assessments including the
Trail Making Test A/B (40), the Montreal Cognitive Assessment
(MoCA; (41), and five subtests of the short-form Wechsler Adult
Intelligence Scale (WAIS-III; (42–44), namely Vocabulary, Block
Design, Similarities, Matrix Reasoning, and Direct and Inverse
Digit Spans. In this way, it was possible to exclude those with
mild cognitive decline according to age-corrected norms. These
tasks assess phonological short-term memory storage as well as
processing capacities and evaluate general intellectual ability, plan-
ning, visual exploration, attention, mental flexibility, and verbal
inhibition.

The activation task represents a robust, well-studied lexical-
semantic task: lexical decision (45). Stimuli were chosen from
the specific categories of non-action words (nouns) denoting
non-living objects in order to isolate the peripheral effects in net-
works associated with semantic processing. Words generated from
a French lexical database (OMNILEX database from the Cogni-
tive Psychology of Language Laboratory, University of Ottawa,
Canada) were matched according to their lexical frequency, gram-
matical category (nouns), age of acquisition, orthographic struc-
ture, and length in letters. It is important to note that, in visual
lexical decision tasks, word length affects reaction time (RT),
with stable RTs for words four to six letters long (46). Concrete-
ness of the words (abstract vs. concrete) was manipulated by
the imageability index on a scale of 1–7 to investigate the effect
of word imageability within a lexical decision test (n = 60 for
each category). Pseudo-words were then created from the real
words (n = 120) by changing two consonants. All items (words
and pseudo-words) were then matched by bigram frequency and
length in letters (Lexique database, Paris Descartes University,
France). A pilot study of 15 young adults was done prior to the
main study to eliminate outliers within each category. Participants
were presented with words and pseudo-words on the screen and
were instructed to answer whether or not the letter string con-
stituted a real word. Each trial started with a fixation point (+)
that appeared at the center of the screen and was followed by the
stimulus. A blank screen provided time to answer with a yes/no
button on the computer keyboard. The task was executed using
E-prime software (version 2.1), which also recorded the RTs and
correct responses.

The paradigm was designed in an event-related (ER) fashion.
The ER design presented each stimulus at a specific time, allowing
the investigation of the evoked hemodynamic response delayed
by 2–3 s from stimulus-induced neuronal activity (47). Stimuli
from different categories (e.g., experimental conditions; word vs.
pseudo-word.) were presented in a random intermixed order for
4–11 s (Figure 1).

FIGURE 1 | A schema of the task diagram with inter stimulus

interval = 1.36 s and stimulus onset asynchrony from 4 to 11 s. Triggers

from the computer presenting the task were sent to the NIRS computer

after synchronization: A, start control task and B, start main task. Each color

bar represents a different condition: concrete, abstract, and pseudo-words.

FIGURE 2 | Left: the schema of the multi-distance optical

source-detector design based on the 10–20 standard to cover

brain-language regions. Right: the home-made optical helmet used in this

study with the reference and pointer of the stereotaxic system used to

register optode positioning for later coregistration on each participant’s

anatomical image.

DIFFUSE OPTICAL MEASUREMENTS

Near-infrared spectroscopy

Task-induced changes in optical intensity were measured with a
32-channel continuous wave NIRS instrument (TechEn CW6)
with a sampling rate of 25 Hz. TechEn uses two continuous
frequency modulated wavelengths at 830 and 690 nm, within
a wavelength range where HbO2 and HbR are the dominant
light absorbers. Using two different wavelengths, we were able
to assess the changes in hemoglobin concentration from absorp-
tion coefficients (µa) by measuring light attenuation (modified
Beer–Lambert law; (23). In this study, we used two patches of 29
channels (a combination of 5 sources and 14 detectors) for each
hemisphere, covering the entire frontal and temporal regions of
the cortex (Figure 2). To reliably position the posterior edge of the
optical helmet, we used the electrode positions Fp0 and inion as
references according to the 10–20 EEG system.
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Time-resolved spectroscopy

A TRS system using four pulsed lasers with wavelengths of 690,750,
800, and 850 nm, temporally multiplexed, illuminated the partic-
ipant’s forehead. Four detectors at distances of 10, 15, 25, and
30 mm from the point of illumination collected the backscattered
light and were then focused on the detection surface of photon-
counting avalanche photodiodes with a 20× microscope objective.
The experiment took place in a dark room to reduce the noise on
the single-photon counter detectors.

