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AN EXPLORATION OF THE RELATIONSHIP BETWEEN  

MODE CHOICE AND COMPLEXITY OF TRIP CHAINING PATTERNS  

Xin Ye 

ABSTRACT 

 

This thesis investigates the relationship between mode choice and the complexity of trip 

chaining patterns.  An understanding of the causality between these two choice behaviors 

may aid in the development of tour-based travel demand modeling systems that attempt 

to incorporate models of trip chaining and mode choice.  The relationship between these 

two aspects of travel behavior is represented in this thesis by considering three different 

causal structures: one structure in which the trip chaining pattern is determined first and 

influences mode choice, another structure in which mode choice is determined first and 

influences the complexity of the trip chaining pattern, and a third structure in which 

neither is predetermined but both are determined simultaneously. The first two structures 

are estimated within a recursive bivariate probit modeling framework that accommodates 

error covariance.  The simultaneous logit model is estimated for the third structure that 

allows a bidirectional simultaneous causality. The analysis and model estimation are 

performed separately for work tour and non-work tour samples drawn from the 2000 

Swiss Microcensus travel survey.  Model estimation results show that the causal structure 

in which trip chaining precedes mode choice performs best for the non-work tour sample. 



 v

For the work-tour sample, the findings were less conclusive because two causal structures, 

one in which trip chaining affects mode choice and the other in which both are 

determined simultaneously, gave virtually identical goodness-of-fit measures. But the 

structure in which mode choice precedes trip chaining pattern choice gave significantly 

inferior goodness-of-fit measures for the work tour sample.  These findings should be 

reflected in the development of activity-based and tour-based modeling systems.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Over the past few decades, there has been considerable research on people’s trip chaining 

patterns, i.e., the propensity to link a series of activities into a multi-stop tour or journey.  

The analysis of trip chaining activity may lead to a better understanding of travel 

behavior and provide a more appropriate framework for examining various transportation 

policy issues (Strathman & Dueker, 1995).  Indeed, the profession has seen tour-based 

models being developed and increasingly applied in the travel demand forecasting arena 

in place of the more traditional trip-based models that do not reflect trip chaining 

behavior and tour formation.   

 

In this thesis, the terms trip chain and tour are used synonymously to refer to a sequence 

of trips that begins at home, involves visits one or more other places, and ends at home. 

Depending on the number of places visited within the tour or chain, the tour may be 

classified into two categories: simple and complex. A tour or chain with a single stop or 

activity outside the home location is defined as a “simple” tour, whereas a tour or chain 

with more than one stop outside the home location is defined as a “complex” tour.  
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Thus a tour or chain of the form: home  shop  home is considered a simple tour 

while a tour of the form: home  work  shop  home is considered a complex tour.   

 

As people’s activity patterns become increasingly complex and involve interactions with 

other household and non-household members and as time is a finite resource, it may be 

conjectured that trip chains are likely to be increasingly complex over time.  The ability 

to chain multiple activities together in a single tour or chain may provide greater 

efficiency and convenience than a series of single-stop simple tours (Hensher et al., 2000).  

There are at least two reasons as to why this has significant traffic and policy 

implications.  First, complex tours or chains may lead to an increase in automobile usage.  

If one needed to pursue complex tours or chains, then the flexibility afforded by the 

private automobile is desirable.  The ability to pursue multiple activities in a single 

journey is rather limited when constrained by the schedules, routes, and uncertainty 

associated with public transportation.  Thus, complex trip chaining may contribute to an 

increased auto dependency and consequently, automobile traffic.  Second, in the case of 

workers (commuters), the formation of complex trip chains may entail the linking of non-

work activities with the work trip (commute).  Then, non-work trips that could have taken 

place outside the peak periods now occur in the peak periods simply because they are 

being tied together with the commute.  Thus, complex trip chaining patterns may 

contribute to an increase in peak period travel demand.   

 

 

 



 3

1.2 Objective 

The above discussion clearly points to the possible interdependency between trip 

chaining, auto usage, and trip timing.  Strathman and Dueker (1995), in an analysis of the 

1990 NPTS, found that complex trip chains may tend to be more auto-oriented.  However, 

the nature of the causal relationship is not unilaterally evident because the availability of 

an automobile may provide the flexibility and convenience that contributes to the 

formation of complex trip chains.  The flexibility of the automobile may stimulate the 

desire to undertake additional activities in one tour.  For example, the lower travel times 

typically associated with the auto mode choice may relax time constraints and lead to 

more stop-making (Bhat, 1997).  Moreover, shared rides, which constitute a portion of 

total auto mode share, are more likely to involve complex tours due to the variety of trip 

purposes and destinations between the driver and passengers.  The central question that is 

being addressed in this thesis is:  “Does mode choice influence the complexity of trip 

chaining patterns or does the complexity of the trip chaining patterns influence mode 

choice?”.  The ambiguity in the causal relationship between the complexity of trip chains 

and mode choice motivates this investigation. This research is aimed at understanding 

and quantifying the causal relationships between tour complexity and mode choice using 

econometric methods. 

 

1.3 Outline 

 

The rest of this thesis is organized as follows. Chapter 2 reviews literature concerning the 

causal analysis in transportation research.  Chapter 3 presents the modeling methodology 

and formulation for the different causal structures considered in this thesis. Chapter 4 
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introduces the Swiss Travel Microcensus 2000 and the process by which the tour data set 

needed for model estimation was prepared.  Model estimation results are discussed in 

Chapter 5.  Chapter 6 presents the performance comparison across models representing 

three different causal structures.  Conclusions are drawn and some recommendations for 

future research are provided in Chapter 7.   

 



CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Structural Equation Model: Causal Analysis among Continuous Variables  

Structural Equations Modeling (SEM) is a powerful modeling methodology that takes a 

confirmatory hypothesis-testing approach to the causal analysis among continuous 

endogenous variables.  A typical structural equations model (with ‘G’ continuous 

endogenous variables) is defined by a matrix equation system as shown in Equation 2.1. 
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This equation can be rewritten as  

                  2.2  ε+Γ+= XBYY

      (or)               2.3  )X()BI(Y 1 ε+Γ−= −

Where Y: a column vector of endogenous variables, 

 B: a matrix of parameters associated with right-hand-side endogenous variables, 

 X: a column vector of exogenous variables, 

 Γ: a matrix of parameters associated with exogenous variables, and 

 ε: a column vector of error terms associated with the endogenous variables.

 5
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SEM specifies dependent variables Y as explanatory variables associated with the other 

exogenous explanatory variables and estimates parameter matrix B to capture inherent 

causal relationship among dependent variables Y.   The correlations between Y and ε 

caused by simultaneous equations disables Ordinary Least Square (OLS) to consistently 

estimate the parameter matrix B associated with right-hand-side Y.   Econometrician 

brought forward 2-Stage Least Square (2SLS) and 3-Stage Least Square (3SLS) to 

achieve consistent estimators based on Instrumental Variable (IV) approach. 3SLS 

estimator is more efficient than 2SLS estimator, since former accommodates unequal 

variance of ε in each single equation.  In addition to Least Square (LS) approach, 

Maximum Likelihood (ML) method can be applied to consistently estimate the 

parameters in SEM as well. Limited-Information Maximum Likelihood (LIML) and Full-

Information Maximum Likelihood (FIML) in ML estimators are exactly the counterparts 

of 2SLS and 3SLS in LS estimators.  With normally distributed disturbances, FIML is 

efficient among all the estimators.  The other advanced estimation approaches, such as 

Asymptotically-Distribution-Free (ADF), are also available and applied in literature.  

 

Travel behavior investigators applied SEM in their research in order to analyze complex 

causal relationship among travel-related variables, such as trip frequency, travel time or 

travel distance, activity duration, etc..  Past research regarding SEM application in travel 

behavior is briefly reviewed here.  

Kitamura, et al. (1992) and Golob, et al (1994) are the first known application of SEM to 

joint activity duration and travel time data.  
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Kitamura (1996) and Pas (1996) are two overviews that include discussions of the role of 

SEM in activity and time-use modeling.  

 

Lu and Pas (1997) present an SEM of in home activities, out-of-home activities (by type), 

and travel (measured various ways), conditional on socioeconomic variables. Estimation 

is by normal theory- maximum likelihood, and the emphasis is on interpretation of the 

direct and indirect effects. The data are derived from the Greater Portland, Oregon 

metropolitan area.  

 

Golob and McNally (1997) present an SEM of the interaction of household heads in 

activity and travel demand, with data from Portland. Activities are divided into three 

types, and SEM results are compared using maximum likelihood (ML) and generalized 

least squares (GLS) estimation methods. They conclude that GLS methods should be 

used to estimate SEM when it is applied to activity participation data. 

 

Fujii and Kitamura (2000) studied the latent demand effects of the opening of new 

freeways. The authors used an SEM to determine the effects of commute duration and 

scheduling variables on after work discretionary activities and their trips. Data are for the 

Osaka-Kobe Region of Japan.  

 

Golob (2000) estimated a joint model of work and non-work activity duration using 

Portland data. 
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Kuppam and Pendyala (2000) presented three SEMs estimated by GLS using data from 

Washington, DC.  The models focused on relationships between: (1) activity duration and 

trip generation, (2) durations of in-home and out-of-home activities, and (3) activity 

frequency and trip chain generation.  

 

Simma and Axhausen (2001) developed an SEM that captured relationships between 

male and female heads of household with regard to activity and travel demands. The 

dependent variables included car ownership, distances traveled by males and females, 

and male and female trips by two types of activities using data from the Upper Austria. 

 

Meka and Pendyala (2002) investigated the interaction between two adults in one 

household in their travel and activity time allocation by SEM using Southeast Florida 

data. Interesting trade-off within non-work travel time and non-work activity time 

between two adults was quantified and interaction of travel decision between household 

members was verified by SEM.  

 

Application of SEM in travel behavior research initiates the analysis of complex causal 

relationship among individual’s travel decisions, however, its limitation is quite apparent. 

Existing SEM only allows continuous dependent variables, but most travel decisions, 

such as travel mode choice, destination choice or route choice, are discrete in nature.  It is 

necessary to introduce discrete dependent variables into SEM framework in aim at more 

comprehensively analyzing the causal relationship with respect to individual’s travel 



decisions.  Next subchapter will review the recent research in attempt to integrate discrete 

dependent variable into SEM framework.   

 

2.2 Discrete-Continuous Econometric Modeling Framework: Causal Analysis 

between Continuous Variable and Discrete Variable   

Pendyala and Bhat et. al. (2002) made an attempt to integrate discrete dependent variable 

into SEM-like modeling framework. Using this discrete-continuous econometric 

modeling framework, they analyzed the causal relationship between timing and duration 

of maintenance activities. Details of this methodology are presented as below.   

 

Let i be an index for time of day of activity participation (i = 1, 2,…, I) and let q be an 

index for observations (q = 1, 2,…, Q). Consider the following equation system: 

⎪⎩

⎪
⎨
⎧

ω+δ+θ=

ε+γ+β=

qqqq

qiqiqiiqi

Dxa

azu

''

''*

                                                                                       2.4 

εqi ~ IID Gumbel(0,1), ωq ~ N(0,σ2
).  

where uqi
*

 is the indirect (latent) utility associated with the i
th

 time of day for the q
th

 

observation, Dq is a vector of the time of day dummy variables of length I, δ is a vector of 

coefficients representing the effects of different times of the day of activity participation 

on activity duration, εqi  is a standard extreme-value (Gumbel) distributed error term 

assumed to be independently and identically distributed across times of the day and 

observations. is logarithm of activity duration and γ is its coefficient.  The error term 

ωq is assumed to be i.i.d. normally distributed across observations with a mean of zero 

qa
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and variance of σ2
.
 
 In Equation 2.4, the time of day alternative i will be chosen (i.e., Dqi 

=1) if the utility of that alternative is the maximum of the I alternatives. Defining 

,                                                                                2.5 
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-)(umax v *
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the utility maximizing condition for the choice of the i
th

 alternative may be written as: 1 

Dqi = 1 if and only if βi
’
zqi > vqi.  Let Fi(vqi) represents the marginal distribution function 

of vqi implied by the assumed IID extreme value distribution for the error terms εqi (i = 

1,2,…,I) and the relationship in Equation 2.5. Using the properties that the maximum 

over identically distributed extreme value random terms is extreme value distributed and 

the difference of two identically distributed extreme values terms is logistically 

distributed, the implied distribution for vqi may be derived as: 
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The non-normal variable vqi is transformed into a standard normal variate using the 

integral transform result: vqi
*
= , where Φ(.) is the standard cumulative 

distribution function.  

] )v([ qi

1
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Equation system 2.4 may now be rewritten as: 
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A correlation ρi between the error terms vqi* and ωq is allowed to accommodate common 
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unobserved factors influencing the time of day choice for activity participation and the 

duration of the participation.  Since aq is partially determined by ωq and vqi* is correlated 

with ωq if ρi is unequal to zero, aq is apparently correlated with random error term vqi* in 

the first equation. Similarly, Dq is also correlated with random error term ωq in the second 

equation.  The endogenous nature of dependent variables Dq and aq entails full-

information maximum likelihood method to jointly estimate their corresponding 

parameters γ and δ.  Limited-information maximum likelihood (sequential estimation) 

does not provide consistent estimators of the coefficients on endogenous variables.    

The full-information likelihood function for estimating parameters is: 
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where φ(.) is the standard normal density function, and lq and bqi are defined as follows: 
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However, they also showed that either γ or δ should be equal to zero for logical 

consistency.  It leads to two recursive model system indicating two different causal 

relationships between discrete dependent variable and continuous dependent variable.  If 

γ = 0 and δ ≠ 0, then discrete dependent variable, time of day participation, affects 

continuous dependent variable, the logarithm of activity duration (but not vice versa), 

inversely, if γ ≠ 0 and δ = 0, then the continuous dependent variable affects discrete 
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dependent variable (but not vice versa).  By comparing the goodness-of-fit from the 

models in two recursive system, the causal relationship between them may be analyzed 

and identified.   

 

The most creative part of this study is to specify the endogenous discrete and continuous 

variables as explanatory variables into mutual explanatory functions, then by taking 

advantage of logical consistency to identify two recursive model structures indicating two 

unidirectional causal relationships.  In addition, discrete-continuous econometric 

modeling approach is appropriately adopted here to consistently estimate parameters on 

endogenous variables with accommodation of correlation between normal error term and 

Gumbel error terms.   

 

2.3 Nested Logit Model: Sequential Discrete Choice Analysis 

Hensher et. al. (2000) analyzed trip chaining as a barrier to the propensity to use public 

transportation using multinomial logit, nested logit and mixed logit model.  The theme of 

that paper is fairly close to the current thesis.  Following Strathman & Dueker (1995), 

they classified trip chains into 7 categories as below: 

1) Simple work: h – w (– w –) – h 

2) Complex to work: h – nw (– nw/w –) – w – h 

3) Complex from work: h – w (– nw/w –) – nw – h 

4) Complex to and from work: h – nw – (– nw/w –) – w – (– nw/w –) – nw – h 

5) Complex at work: h – w – (– nw/w –) – nw – (– nw/w –) – w – h 

6) Simple non-work: h – nw – h 
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7) Complex non-work: h – nw – (– nw –) – h 

h: home, w: work, nw: non work. The bracketed terms represent additional trips that may be in 

the chain. 

 

On the other side, only two alternatives: Car and Public Transport are specified in mode 

choice set.  They presumed the sequential choice behavior in which trip chaining type 

choice is ahead of trip mode choice, and then imposed 1 on the inclusive value parameter 

coefficients associated with all the complex chain type choices and equalized the 

inclusive value parameter coefficients associated with all the rest simple chain type 

choices.  The estimation results showed that inclusive value parameter (0.866) associated 

with simple chains appeared significant and fell into the interval from 0 to 1.  This 

statistical result is consistent with utility maximization theory behind nested logit model 

and validates the presumed sequential choice behavior.   

 

From this study, it can be realized that nested logit model (NL) can be applied in dealing 

with problems regarding the relationship between two discrete dependent variables.  

Based on the assumption of a sequential choice mechanism, nested logit models 

representing two alternative tree structures can be formed. By checking the 

reasonableness of the estimated inclusive value parameter coefficients and/or comparing 

measures of goodness-of-fit between models of two different structures, the more 

plausible structure that is supported by the data may be identified.  Based on this 

identification, the causal relationship between two choice behaviors can be clarified.  

However, the nested logit model has restriction on inclusive value parameter coefficient.  
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Once estimated inclusive value parameter coefficients fall outside the allowable range 

from 0 to 1, the corresponding nested logit structure becomes invalid.  Besides, unlike 

SEM, nested logit model does not provide a set of parameters directly measuring the 

impact of endogenous variables on the others.   