The measurements obtained were fit to a double-layer analyt-
ical model (34). Thus, the head was modeled as a heterogeneous
medium, with the first layer consisting of skin, skull, and CSF and
the second layer including both gray and white matter. The model
yielded absolute estimates of the optical properties [absorption
(µa) and scattering (µs) coefficients] in each layer.

MRI ACQUISITION

Anatomical MR images were obtained on a 3T Siemens Trio
MRI (Siemens Medical Solutions, Erlangen, Germany) using a
32-channel receive-only head coil at the Unité de Neuroimagerie
Fonctionnelle of the IUGM. A volumetric Magnetization Prepared
Rapid Gradient Echo (MPRAGE) sequence was used to acquire
a high-resolution T1-weighted 3D anatomical image, using the
following parameters: TR = 2.3 s, TE = 2.91 ms, TI = 900 ms, flip
angle = 9°, FOV = 240 × 256, voxel size = 1 × 1 × 1 mm3. This
sequence was followed by an ASL sequence at rest, without sen-
sory deprivation. The imaging sequence was a PICORE labeling
geometry (20) and Q2TIPS tag duration control (48) to quan-
tify the baseline CBF (CBF0; (49). A post-label delay of 900 ms
and label duration of 1500 ms were used, with repetition time
(TR) and echo time (TE) of 3 s and 20 ms, respectively. The ASL
signal is evoked by the local magnetization differences following
the diffusion of the magnetically labeled blood to quantitatively
measure blood perfusion. A single M0 scan was also acquired to
compute the blood perfusion parameters. This acquisition was
done with the same parameters as the ASL sequence except for the
TR, which was set to be very long (10 s) to yield a measurement of
the fully relaxed magnetization. The whole acquisition including
the MPRAGE took approximately 20 min.

COREGISTRATION

A stereotaxic system (Brainsight, Rogue Research Inc.) was used
to align anatomical images from each individual’s MRI and the
patch holding the optical fibers. The registered positions of each
optode were then mapped into normalized brain coordinates
from Montreal Neurological Institute (MNI) template for group
analysis.

DATA ANALYSIS

BEHAVIORAL AND TASK PERFORMANCE

Z -scores for each cognitive test were calculated from the normative
reference data available for different age groups. Only partici-
pants whose results were above the normal guideline were kept
for further analysis. The RTs and the accuracy of responses to
the lexical-semantic task were analyzed using SPSS (IBM, New
York, USA). A two-way repeated measures analysis of variance
(ANOVA) was applied to RTs for correct answers as a dependent

variable with the factors of age (young, elderly) and condition
(word, pseudo-word).

NIRS DATA SIGNAL PROCESSING AND STATISTICAL ANALYSIS

Both signal processing (heart rate regression, intensity to con-
centration conversion, normalization, and smoothing) and sta-
tistical analysis (general linear model, GLM) were performed
using an SPM8-compatible toolbox made in-house (50) based on
NIRS-SPM v3.2; NIRS10.

Changes in optical density, ∆OD, were computed from emitted
and received photon fluence Φ:

∆OD (t , λ) = −ln

(

Φ (t , λ)

Φ0 (t , λ)

)

A heart rate analysis was done to eliminate channels without
physiological signals. A coregistration of the source-detector posi-
tions on the MNI’s MRI template was done to ensure coherent
optode positioning for group analysis. Optical signals were then
transformed into hemoglobin concentrations CHbO2 and CHbR,
applying the modified Beer–Lambert law with

[

CHbO2(t )
CHbR(t )

]

=

[

ε
λ1
HbO2 ε

λ2
HbO2

ε
λ1
HbR ε

λ2
HbR

]−1
[

∆OD(t , λ1)/(d .ℓDPF(λ1))

∆OD(t , λ2)/(d .ℓDPF(λ2))

]

where λDPF is the differential path-length factor account-
ing for the random photon trajectory between each source and
detector (32).