 

2.4 Summary  

Chapter 2 extensively reviews the existing methodologies in literature concerned with 

causal analysis between/among travel-related variables.  These methodologies include 

Structural Equation Model, Discrete-Continuous Econometric Model and Nested Logit 

Model.  As reviewed earlier, SEM only allows the causal analysis among multiple 

continuous endogenous variables; NL is potentially applicable in causal analysis evolved 

with discrete dependent variables but modeling structure is completely different from 

SEM and does not provide parameters directly measuring the causal effect.  Discrete-

Continuous Econometric Model initially introduced discrete variable into a SEM-like 

modeling framework.  Following this good start, it seems to be straightforward to 

generalize this approach from discrete-continuous situation towards discrete-discrete 

situation.  The details of modeling methodology for discrete-discrete causal analysis are 

brought forward in the next chapter.  
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CHAPTER 3 

MODELING METHODOLOGY 

 

3.1 Outline 

 

As discussed in last chapter, the causal relationship between tour type choice and mode 

choice cannot be analyzed in SEM or Discrete-Continuous Econometric Model since 

dependent variables are both discrete in nature.  In this thesis, two different econometric 

modeling methods are employed to analyze the relationship between two discrete 

variables.  The first is the recursive simultaneous bivariate probit model, which allows 

the analysis of one-way causal relationships between two choice behaviors.  In this 

formulation, the random error terms are assumed to follow the bivariate normal 

distribution.  The bivariate normality assumption implies that two endogenous dummy 

variables may not coexist in mutual functional relations.  The existence of an endogenous 

dummy variable in either function corresponds to two different causal structures (see 

Section 3.2 for details).  Intuitively, this feature of the bivariate probit model provides an 

appropriate approach to distinguish the causality between tour complexity and auto mode 

choice.  However, this approach also entails an underlying assumption that an explicit 

unidirectional causal relationship (or at least the tendency of such a unidirectional causal 

relationship) exists in the population being studied. A unidirectional causal relationship 

may exist in a specific tour, but the nature of the causal relationship may vary across 

individuals and across tours for the same individual.  Macroscopically, the presence of a 
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bidirectional causality would possibly appear in the population if neither unidirectional 

causal relationship dominates the other.  

 

In order to address the possibility of a simultaneous bidirectional causality, this thesis 

also uses the simultaneous logit model formulation presented by Schmidt and Strauss 

(1975) and initially introduced in the transportation context by Ouyang, et.al. (2002).   

This model formulation enables the modeling of bidirectional causality that might exist in 

tour complexity and mode choice. Essentially, the simultaneous logit model may be 

considered an extension of the more commonly known multinomial logit model, where 

two endogenous dummy variables can be incorporated into the mutual utility functions 

simultaneously. The only restriction on these two dummy variables is that their model 

coefficients must be identical for logical consistency (see Section 3.3 for details). 

 

Thus, three different possible causal structures are considered in this thesis: 

1) Mode choice → Trip chain complexity (recursive bivariate probit model) 

2) Trip chain complexity → Mode choice (recursive bivariate probit model) 

3) Trip chain complexity ↔ Mode choice (simultaneous logit model) 

Through a performance comparison of models across the three causal structures, it is 

envisaged that the relationship between tour complexity and mode choice may be 

discussed and clarified.  

 

 

 



3.2 Recursive Simultaneous Bivariate Probit Model 

If the tour’s complexity/simplicity and auto/non-auto mode choice are treated as two 

binary choices, the bivariate probit model can be formulated at the tour level to 

simultaneously analyze their probabilities with accommodation of random error 

correlation.  The general formulation is as follows:     

⎪⎩

⎪
⎨
⎧

++=

++=

qqqq

qqqq

MxT

TzM

ωηβ

εαγ

'

'

*

*

 3.1      

 

where 

q is an index for observations of tour (q = 1, 2, … , Q) 

Mq
* 
is a latent variable representing the mode choice for tour q  

Tq
* 
is a latent variable representing the complexity of tour q  

Mq = 1 if Mq
* 
> 0, = 0 otherwise  

i.e., Mq is a dummy variable indicating whether tour q uses the auto mode   

Tq = 1, if Tq
* 
> 0, = 0 otherwise 

i.e., Tq is a dummy variable indicating whether tour q is complex 

zq is a vector of explanatory variables for Mq
*

xq is a vector of explanatory variables for Tq
*

γ , β  are two vectors of model coefficients associated with the explanatory  

variables zq and xq, respectively 

α  is a scalar coefficient for Tq to measure the impact of tour’s complexity on  

mode choice 

      η  is a scalar coefficient for Mq to measure the impact of mode choice on the choice of 

tour complexity 
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qε  and qω  are random error terms, which are standard bivariate normally distributed with 

zero means, unit variances, and correlation ρ , i.e.
 qε , qω ~ ),1,1,0,0(2 ρφ . 

Based on this normality assumption, one can derive the probability of each possible 

combination of binary choices for tour q: 

 

],','[)0,0( 2 ρβγ xzTMprob −−Φ===  3.2 

]),'(,'[)]'([)0,1( 21 ρηβγηβ +−−Φ−+−Φ=== xzxTMprob  3.3 

],'),'([)]'([)1,0( 21 ρβαγαγ xzzTMprob −+−Φ−+−Φ===  3.4 

)]'([)]'([1)1,1( 11 ηβαγ +−Φ−+−Φ−=== xzTMprob  

 ]),'(),'([2 ρηβαγ +−+−Φ+ xz  3.5 

where 

][1 ⋅Φ  is the cumulative distribution function for standard univariate normal distribution, 

][2 ⋅Φ  is the cumulative distribution function for standard bivariate normal distribution. 

 

The sum of the probabilities for the four combinations of two binary choices should be 

equal to one, i.e.,  

1)1,1()1,0()0,1()0,0( ===+==+==+== TMprobTMprobTMprobTMprob  3.6 

 

Substituting equations 3.2 through 3.5 into equation 3.6, it can be shown that 

]),'(),'([],','[ 22 ρηβαγρβγ +−+−Φ+−−Φ xzxz  

                                   ],'),'([]),'(,'[ 22 ρβαγρηβγ xzxz −+−Φ++−−Φ=     3.7  
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This equation does not hold unless either α  or η  is equal to zero. This requirement, 

known as the logical consistency condition similar to the situation in Discrete-Continuous 

Econometric Model, will lead to two different recursive simultaneous modeling 

structures (Maddala, 1983) suggesting two different causal relationships: 

 

1) 0=α , 0≠η  (Mode Choice →  Tour Complexity) 

⎪⎩

⎪
⎨
⎧

++=

+=

qqqq

qqq

MxT

zM

ωηβ

εγ

'

'

*

*

 3.8 

In this structure, mode choice is predetermined as per the first functional relationship. 

Then, the choice of mode is specified as a dummy variable in the second functional 

relationship for tour complexity to directly measure the impact of mode choice on the 

complexity of the trip chain or tour.  

 

2) 0≠α , 0=η  (Tour Complexity →  Mode Choice) 

⎪⎩

⎪
⎨
⎧

+=

++=

qqq

qqqq

xT

TzM
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εαγ

'

'

*

*

 3.9 

Conversely, one may consider the alternative structure in which tour complexity is 

predetermined as per the second functional relationship. The complexity of the tour is 

specified as an explanatory variable influencing mode choice as per the first functional 

relationship. 
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Thus, the desirable feature of the bivariate probit model in which the coefficients of two 

endogenous dummy variables do not coexist in both functional relationships provides an 



appropriate modeling framework to analyze the unidirectional causality between tour 

complexity and mode choice. 

 

The endogenous nature of one of the dependent variables in the simultaneous equation 

system can be ignored in formulating the likelihood function. To facilitate formulating 

likelihood functions, equations 3.2 through 3.5 can be rewritten in a format including 

only the cumulative distribution function of the standard bivariate normal distribution. 

  

],','[)0,0( 2 ρβγ −−−Φ=== xzTMprob  3.10 

]),'(,'[)0,1( 2 ρηβγ −+−Φ=== xzTMprob  3.11 

],'),'([)1,0( 2 ρβαγ −+−Φ=== xzTMprob  3.12 

],','[)1,1( 2 ρηβαγ ++Φ=== xzTMprob  3.13 

 

Equations 3.10 through 3.13 and the corresponding likelihood functions can be 

summarized by the following general formulations for the two different unidirectional 

causal structures (Greene, 2003): 

 

1) 0=α , 0≠η  (Mode Choice →  Tour Complexity) 

]),'(,'[2 ρτµηβτγµ qqqqqqqq Mxzprob +Φ=  3.14 

[{∏
=

+Φ=
Q

q

qqqqqqq MxzL
1

2 ),'(,' ρτµηβτγµ ]} 3.15 
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2) 0≠α , 0=η  (Tour Complexity →  Mode Choice) 

],'),'([2 ρτµβταγµ qqqqqqqq xTzprob +Φ=  3.16 

[{∏
=

+Φ=
Q

q

qqqqqqq xTzL
1

2 ,'),'( ρτµβταγµ ]} 3.17 

 where  and .  12 −= qq Mµ 12 −= qq Tτ

                                                            

As the likelihood functions of the recursive bivariate probit model and the common 

bivariate probit model are virtually identical, parameter estimation can be accomplished 

using readily available software such as LIMDEP 8.0. 

 

3.3 Simultaneous Logit Model  
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One may also consider the possibility where neither of the two unidirectional causal 

structures is dominant within the population, i.e., both causal structures are prevalent in 

the population. In addition, one may consider the possibility where the choices regarding 

tour complexity and mode are made simultaneously. To accommodate such plausible 

bidirectional causality, the simultaneous logit model is applied in this thesis. The 

simultaneous logit model may be considered an extension of the multinomial logit model 

commonly used in transportation modeling practice.  In the simultaneous logit model, the 

logarithm of the ratio of probabilities for two alternatives to be selected from one choice 

set is assumed to equal a linear combination of a set of explanatory variables.  One 

dummy variable indicating the choice of tour complexity may be added into the set of 

explanatory variables for mode choice; similarly, one dummy variable indicating mode 

choice may be added into the set of explanatory variables for tour complexity. The 



formulations may be written as follows (all of the symbols have the same meaning as in 

Section 3.2): 

 

qq

q

Tz
TMP

TMP αγ +=⎥
⎦

⎤
⎢
⎣

⎡
=
=

'
)|0(

)|1(
log  3.18 

qq

q

Mx
MTP

MTP ηβ +=⎥
⎦

⎤
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⎣

⎡
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'
)|0(

)|1(
log  3.19 

 

By rewriting equations 3.18 and 3.19 across two possible values that Tq and Mq can take, 

one gets: 
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⎦
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ηβ +=⎥
⎦

⎤
⎢
⎣

⎡
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MTP

MTP
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)1,0(

)1,1(
log  3.23 

 

The sum of the probabilities for the four combinations of binary choices should be equal 

to one, i.e.,  

1)1,1()1,0()0,1()0,0( ===+==+==+== qqqq TMPTMPTMPTMP  3.24  
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By converting simultaneous equations 3.20 through 3.23, it can be shown that 

)''exp()0,0()1,1( αβγ ++===== qqqq xzTMPTMP  

                                        )''exp()0,0( ηβγ ++=== qqq xzTMP  3.25 

For logical consistency, α  must be equal to η . Endogenous dummy variables Tq and Mq 

are allowed to coexist in the simultaneous equation system. 

 

By replacing η  with α  and solving the simultaneous equations 3.20 through 3.24, the 

probability for each combination is formulated as follows: 

qqq TMPP ∆==== /1)0,0(00  3.26 

qqqq zTMPP ∆==== /)'exp()0,1(10 γ  3.27 

qqqq xTMPP ∆==== /)'exp()1,0(01 β  3.28 

qqqqq xzTMPP ∆++==== /)''exp()1,1(11 αβγ  3.29 

where  

)''exp()'exp()'exp(1 αβγβγ +++++=∆ qqqqq xzxz . 3.30  

 

Finally, the likelihood function may be formulated as follows:  

qqqqqqqq TM

q
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q
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q
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q
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q PPPPL )()()()( 11

)1(

01
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1
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00

−−

=

−−∏=  3.31 

 

Model estimation is performed using the Gauss programming language (see Gauss codes 

in Appendix). 
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CHAPTER 4 

DATA SET AND SAMPLE DESCRIPTION 

 

4.1 Survey Description  

The data set used for analysis and model estimation is extracted from the Swiss Travel 

Microcensus 2000. A very detailed description of the survey and the survey sample can 

be found in Ye and Pendyala (2003).  Only a brief description of the survey sample is 

provided in this thesis.  The survey respondent sample consists of 27,918 households 

from 26 cantons in Switzerland.  The person sample was formed by randomly selecting 

one person over 6 years old from each household with less than 4 household members 

and two persons over 6 years old from each household with 4 or more members.  As a 

result of this sampling scheme, the person respondent sample consisted of 29,407 persons.  

All of the persons in the person sample were asked to report their travel in a one-day trip 

diary. The resulting trip data set includes 103,376 trips reported by 29,407 interviewed 

persons (including the possibility of some respondents making zero trips on the survey 

day).  The household and person characteristics of these samples are respectively shown 

in Tables 4.1 and 4.2.  Data corresponding to respondents from the Canton of Zurich was 

extracted to reduce the data to a more manageable size and to control for possible area 

specific effects.  Tables 4.1 and 4.2 also include summary statistics for the subsample of 

respondents from Zurich in addition to those of the overall
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Swiss sample.  The Zurich subsample includes 5,128 households from which 5,241 

persons provided travel information.   

 

4.2 Household Characteristics of Sample and Subsample 

Table 4.1 Household Characteristics of Swiss Travel Microcensus 2000 

 

Characteristic Swiss Sample 
    Zurich 

Subsample 

Sample Size  27918 5128 

   

Household Size 2.43 2.20 

          1 person  27.5% 31.0% 

          2 persons  35.1% 37.0% 

          3 persons  14.0% 12.6% 

          ≥ 4 persons  23.4% 19.5% 

   

Monthly Income   

          Low (<Fr 4K) 20.8% 17.5% 

          Medium (Fr 4K~Fr 8K) 35.9% 34.7% 

          High (>Fr 8K) 18.4% 21.5% 

   

Vehicle Ownership 1.17 1.09 

          0 auto 19.8% 23.8% 

          1 auto 50.5% 49.5% 

          2 autos 24.5% 21.8% 

          ≥ 3 autos 5.2% 4.9% 

   

Family Type   

          Single 27.2% 30.6% 

          Unmarried couple (no 

child) 27.9% 29.3% 

          Married 43.6% 37.8% 

   

Presence of Children    

          Child <6 years old 10.6% 8.7% 

          Child 6~17 years old 22.5% 18.9% 

   

Household Location   

          Major city 42.4% 55.1% 

          Surrounding areas of city 30.4% 35.2% 

          Rural 26.1% 8.9% 
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Table 4.1 lists sample size, average household size and its distribution, household income 

distribution, average household vehicle ownership and its distribution, family type 

distribution, proportion of households with children and household location distribution 

by total Swiss household sample and Zurich household subsample. 

 

As expected, the proportion of households without automobiles in this Swiss sample is 

substantially higher than in a typical sample from the United States.  This may be 

reflective of the higher level of public transport service in Switzerland that enables 

mobility and accessibility without the same level of auto dependence.  As a result, one 

might expect the automobile to play a smaller role in the Swiss travel environment than 

in the US environment.   

 

In general, the Zurich subsample exhibits characteristics rather similar to the overall 

Swiss sample but to some degree reflects the urban characteristics of Zurich from various 

angles.  Average household size in Zurich subsample is smaller than the average in Swiss 

sample in accord with the common sense that urban residents tend to live more 

independently.  Monthly income distribution apparently shows that Zurich has 3.1% 

more families falling into high-income category but 3.3% less families into low-income 

category than the nation level distribution, which also reflects Zurich’s urban 

characteristics.  Average vehicle ownership in Zurich subsample is somewhat smaller 

than in Swiss sample and there are 4.0% more households in Zurich without vehicle than 

nation-level distribution.  It may be conjectured that advanced public transit system in 

Zurich enables more people live without vehicles in household.  Statistics also shows that 
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Zurich has substantially less married families and less families with children, which may 

account for smaller average household size.  Finally, the household location distribution 

in Zurich subsample shows less than 10% households are located in rural area and around 

55% in major city, as expected.  

 

4.3 Person Characteristics of Sample and Subsample  

The person characteristics are shown separately for commuters and non-commuters. The 

statistics shows personal daily trip rates is less than 4.0 for both commuters and non-

commuters, whereas personal daily trip rates in US are typically more than 4.0.  Because 

non-commuter is defined as those people who make work trips at least twice per week, 

work trips rates for non-commuter are not exactly equal to zero but fairly close to zero, as 

shown in Table 4.2.  Auto mode share within work trips and non-work trips is less than 

60% in accordance with the lower vehicle ownership in comparison with US.   

 

Person characteristics show similarities between the overall Swiss sample and the Zurich 

subsample.  As expected, non-commuters show a greater proportion of elderly (retired) 

and young persons than commuter samples.  On average, commuters make about 1.4 trip 

chains per day where the trip chain is defined as a complete home-to-home tour.  Non-

commuters make, on average, about 1.2 trip chains per day.  Commuters make nearly 

four trips per day while non-commuters make fewer trips at about three trips per day.  