Hemoglobin concentration changes were filtered with a Gauss-
ian kernel (1.5 s FWHM) and high pass filtered by a second-order
Butterworth filter with a cutoff frequency of 0.01 Hz. The signif-
icance of each effect of interest (abstract, concrete, and pseudo-
word) was determined using the theory of Gaussian fields (47). A
GLM was fit using a canonical hemodynamic response function
(HRF). Contrasts over sessions (intrasubject) were analyzed using
a fixed effects model, while testing for contrasts in the intersubject
analysis was done by estimating the ratio of the random effects
variance to the fixed effects variance. An expected Euler correction
based on Lipschitz–Killing curvatures was applied to the threshold
on the HbR/HbO2 t -statistic images to account for the spatial cor-
relation. The GLM method was based on the precoloring method
of NIRS-SPM toolbox (51) for noise treatment.

TRS DATA

To determine the value of the background absorption and scat-
tering coefficients of the brain, a reflectance curve was fit for
each source-detector pair of the time-domain system (34). The
curve-fitting procedure was done by a non-linear optimization
MATLAB function (Isqcurvefit ) with fit parameters of absorp-
tion and reduced scattering coefficient (µa and µs, respectively)
and amplitude to the theoretical temporal point spread function
(TPSF). We applied the appropriate analytical model to fit the
reflectance curve. This model was validated by applying a Monte
Carlo simulation and with a priori information about the thick-
ness of the first layer, including skin, skull, and CSF, obtained
from the segmented anatomical MR images (using SPM8). With
a high-resolution T1-weighted anatomical image, the maximum
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errors on the hemoglobin concentrations were expected to be no
more than 15% (34).

To determine hemoglobin concentrations from optical para-
meters, we assumed that oxy- and deoxyhemoglobin and water
were the dominant absorbers between the 690 and 850 nm wave-
lengths. The linear system describing the relationship between
the extinction coefficient ε(λ) (taken from the literature) and the
absorption coefficient µa(λ) (calculated from TRS measures) is
given by

µa (λ) = 2.303 · ε (λ) · C








µa (λ1)

µa (λ2)

µa (λ3)

µa (λ4)









=









εHbO2 (λ1) εHbR (λ1) εH2O (λ1)

εHbO2 (λ2) εHbR (λ2) εH2O (λ2)

εHbO2 (λ3) εHbR (λ3) εH2O (λ3)

εHbO2 (λ4) εHbR (λ4) εH2O (λ4)













CHbO2

CHbR

CH2O





We also assumed that biological tissues contained 70% water,
reducing the above system to four equations with two unknowns.
A pseudo-inversion of the equation with a least-square fit provided
C, the hemoglobin concentration.

ANATOMICAL MRI

Coregistration: The anatomical images served two purposes in this
study. First, at the individual level, we normalized the anatomical
images to the MNI space including the subject’s fiducial coordi-
nates. Then, to achieve better spatial resolution for fNIRS analysis,
we projected the optodes’ positioning coordinates, collected from
the Brainsight 3D camera, on the cortex (Figure 3). For group
analysis, we needed to transform all images to the MNI tem-
plate. These steps were performed using an in-house version of
the algorithm of NIRS_SPM

ASL DATA

The absolute CBF was measured in arbitrary units by the constant
component of an ASL scan (ASL0) using the standard quantita-
tive approach described by Wong et al. (52). This value was then
converted to physiologically relevant units (mL blood/100 g tissue
per minute) using a general kinetic model fit to the ASL signal
(20, 49). This model defines a relationship between the measured

signal and CBF0 assuming blood longitudinal relaxation time TI
and fully relaxed magnetization M0 are known

CBF0 =
ASL0

6 × 106 · 2 · TI1 · exp
(

−TI2�T1b

)

· M0b

where TI1 = 1400 ms, TI2 = 2000 ms, and T1b = 1932 ms at
3 T and the factor 6 × 106 converts the units for CBF0 to
mL/min/100 g. The value for M 0b, the fully relaxed blood mag-
netization, was calibrated using that of the white matter measured
in the M0 scan (52):

M0b = M0WM ·
1

λ
· exp

(

TE ·

(

1

T2WM
−

1

T2b

))

with M0WM the average value of the M 0 scan in a region of interest
(ROI) selected from the segmented white matter, the brain-blood
partition coefficient for water λ = 0.9 mL/g (53), TE = 12 ms,
T 2WM = 70 ms, and T 2b = 275 ms at 3 T. The blood flow mea-
surement was then regressed against the functional NIRS data to
evaluate its impact.