The difference in trip making between commuters and non-commuters is primarily due to  
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Table 4.2 Person Characteristics of Swiss Travel Microcensus 2000 

Swiss Sample Zurich Subsample 

Characteristic 
Commuters 

Non-

Commuters 
Commuters 

Non-

Commuters 

Sample Size 13296 16111 2504 2737 

     

Age (in years) 40.7 (Mean) 46.5 (Mean) 41.0 (Mean) 49.0 (Mean) 

Young (6~29) 20.8% 31.8% 20.4% 28.1% 

Middle (30~59) 73.5% 26.3% 73.1% 25.3% 

Old (≥60) 5.7% 41.8% 6.5% 46.6% 

     

Sex     

Male  54.8% 39.3% 56.4% 39.6% 

Female 45.2% 60.7% 43.6% 60.4% 

     

Employment Status     

Full time  71.8% 8.9% 72.8% 8.7% 

Part time 24.3% 6.0% 23.0% 7.5% 

     

Licensed  87.7% 50.7% 87.3% 51.4% 

     

#Chains/day 1.43 1.24 1.32 1.20 

     

#Trips/day 3.98 3.13 3.77 3.13 

Work trips 0.91 0.08 0.87 0.08 

Non-work trips 3.07 3.05 2.90 3.05 

     

Work Trip Mode 

Share 
  

  

Auto 57.1% 54.8% 51.8% 46.6% 

Non-Auto 42.9% 45.2% 48.2% 53.4% 

     

Non-Work Trip 

 Mode Share 
  

  

Auto 58.4% 41.1% 52.6% 37.0% 

Non-Auto 41.6% 58.9% 47.4% 63.0% 
Notes:  Commuters are those who make work trips at least twice per week.  All others are non-commuters.  

Incomplete chains, defined as a series of trips that does not end at home, are not included.   
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the work trip as non-work trip generation is virtually identical between commuters and 

non-commuters.  Finally, it is seen that the Zurich subsamples are less dependent on the 

auto mode as they exhibit a smaller auto mode share compared to the overall Swiss 

sample.  This is presumably due to the high level of transit service available in the Zurich 

area.    

       

4.4 Trip Chain Analysis of Subsample 

In this thesis, the unit of analysis and modeling is the tour or trip chain.  A trip chain is 

defined in this thesis as a complete home-to-home journey where the origin of the first 

trip is home and the destination of the last trip is home.  No intermediate home stop is 

present within the trip chain.  Whenever the home location is reached, a chain is formed.  

A tour-level data set was formed by aggregating the trip data set to the tour level.  All 

person and household characteristics were merged into the tour level data set.  In most 

cases, a single mode was prevalent for the trip chain.  In cases where multiple modes 

were prevalent within the same trip chain or tour, a single mode was assigned based on 

the whether or not the auto mode was used in the chain.  If the auto mode was used for 

any segment in the trip chain, then the chain was assigned an auto mode and vice versa.  

Each tour was classified as a simple or complex tour depending on whether it had one 

intermediate stop or more than one intermediate stops within the chain.   

 

In addition, tours were also classified as work-based tours and non-work-based tours.   

Any tour that included a work stop (regardless of the presence of other types of stops) 

was classified as a work-based tour while any tour that included only non-work stops was 
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classified as a non work-based tour.  It was felt that the causal relationships governing 

work-based tours may be different from those governing non work-based tours.  This is 

because the presence of a work stop may impose a certain amount of spatial and temporal 

rigidity on the activity/travel behavior of the individual in the context of that tour.  The 

constraints associated with the work activity may lead to a different causal structure 

underlying trip chain formation and mode choice.    

Table 4.3  Crosstabulation of Mode Choice and Tour Type for Non-work Tours 

 

Tour Type  

Mode Choice Simple Complex 

 

Total 

Frequency 

Non-auto 2685 661 3346 

Auto 1030 525 1555 

Total 3715 1186 4901 

Column Percent 

Non-auto 72.3% 55.7% 68.3% 

Auto 27.7% 44.3% 31.7% 

Total 100.0% 100.0% 100.0% 

Row Percent 

Non-auto 80.2% 19.8% 100.0% 

Auto 66.2% 33.8% 100.0% 

Total 75.8% 24.2% 100.0% 

 

As the model estimation was performed only on the Zurich subsample, all further 

analysis presented in the thesis pertains only to this subsample.  The Zurich subsample 

included 4,901 non-work tours and 1,711 work tours.  Tables 4.3 and 4.4 offer simple 

cross-tabulations of tour complexity against mode choice.  Table 4.3 examines the 

distribution of tour complexity by mode choice for non-work tours while Table 4.4 

examines the distribution for work tours.   
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Table 4.4  Crosstabulation of  Mode Choice and Tour Type for Work Tours 

 

Tour Type  

Mode Choice Simple Complex 

 

Total 

Frequency 

Non-auto 436 355 791 

Auto 397 523 920 

Total 833 878 1711 

Column Percent 

Non-auto 52.3% 40.4% 46.2% 

Auto 47.7% 59.6% 53.8% 

Total 100.0% 100.0% 100.0% 

Row Percent 

Non-auto 55.1% 44.9% 100.0% 

Auto 43.2% 56.8% 100.0% 

Total 48.7% 51.3% 100.0% 

 

An examination of column-based percentages in Table 4.3 indicates that about 28 percent 

of simple non-work tours involve the use of the automobile as the primary mode of 

transportation.  This value is considerably higher at 44 percent for complex non-work 

tours.  Thus it appears that there is a correlation (at least) between mode choice and tour 

complexity.  Clearly, the auto mode is utilized to a greater degree in the context of 

complex multi-stop trip chains.  Similarly, examining the row-based percentages shows 

that 80 percent of non-work non-auto tours are simple in nature (involve only one stop).  

On the other hand, only 66 percent of non-work auto tours are simple in nature.  Thus it 

appears that non-auto tours tend to be more simple than auto-based tours.   

 

Table 4.4 offers similar indications, albeit the tendencies are not as strong as those seen 

in Table 4.3.  In the case of work tours, it is found that a majority of simple tours are non 

auto-based (52 percent) while a majority of complex tours are auto-based (60 percent).  

Similarly, a majority of non auto-based work tours tend to be simple in nature (55 
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percent), while a majority of auto-based tours tend to be complex in nature (57 percent).  

Once again, a clear correlation between auto use and trip chain complexity is seen in 

these cross tabulations.  Given the difference in the percent distributions between work 

and non-work tours, it was considered prudent to examine the causal relationship 

between tour complexity and mode choice for work and non-work tours separately.     
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CHAPTER 5 

MODEL ESTIMATION RESULTS  

 

5.1 Outline 

This chapter presents estimation results for the models developed in this thesis.  Tables 

5.1 and 5.5 present a description of the variables used in model estimation for non-work 

and work tours respectively.  The variables are listed in alphabetical order and mostly 

constitute dummy variable indicators that take a value of one if the condition is satisfied 

and zero otherwise.  Estimation results for non-work tour models are provided in Tables 

5.2 through 5.4 and estimation results for work tour models are provided in Tables 5.6 

through 5.8. 

 

5.2 Estimation Results for Non-Work Tours 

Table 5.2 provides estimation results for the causal structure where tour complexity 

affects mode choice, Table 5.3 provides estimation results for the causal structure where 

mode choice affects tour complexity, and Table 5.4 provides estimation results for the 

simultaneous logit model that is intended to capture simultaneous causality between the 

two variables.  In Table 5.2, the coefficient for tour complexity is statistically significant 

and positive in the mode choice model. This lends credence to the hypothesis that the 

need to make a complex tour is likely to increase dependency on the auto mode.  
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In addition, it was found that demographic and socio-economic characteristics, the tour’s 

primary purpose, and time-of-day significantly influence mode choice and tour 

complexity.  For example, larger household sizes, lower income, and school tours tend to 

be associated with a lower propensity to use the automobile mode. 