RESULTS

NEUROPSYCHOLOGICAL PERFORMANCE

There was no difference (p > 0.05) between the two age
groups’ mean years of education (older = 16 ± 2.33 and
younger = 16.95 ± 1.78). Both age groups were also matched for
sex and consisted of 15 women and 8 men. They were compared
on the neuropsychological measures of memory, vocabulary, and
executive functions described earlier. The older adults performed
worse on a number of subtests evaluating executive functions,
but consistently with our hypothesis, the results of the vocabu-
lary test showed no significant difference between the two groups
(Table 1). Since responding correctly to the lexical-semantic deci-
sion task does not require planning or strategic changing skills, we
expected these differences to have no impact on results.

TASK PERFORMANCE

Both groups performed equally accurately across conditions
except on pseudo-words derived from concrete words [F(1,

FIGURE 3 | Coregistration of the optodes’ positions from Brainsight©over the reconstructed anatomical images. (A) Real, (B) MNI subject, and (C) MNI

template spaces.
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Table 1 | Demographic variables and cognitive characteristics.

Variable Young (n = 23)

mean (SD)

Older (n = 23)

mean (SD)

F -test (p-value) t -test (p-value)

MoCA 29.23(1.30) 27.27 (2.47) 0.0054 0.0037*

WAIS Vocabulary 43.65 (7.68) 37.64 (14.75) 0.027 0.15

Similarity 21.23 (5.08) 17.73 (3.92) 0.32 0.008*

Block design 61.82 (3.15) 35.27 (7.93) 0.0002 0.000**

Matrix 23.12 (2.87) 15.91 (5.70) 0.007 0.000**

Digit spans 19.06 (4.34) 18.64 (3.99) 0.72 0.15

Hayling Automatic 6.94 (0.24) 6.91 (0.29) 0.3 0.65

Inhibition 5.47 (1.18) 4.82 (1.65) 0.1 0.15

Final score 19.29 (1.61) 17.5 (2.70) 0.47 0.12

Results from neuropsychological batteries by age group. MoCA, Montreal Cognitive Assessment; WAIS, Wechsler Adult Intelligent Scale; Hayling, test for inhibitory

control. *p < 0.05, **p < 0.0001.

FIGURE 4 | Mean reaction times (RTs) shown here over all

lexical-semantic conditions of the task: A, abstract; C, concrete; PA,

pseudo-abstract (pseudo-words derived from abstract stimuli); and

PC, pseudo-concrete (pseudo-words derived from concrete stimuli).

*p < 0.05.

55) = 6.1, p = 0.017]. Young participants were faster in all
conditions except for concrete words. We applied a two-standard-
deviation cutoff on the RTs of correct responses. RTs for cor-
rect trials are presented in Figure 4. Results from two 2-way
ANOVAs showed no age × lexicality [F(1, 176) = 0.621, p > 0.05]
or age × condition [F(1, 176) = 0.275, p > 0.05] interactions.
There was a simple effect of lexicality [F(1, 179) = 11.4, p = 0.001],
irrespective of age.

TIME-RESOLVED SPECTROSCOPY

We calculated the absolute oxy- and deoxyhemoglobin
concentrations ([HbO2] and [HbR], respectively) as well as oxygen

Table 2 | Results fromTRS measurements.

LH RH

Old Young Old Young

[HbO2] 40.9 (±1.7) 49.1 (±2.1) 42.6 (±1.8) 46.5 (±1.3)

t -Test 0.002** 0.039*

[HbR] 25.8 (±1.1) 28.2 (1.0) 25.9 (±1.1) 25.6 (±1.0)

t -Test 0.056 0.428

SatO2 61.2 (±0.7) 63.3 (±0.9) 62.2 (±0.7) 64.6 (±1.0)

t -Test 0.045* 0.029*

Oxy- and deoxyhemoglobin concentrations and oxygen saturation calculated in

both hemispheres from TRS measures in micromoles, *p < 0.05, **p < 0.001.

saturation (SatO2) in both right and left prefrontal lobes cov-
ered by our four-channel TRS patch. Considerable intersubject
variability was observed in the measures of hemoglobin con-
centrations, as previously reported in the literature (34). Group
mean comparisons were inspected for the homogeneity of variance
assumption. When the variance test of homogeneity was signifi-
cant, the p-value of the unequal variance for one-tailed t -tests was
reported. TRS measures of right and left frontal areas were ana-
lyzed separately. Older adults showed a resting [HbO2] and [HbT]
(HbT = HbO2 + HbR) decrease in the left hemisphere compared
to the right and an overall reduced [HbO2] compared to young
adults (Table 2). A one-tailed comparison revealed a decrease in
SatO2 in both left and right prefrontal lobes for the elderly group
(p = 0.045 and 0.029, respectively). Because we observed a differ-
ent trend in hemispheric changes in the measured hemoglobin
concentrations across age, we applied a two-way ANOVA to inves-
tigate the effect of the baseline physiology of aging and laterality.
The results showed no significant interaction between age and
laterality.

RESTING-STATE CBF

Analysis of tagged ASL images revealed different group averages
over the segmented white and gray matter anatomical images
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applied as explicit masks. Mean baseline CBF calibrated with the
use of individual voxel values of the M 0 sequence was computed
for both age groups and a significant difference was observed
for global (p = 0.001) and gray matter (p = 0.02) blood perfu-
sion (Figure 5). To investigate regional effects, we calculated mean
CBF within regions of interest (ROIs) defined by the optical hel-
met. Temporal and frontal ROIs were created by applying a 35 mm
diameter disk around optical channels covering the temporal and
frontal regions. At rest, older adults had significantly lower blood
flow (p = 0.01) in both temporal and frontal lobes than their
younger counterparts.

FUNCTIONAL OPTICAL RECORDINGS

Stimulus-dependent activation of all 58 channels was measured
within the areas covered by the optodes. Significant changes were
defined at p-values of less than 0.05. The activation map was then
obtained via interpolation of the beta values calculated from the
GLM model over the localized optodes coregistered on the MNI
template, although a lack of spatial resolution made it difficult to
identify activation areas with any precision.

The regions of activation for group average, obtained from
the intersection of individuals’ activation maps, were impacted by
variability induced in the positioning of optodes. Thus, a smaller
group-level significant activation map was obtained, although the
pattern of activation followed the same language network areas at
the individual level. Brain regions activated by the lexical-semantic
task were partially different for word and pseudo-word stimuli.
In response to semantic word processing, a decrease in [HbR]
concentration was observed in the elderly adults group in the left
frontal region, at the intersection of the right inferior frontal gyrus
(IFG) and the superior temporal gyrus (STG). In young adults,

FIGURE 5 | White and gray matter segmented images as ROI masks

were used to calculate mean CBF. Only gray matter blood perfusion

yielded a difference between age group averages. *p < 0.05.

pseudo-word stimuli generated diminished [HbR] and increased
[HbO2] in the left IFG but an inverse response (decreased [HbO2]
and increased [HbR]) in the left inferior temporal (IT) and frontal
lobes. In contrast to elderly participants, activated areas remained
in the temporal sulci for other types of stimuli (concrete and
abstract) but again in an inverse fashion.

An ANOVA for the main effect of age depicted significant
[HbO2] and [HbR] changes in both right and left hemispheres
when older and younger adults were compared. Activation differ-
ences were mainly found in the bilateral dorsolateral prefrontal
cortex (DLPFC) and IFG, and right posterior middle temporal
and occipitotemporal gyri. Younger participants showed increased
[HbR] and decreased [HbO2] in the DLPFC and IFG in response
to the semantic processing task (so-called inverse response). Con-
versely, pseudo-words led to a significant right ventral anterior
premotor cortex decrease [HbR], which could be interpreted as an
effort to analyze the stimulus by covert reading.