 

Table 5.1 Description of Explanatory Variables Used in Non-work Tour Models 

(N = 4901) 
 

Variable Name Variable Description Mean  Std Dev

AD1_YOU1 
Household is composed of one adult and one 

child who is over 6 but below 17 years old  
0.01 0.09

AMPEAK Tour starts in AM peak period (7:00~8:59) 0.17 0.37

AUTO Auto mode choice for tour  0.32 0.47

CAR_GE2 Number of autos in household ≥ 2 0.29 0.45

COMPLEX Tour is complex (multi-stop) 0.24 0.43

HHSIZE Number of household members 2.72 1.46

HHSIZE1 Single person household 0.25 0.44

HHSIZE4 Number of household members ≥ 4 0.36 0.48

HIGH_INC Monthly household income > Fr10000 0.14 0.34

LOW_INC Monthly household income < Fr4000 0.18 0.38

OLD Person > 60 years old 0.27 0.45

MALE Person is male 0.46 0.50

PMPEAK Tour starts in PM peak period (16:00~17:59) 0.10 0.30

SCHOOL Primary purpose of the tour is school 0.11 0.32

SERVICE Primary purpose of the tour is service 0.06 0.23

SHOPPING Primary purpose of the tour is shopping 0.30 0.46

TOURDIST Total distance that the tour covers (km)  26.32 86.15
Note: Primary purpose of a tour is defined as the trip purpose other than “return home” that accounts for  

the longest cumulative distance within the tour.   If two different trip purposes account for equal 

distances within the tour, then the primary purpose is defined based on the following priority sequence: 

work>school>service>shopping>recreation>other 
 

On the other hand, higher income, higher car ownership levels, males, and tours primarily 

involving service (serve passenger) stops increase the propensity to use the automobile.  

In the tour complexity model, it is found that individuals in single person households tend 

to make complex tours as opposed to individuals in larger households.  This is a rather 



surprising result as it was expected that individuals in larger households would have to 

make complex tours to serve the needs of multiple household members.   

 

Table 5.2 Non-work Tour Model 

(Complex Tour  Auto Mode Choice) 

Variable Parameter t-test 

Auto Mode Choice Model 

Constant -0.8035 -16.344 

HHSIZE -0.0790 -5.135 

HIGH_INC 0.1075 2.195 

LOW_INC -0.3315 -6.842 

CAR_GE2 0.5050 12.077 

MALE 0.3169 9.153 

SERVICE 0.3684 4.583 

SCHOOL -1.1255 -10.622 

COMPLEX 1.6323 23.151 

Complex Tour Choice Model 

Constant -0.5231 -13.638 

HHSIZE1 0.1099 2.467 

AD1_YOU1 0.3843 1.998 

HHSIZE4 -0.1314 -2.597 

OLD -0.1620 -3.737 

YOUNG -0.6122 -9.464 

SERVICE 0.5172 6.279 

SHOPPING -0.2089 -5.230 

AMPEAK 0.2879 5.933 

PMPEAK -0.2372 -3.568 

ρ  (Error Correlation) -0.8083 -19.744 

Sample Size  4901  

Number of parameters 20  

Log-likelihood   

At convergence -5179.689   

At market share -5734.170  

At zero -6794.229  
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 Table 5.3 Non-work Tour Model 

(Auto Mode Choice  Complex Tour) 

 

Variable Parameter t-test 

Auto Mode Choice Model 

Constant -0.3797 -7.247 

HHSIZE -0.1502 -9.542 

HIGH_INC 0.1710 2.941 

LOW_INC -0.3951 -6.891 

CAR_GE2 0.6317 13.577 

MALE 0.3630 9.079 

TOURDIST 0.0005 3.361 

SERVICE 0.8842 10.815 

SCHOOL -1.3619 -12.936 

Complex Tour Choice Model 

Constant -0.9301 -17.228 

HHSIZE1 0.2534 5.142 

HHSIZE4 -0.1784 -3.613 

SERVICE 0.3623 3.866 

SHOPPING -0.2518 -5.531 

AMPEAK 0.3032 5.621 

PMPEAK -0.3263 -4.399 

AUTO 0.7593 6.168 

ρ  (Error Correlation) -0.2473 -3.158 

Sample Size  4901  

Number of parameters 18  

Log-likelihood   

At convergence -5207.736   

At market share -5734.170  

At zero -6794.229  
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Table 5.4 Non-work Tour Model 

Simultaneous Logit Model (Auto Mode Choice ↔ Complex Tour) 

 

 
Variable Parameter t-test 

Auto Mode Choice Model 

Constant -0.8028 -8.814 

HHSIZE -0.2384 -8.476 

HIGH_INC 0.2472 2.531 

LOW_INC -0.6879 -6.955 

CAR_GE2 1.0678 13.417 

MALE 0.6399 9.495 

SERVICE 1.3552 9.600 

SCHOOL -2.6113 -10.818 

Complex Tour Choice Model 

Constant -1.2239 -15.641 

HHSIZE1 0.3812 4.529 

AD1_YOU1 0.5977 1.686 

HHSIZE4 -0.3168 -3.224 

OLD -0.1727 -2.052 

YOUNG -0.4019 -3.454 

SERVICE 0.7508 5.486 

SHOPPING -0.4656 -5.746 

AMPEAK 0.5479 6.024 

PMPEAK -0.5577 -4.200 

α (Joint Dependence) 0.6390 8.885 

Sample Size  4901  

Number of parameters 19  

Log-likelihood   

At convergence -5203.343   

At market share -5734.170  

At zero -6794.229  
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On the other hand, one may conjecture that the possibility of task allocation present in a 

multi-person household may reduce the need to perform multi-stop trip chains (Strathman 

et al., 1994).  Single parents, as expected, are more prone to engage in multi-stop trip 

chains. Compared to the middle age group, the older and younger individuals tend to be 

less prone to making multi-stop trip chains.  This is possibly due to household and other 

obligations reaching their peak for many individuals during the middle age lifecycle stage.  

It is also rather surprising that tours undertaken in the AM peak show a greater propensity 

to involve multiple stops than those undertaken in the PM peak period.  However, in the 

context of non-work tours, this may be a plausible result in that people combine a series 

of errands and school activities in the morning and complete their activities by mid-day. 

Another possible explanation is that time constraints towards the end of the day (PM 

period) limit the number of activities that an individual can pursue at that time. Another 

interesting finding is that gender does not significantly influence tour complexity in the 

case of non-work tours.  Other studies have suggested that females tend to make more 

complex trip chains than males (McGuckin et al., 1999).  The analysis in this thesis does 

not support that finding in the Swiss travel context.  The tour’s primary purpose appears 

to affect tour complexity.  While service (serve passenger) tours tend to be complex in 

nature, shopping tours do not tend to be complex in nature.  Thus it appears that the 

shopping activity may be more prone to being a stand-alone activity within a tour.   The 

error correlation is found to be statistically significant and this is indicative of the validity 

of the assumption that non-work tour complexity and mode choice should be modeled in 

a simultaneous equations framework. The negative sign associated with the error 

correlation indicates that the unobserved factors influencing these two variables are 
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negatively correlated.  Further analysis is warranted to fully explain the implications of 

the negative error correlation.   

 

Table 5.3 provides estimation results for the causal structure where mode choice affects 

tour complexity for non-work tours.  Interestingly, it is found that mode choice 

significantly affects tour complexity and that the choice of auto is positively associated 

with the formation of complex tours.  Thus it appears from this model that the choice of 

the automobile mode for a tour contributes positively to the formation of multi-stop trip 

chains.  In addition, the error correlation is significant and negative as in Table 5.2.  All 

of the other indications provided by the model system are similar to those seen in Table 

5.2.  The tour length (distance in km) is found to significantly contribute to the choice of 

the auto mode.   

 

Tables 5.2 and 5.3 appear to support the notion that there is a bidirectional causality 

between mode choice and tour complexity.  In both models (representing two different 

causal structures), the coefficient associated with the endogenous variable on the right 

hand side is statistically significant and consistent with expectations and trends in the 

data set.  In addition, both models offer significant and negative error correlation 

supporting the simultaneous equations formulation for representing the relationship 

between mode choice and tour complexity.   

 

In light of these findings, Table 5.4 provides estimation results of the simultaneous logit 

model for non-work tours in which mode choice and tour complexity influence each 



other simultaneously and bidirectional causality is allowed. The significantly positive 

joint dependence parameter, α , shows the presence of significant positive correlation 

between auto mode choice and tour complexity. The other explanatory variables provide 

similar indications as those in Table 5.2.  

 

As all of the estimation results in Tables 5.2 through 5.4 offer plausible and similar 

interpretations, a more rigorous performance comparison must be conducted among the 

models to potentially identify the causal structure underlying the data set.  This 

performance comparison is presented in Chapter 5 following the discussion of the 

estimation results for the work tour models. 

 

5.3 Estimation Results for Work Tour Models 

Estimation results for work tour models are provided in Tables 5.6 through 5.8.  Table 

5.6 provides estimation results for the causal structure where tour complexity affects 

mode choice, Table 5.7 provides estimation results for the causal structure where mode 

choice affects tour complexity, and Table 5.8 provides estimation results for the 

simultaneous logit model that is intended to capture simultaneous causality between the 

two variables.   

 

In Table 5.6, it is found that tour complexity has a positive impact on auto mode choice.  