TRS regressors

Taking into account the measures of baseline physiology from
the TRS system by including individual measures as regressors,
we investigated their contribution to the observed age difference
in [HbO2] and [HbR] stimulus-dependent changes. In the right
hemisphere, the main effect of age faded significantly in the frontal
lobe for both [HbO2] and [HbR], and [HbR] seemed to become
more significant at the intersection of the IFG, STG, and caudal
border of the anterior central gyrus (BA43) (Figure 6). In the
same fashion, a post hoc ANOVA on the effect of age on lexical-
ity (pseudo-words), revealed significant [HbR] differences in right
BA43. However, there was no such effect on total hemoglobin con-
centration [HbT] differences with regressors, which could suggest
that the blood supply alters with age, if we use [HbT] as an estimate
of cerebral blood volume. In the left hemisphere, there was an age
difference in the frontal lobe (Figure 7), with no effect of TRS
regressors. An interaction between age and condition was present
only at the [HbR] level, with changes found in the IFG. A post hoc

analysis revealed an effect of age on pseudo-word processing in
the DLPFC and IFG. In the left hemisphere, we did not find any
significant differences in the temporal regions.

CORRELATION ANALYSES

A correlation coefficient was calculated to examine the associa-
tions between age, performance and baseline physiology (ASL and
TRS measures). Here, we sought relationships between RT and
physiological measures while controlling for the effects of age and
performance. The partial correlation coefficient between RT and
[HbO2], [HbR], SatO2, and CBF was calculated by adjusting for
age and performance scores. We presumed that both variables of
correlation were linearly related to age and performance on the
neuropsychological tests.

Inspection of the correlations between RT and CBF measures
revealed no significant relationship. Pearson’s coefficient of cor-
relation between RT and [HbO2], [HbR] and SatO2 dropped
significantly once we removed the effect of age (from r (42) = 0.35
to r (40) = 0.06). It is interesting to note that, even though
there were no significant correlations between the variables under
investigation, the variations tended to move in opposite directions
when younger and older adults were compared (see Figure 8).
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FIGURE 6 | NIRS activation maps of the hemoglobin

concentrations for the main effect of age. With TRS measures of

baseline hemoglobin concentrations regressed against

stimulus-dependent activation, we observed a different pattern of

posterior-inferior alteration as an effect of age. But this pattern is more

pronounced at the [HbO2] and [HbR] level and not for [HbT], which is an

estimate of the cerebral blood volume. Panel (A) shows ∆[Hb] age

differences without taking into account baseline physiology measures

and panel (B) depicts activation differences once applying TRS

regressors into ANOVA.

The tendency graphs revealed that slower responding elderly
participants had slightly elevated baseline [HbO2], [HbR], and
SatO2, whereas younger individuals showed the opposite pattern
(i.e., slower respondents had lower baseline levels).

DISCUSSION

The goal of this study was to evaluate the validity of the assumption
that, when different age groups are compared, the hemodynamic
response is a direct indicator of neuronal activity in response to a
cognitive stimulus. The main result showed that, when each par-
ticipant’s baseline physiology is taken into account, the degree and
extent of neural activity varied significantly in the right hemi-
sphere – an observation that could change the interpretation
of less asymmetrical language-related neural engagement. The
present study supports the reliability of single-word processing
studies using fNIRS while urging caution in the interpretation of
functional signals. RTs and accuracy on the lexical-semantic task
showed the presence of a lexicality effect for both age groups.

However, a different pattern of brain activation was found for
young and older participants. We observed that searching for
semantic knowledge while processing words vs. pseudo-words in
the lexical-semantic task engaged largely overlapping brain regions
in the left hemisphere, including the posterior temporal gyri,which
is consistent with the notion that activity in the left temporal
regions is linked to the verbal abilities of word retrieval rather
than the lexical class to which the stimulus belongs (54).

A right frontal [HbT] difference between the young and older
samples could be in line with findings from TRS measures for
lower oxygen saturation in the elderly group. In response to neural
activity and to compensate for reduced baseline HbO2 concen-
trations and CBF, older adults may need greater blood volume
in their compensatory networks. Thus, controlling for baseline
physiology is expected to make the interpretation of results more
reliable.