This is consistent with expectations, trends in the data, and the models of non-work tours.  

The coefficient associated with tour complexity variable in the mode choice model is 

positive and statistically significant.   

 40
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Thus the model supports the notion that a complex tour or trip chaining pattern 

contributes to the choice of auto as the mode for the tour.  In addition, the error 

correlation is negative and statistically significant, once again supporting the 

simultaneous equations formulation of the relationship between tour complexity and 

mode choice. 

 

Table 5.5 Description of Explanatory Variables Used in Work Tour Models 

(N = 1711) 

 

Variable 

Name 
Variable Description Mean Std Dev

AUTO Auto mode choice for tour 0.54 0.50

BEG13_14 Tour starts in time period from13:00 to 14:59 0.11 0.31

BEG6_8 Tour starts in time period from 6:00 to 8:59 0.67 0.47

COMPLEX Tour is complex (multi-stop) 0.51 0.50

COUNTRY Residence is located in rural area 0.11 0.31

DIS_WORK Distance between residence and work place (km) 11.02 15.02

END12 Tour ends in time period from 12:00 to 12:59 0.12 0.32

FREEPARK Reserved parking lot at the work place is free 0.33 0.47

FULLTIME Person is full-time employed 0.77 0.42

HHSIZE1 Single person household 0.30 0.46

HIGH_INC Monthly household income > Fr10000 0.21 0.41

OWN_BUS Person owns enterprise/business  0.14 0.35

OWN_RES Person owns the residence  0.30 0.46

MALE Person is male 0.61 0.49

SWISS Person is of Swiss Nationality  0.85 0.36

 

With respect to other variables, it is found that free parking, longer commutes, full time 

employment, and rural residence are all positively influencing the choice of auto as the 

mode choice for work tours.  All of these findings are consistent with expectations.  In 

the tour complexity model, it is found that single persons tend to engage in multi-stop trip 

chains possibly due to the inability to share or allocate tasks among multiple household 

members.   

 



 

 

 

 

Table 5.6 Work Tour Model  

(Complex Tour  Auto Mode Choice) 

 

Variable Parameter t-test 

Auto Mode Choice Model 

Constant -1.0013 -8.757 

FREEPARK 1.2859 15.278 

DIS_WORK 0.0062 2.673 

COUNTRY 0.5123 4.469 

FULLTIME 0.2458 3.094 

COMPLEX 0.8106 3.723 

Complex Tour Choice Model 

Constant -0.4812 -4.844 

HHSIZE1 0.1859 2.640 

HIGH_INC 0.3173 4.000 

OWN_BUS 0.3312 3.660 

SWISS 0.2529 2.833 

OWN_RES 0.1592 2.222 

BEG6_8 0.3096 4.180 

BEG13_14 -0.3678 -3.238 

END12 -0.7236 -7.384 

ρ  (Error Correlation) -0.3481 -2.404 

Sample Size  1711  

Number of parameters 16  

Log-likelihood   

At convergence -2076.249   

At market share -2354.340  

At zero -2371.950  
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Table 5.7 Work Tour Model 

(Auto Mode Choice  Complex Tour) 

Variable Parameter t-test 

Auto Mode Choice Model 

Constant -0.6690 -8.596 

MALE 0.1269 1.671 

FREEPARK 1.3003 16.783 

DIS_WORK 0.0081 3.546 

COUNTRY 0.5346 4.541 

FULLTIME 0.2229 2.519 

Complex Tour Choice Model 

Constant -0.5924 -4.765 

HHSIZE1 0.1465 2.085 

HIGH_INC 0.3003 3.693 

OWN_BUS 0.2465 2.637 

SWISS 0.2997 3.358 

BEG6_8 0.3193 4.183 

BEG13_14 -0.4198 -3.541 

END12 -0.7380 -7.319 

AUTO 0.2715 2.003 

ρ  (Error Correlation) 0.0050 0.054 

Sample Size  1711

Number of parameters 16  

Log-likelihood  

At convergence -2078.843   

At market share -2354.340  

At zero -2371.950  
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Table 5.8 Work Tour Model 

Simultaneous Logit Model (Auto Mode Choice ↔ Complex Tour) 

 

 Variable Parameter t-test 

Auto Mode Choice Model 

Constant -1.2268 -9.351 

MALE 0.2470 2.022 

FREEPARK 2.1867 16.104 

COUNTRY 0.9025 4.689 

FULLTIME 0.3679 2.592 

Complex Tour Choice Model 

Constant -1.0245 -5.996 

HHSIZE1 0.2917 2.498 

HIGH_INC 0.4818 3.671 

OWN_BUS 0.4424 2.967 

SWISS 0.4495 3.076 

OWN_RES 0.1666 1.401 

BEG6_8 0.5174 4.184 

BEG13_14 -0.6688 -3.498 

END12 -1.2212 -7.286 

α (Joint Dependence) 0.4859 4.906 

Sample Size  1711  

Number of parameters 15  

Log-likelihood   

At convergence -2079.840   

At market share -2354.340  

At zero -2371.950  
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Individuals owning their business enterprise and place of residence are found to be more 

prone to engage in multi-stop trip chains, presumably for seeing multiple clients, visiting 

to office or supply stores, etc. A few variables were found to be statistically significant, 

but are potentially more difficult to interpret.  For example, individuals of Swiss 

Nationality are more likely to engage in complex work tours.  It is possible that these 

individuals have occupational characteristics that lead to the formation of complex trip 

chains.  Another interesting finding is that time-of-day indicators play an important role 

in influencing tour complexity.  Tours ending within the lunch hour are less prone to be 

complex possibly due to time constraints and the presence of a single lunch 

stop/destination.  However, those beginning in the morning period of 6 to 9 AM are more 

prone to being multi-stop trip chains, possibly due to the linking of a non-work activity 

with the work activity in the overall tour.  A more detailed time-of-day based analysis of 

trip chain formation is warranted to fully understand the relationship between trip chain 

complexity and time of day choice behavior.  Within the context of this study, time of 

day choice is assumed exogenous to the model system.  However, one may argue that 

time of day choice is endogenous to trip chain complexity and mode choice.  The study 

of the simultaneous causal relationships among trip chain formation, mode choice, and 

time of day choice (three endogenous entities) remains a future research effort. 

 

Table 5.7 gives estimation resuls for the model where mode choice affects work tour 

complexity. As before, the coefficient associated with the auto mode choice variable in 

the tour complexity equation is statistically significant and positive indicating that the 

choice of auto mode contributes positively to the formation of complex multi-stop trip 



chains.  However, unlike other models, the error correlation is statistically insignificant.  

Thus, this model suggests that tour complexity and mode choice can be modeled as two 

independent equations where mode choice affects tour complexity in a recursive 

unidirectional causal structure.  While this may be possible, it is highly unlikely to be true 

given the findings suggested by the previous models where the error correlation is 

consistently significant and negative in value.  Thus, this model is suggesting that the 

unobserved factors in the two equations are uncorrelated and challenging the assumption 

of simultaneity in the relationship between auto mode choice and tour complexity.  Given 

that this model contains no additional explanatory variables or power than the other 

previous models, the authors feel that a rejection of the assumption of simultaneity is not 

warranted.   Despite the very different value of the error correlation between models 

presented in Tables 5.6 and 5.7, virtually all of the other variables show similar 

indications between the two model structures.       

 

Table 5.8 furnishes estimation results of the simultaneous logit model for work tours. The 

joint dependence parameter,α , is found to be statistically significant and positive. This 

model supports the notion that there is a significant and positive bidirectional causal 

relationship between tour complexity and auto mode choice.  All of the other explanatory 

variables are found to offer indications very similar to those seen in Tables 5.6 and 5.7.   
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CHAPTER 6 

MODEL PERFORMANCE COMPARISONS  

 

6.1 Goodness-of-Fit Measure 

The model estimation results presented in Chapter 5 generally offer plausible indications 

for alternative causal paradigms.  The only model that may be rejected on qualitative 

grounds is that in Table 5.7 where the mode choice decision precedes the tour complexity 

decision.  The statistically insignificant random error correlation which implies that there 

are no correlated unobserved factors between mode choice and tour complexity appears 

difficult to explain and defend in light of the simultaneity shown by the other models.  

This chapter presents a more rigorous comparison across models to see if it is possible to 

identify the most likely causal structure governing the relationship between mode choice 

and trip chaining.   

 

A goodness-of-fit comparison among the models of different causal structures is 

conducted first. The adjusted likelihood ratio index as a goodness-of-fit measure can be 

used for testing and comparing non-nested relationships in discrete choice models. The 

indices are given as follows: 
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0ρ : Adjusted likelihood ratio index at zero 

2

cρ : Adjusted likelihood ratio index at market share 

)(βL : Log-likelihood value at convergence  

)0(L : Log-likelihood value at zero 

)(cL : Log-likelihood value at market share (model including only the constant term)  

K0 and Kc: the number of parameters in the corresponding model. 