The presence of right DLPFC, frontotemporal cortex, occipi-
totemporal and angular gyri [homolog to areas known as the visual
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FIGURE 7 | Results of a two-way ANOVA on [HbR] examining the factors

of age and condition (of lexical-semantic task) on the activation maps.

(A) Main effect of age, (B) main effect of condition, (C) interaction between

age and condition, and (D) effect of age on pseudo-word processing are

shown. An IFG age difference was present in all four types of analysis but

with different extents of activation. A post hoc analysis revealed an effect of

age on pseudo-word processing in the DLPFC and IFG. No significant [HbO2]

or [HbT] differences were observed.

FIGURE 8 | Scatterplots of mean RT (x -axis, in seconds) vs.TRS baseline

physiology measures (absolute [HbR] and [HbO]; y -axis, in micromolar)

for the younger and elderly groups are shown for both right and left

hemispheres (RH and LH). Pearson’s r coefficients showed no significant

correlation between baseline [Hb] and RT, but different trends were present

when comparing age groups.

word form area (55)]; activation in the elderly cohort is compatible
with the idea that bilateral neural activity increases with age (56,
57), although it is important to note that this age-related pattern
of activity was observed by means of ∆[HbR] differences in the
frontotemporal cortex and [HbO2] variation in the DLPFC. With-
out [HbT] variation and ∆[HbR] differences, it could be assumed

that this latter observation is due to mere neural activity and not
to baseline physiological differences.

In the contrast between pseudo-words and real words, we found
an age-different cluster of activation in the right IFG–STG inter-
section, bilateral DLPFC, and left IFG, which is consistent with
previous findings claiming for the compensatory mechanism of
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the brain activity with effort in accordance with the behavioral
finding that RTs are longer for pseudo-words (56, 58). It can be
noted that the hemispheric laterality for language is relative and
that it relies on a stronger engagement of the left hemisphere
for syntactic and semantic processing, which nevertheless coex-
ists with right-hemisphere activation. Thus, when the different
age groups are compared, the difference in hemispheric patterns
of activation could express over-recruitment of reserve networks,
meaning that activation becomes less lateralized. Moreover, con-
trolling for the baseline physiology strengthened the analyses, as
it revealed differences in mere neural activity triggered by the
task and not in the absolute hemoglobin concentration differ-
ences (data shown in TRS results). However, a question remains
about whether bilateral frontal activity in older adults is dri-
ven by task difficulty per se or whether baseline physiological
differences compared to their younger counterparts led to this
differentiation.

The inverted hemodynamic response in the young group could
be due to local coarse regulation of oxidative metabolism, pro-
voked by the increase in neuronal activity, which is overwhelmed
by an increase in CBF. In this regard, Woolsey and colleagues (59)
postulated that there is a hemodynamic “steal” effect. The “steal
phenomenon”may explain this observation by accounting for sub-
sequent CBF changes: some arterioles were metabolically dilated
while others in neighboring areas were constricted (60, 61).

More generally speaking, this study confirms the usefulness
and sensitivity of hemodynamic-based corrected fNIRS imaging in
investigating the neurofunctional reorganization of word process-
ing and cognition with age. The same technique could be used after
brain lesion and in recovery. This study also confirms the existence
of a form of neurofunctional reorganization that corresponds to
compensatory mechanisms, allowing for the preservation of lin-
guistic abilities despite the neurophysiological changes present in
aging.

In summary, while the combination of absolute and rela-
tive changes in hemoglobin concentration eliminates some of
the assumptions previously required in NIRS data analysis, fur-
ther improvements are needed. Future studies will be augmented
by parallel ASL measurements of blood flow variation during
brain activation, to provide a detailed measurement of quanti-
tative events accompanying neuronal activation. Individual brain
volume analyses would also provide a better estimation of the
optimal source-detector distances for different age groups. In
the case of atrophy in the elderly population, it is important
to correct for the source-detector distances to allow for opti-
mum light penetration and differences in light scattering and
absorption.
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