The adjusted likelihood ratio indices for all of the models are presented in Tables 6.1 and 

6.2. 

 

Table 6.1 Likelihood Ratio Comparison in Non-work Tour Models 

(N = 4901) 

 

Causal 

Structure 

Number of 

Parameters (K)
2

0ρ  2

cρ  2

0ρ  2

cρ  

Complexity → 

Auto 
20 0.238 0.097 0.235 0.093 

Auto → 

Complexity 
18 0.234 0.092 0.231 0.089 

Complexity ↔ 

Auto 
19 0.234 0.093 0.231 0.089 
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Table 6.2 Likelihood Ratio Comparison in Work Tour Models 

(N = 1711) 

 

Causal 

Structure 

Number of 

Parameters (K)
2

0ρ  2

cρ  2

0ρ  2

cρ  

Complexity → 

Auto 
16 0.125 0.118 0.118 0.111 

Auto → 

Complexity 
16 0.124 0.117 0.117 0.111 

Complexity ↔ 

Auto 
15 0.123 0.117 0.117 0.110 

 

 

6.2 Non-nested Test  

Likelihood ratio test, a statistical test of the goodness-of-fit between two models, is 

widely applied for selecting more appropriate models estimated by maximum likelihood 

method.  A relatively more complex model is compared to a simpler model to see if it fits 

the dataset significantly better. If so, the more complex model is considered as the better 

one.  The likelihood ratio test is given as below.  

LR = - 2 (lnLR - lnLU) ~ χ2
(N)                                                                                          6.3 

under the null hypothesis that the restrictions on unrestricted model are jointly valid. 

LR:   Log-likelihood Ratio 

lnLR: Log-likelihood function value for restricted model 

lnLu: Log-likelihood function value for unrestricted model 

N: number of restrictions imposed on the parameters in unrestricted model to achieve 

restricted model.  

 

However, likelihood ratio test is only valid if it is used to compare hierarchically nested 

models.  That is, the more complex model must differ from the simple model only by the 
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additional restrictions on the existing parameters in complex model.  Restricted model 

should be developed by imposing restriction on the more general unrestricted model.  In 

this thesis, the models in three different causal structures need to be compared one 

another, but no pair models of them are hierarchically nested since none model can be 

formed from either of the other two models with additional restriction. 

 

The adjusted likelihood ratio index 
2

0ρ  as a goodness-of-fit measure can be used for 

testing non-nested hypothesis of discrete choice modes.  To choose between two models 

(say, 1 and 2), Ben-akiva and Lerman (1985, p. 172) provide a test where under the null 

hypothesis that model 1 is the true specification, the following holds asymptotically:  

0},)]()0(2[{)Pr( 2/1

12

2

1

2

2 >−+−−Φ≤>− zKKzLzρρ  6.4 

where 

2

iρ : the adjusted likelihood ratio index at zero for model i = 1, 2  

Ki : the number of parameters in model i 

Φ : the standard normal cumulative distribution function 

)0(L : log-likelihood value at zero;  

             if all N observations in the sample have all J alternatives, L(0) = N ln(1/J). 

  

The probability that the adjusted likelihood ratio index of model 2 is greater by some z > 

0 than that of model 1, given that the latter is the true model, is asymptotically bounded 

by the right-hand side of equation 6.4 above.  If the model with the greater 
2

ρ  is selected, 

then this bounds the probability of erroneously choosing the incorrect model over the true 
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specification. Using this procedure, models of alternative causal structures can be 

compared against one another.   

 

6.3 Comparison Results  

For non-work tour models, the difference in adjusted likelihood ratios is approximately 

0.004 between the models in Table 5.2 and the models in Tables 5.3 and 5.4.  According 

to equation 6.4, the calculated bounding probability on the right hand side of the 

expression is almost zero.  Thus, it may be concluded that the model of Table 5.2 is more 

closely capturing the causal structure underlying the relationship between mode choice 

and tour complexity. The significantly better goodness-of-fit of the model in Table 5.2 

suggests that the causal structure where the complexity of the tour affects mode choice 

(tour complexity → auto mode choice) is statistically, and possibly behaviorally, 

dominant in the population for non-work tours.  One must be careful when drawing 

inferences regarding behavioral causality from statistical indicators. 

 

For work tour models, however, the situation is not as clear.  In comparing the models, 

the seemingly better model of Table 5.6 has an adjusted likelihood ratio index that is only 

0.001 greater than those of the models in the other two causal structures. The bounding 

probabilities, as per the right hand side of equation 6.4, are calculated to be 0.036 and 

0.067, respectively. The statistical test rejects the model of Table 5.7, i.e., the causal 

structure where auto mode choice drives the complexity of the work tour (auto mode 

choice → tour complexity).  However, the test fails to reject the simultaneous logit model, 

i.e., bidirectional simultaneous causality, at the 0.05 level of significance. In addition to 
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this non-nested test, the insignificance of the random error correlation in the model of 

auto mode choice affecting tour complexity suggests that the assumed causal structure in 

that joint model may not be valid and may be indicative of the irrationality of causality in 

that direction. Thus, for work tours, two possible causal structures can not be rejected 

from this analysis.  Either, the decision to make a complex work tour tends to result in the 

choice of the auto mode or both of these decisions are made contemporaneously.  

 

From the viewpoint of activity-based travel behavior theory where travel choices are 

considered to be derived from activity patterns (and activity needs that are distributed in 

time and space), one may consider the findings of this thesis to be quite consistent with 

expectations. For non-work tours, the statistical model estimation results show that tour 

complexity (which is reflective of the activity pattern) drives mode choice.  For work 

tours, the statistical model estimation results reject the notion that auto mode choice 

drives tour complexity.  Once again, either tour complexity drives auto mode choice or 

both decisions are simultaneously related to one another.  
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

 

7.1 Discussion 

Mode choice behavior is a fundamental element of travel behavior that has significant 

implications for transportation planning.  Estimates of public transit ridership and the use 

of alternative modes of transportation are largely based on studies of mode choice 

behavior and modal split models.  Public transport agencies face increasing competition 

from the automobile as automobiles become increasingly affordable and the road 

infrastructure becomes increasingly ubiquitous.  Undoubtedly, the automobile is 

considered to provide greater flexibility and convenience when compared with public 

transport modes that are generally constrained with respect to schedules and 

routes/destinations.   

 

This study examines the inter-relationship between the complexity of people’s activity-

travel patterns and their mode choice.  In order to conduct the analysis, this thesis 

examines mode choice behavior in the context of multi-stop (complex) vs single-stop 

(simple) trip chains.  Through a series of econometric model formulations, this thesis 

presents a rigorous analysis of the most likely causal relationship between these two 

phenomena at the level of the individual trip chain or tour.  It should be emphasized that 
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the analysis in this thesis does not attempt to replicate causality at the level of the 

individual traveler, but rather at the macroscopic level to identify the causal tendency that 

appears to be dominant in the population. 

 

Using data derived from the 2000 Swiss Travel Microcensus, the thesis estimates 

bivariate probit models and simultaneous logit models that provide a rigorous analytical 

framework for analyzing and testing alternative causal structures.  In the case of non-

work tours (i.e., tours that do not involve any work stops), the analysis suggests that the 

causal structure where the complexity of the trip chaining pattern drives mode choice is 

the dominating causal trend in the population.  In the case of work tours (i.e., tours that 

involve at least one work stop), the analysis suggests that the causal structure where the 

auto mode choice drives the complexity of the tour can be rejected statistically.  Thus, 

either tour complexity drives mode choice or the two phenomena occur simultaneously. 

 

7.2 Contribution   

These findings have important implications for public transport service providers who are 

interested in attracting choice riders.  If mode choice decisions precede activity 

pattern/agenda decisions, then it may be possible for public transport service providers to 

simply attract choice riders by improving amenities, schedule, route coverage, safety and 

security, and comfort.  On the other hand, if the formation of the activity agenda precedes 

mode choice decisions, then the public transport industry has a greater challenge before it.  

Trip chaining and tour complexity serve as impediments to public transport usage.  The 

analysis in this thesis suggests that this is the predominant relationship in the data set.  
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Then, not only do public transport service providers have to improve service amenities, 

but they also have to try and cater to a multi-tasking oriented complex activity agenda.  

This is extremely difficult to do with a fixed route fixed schedule system.  As activity-

travel patterns and tours become increasingly complex, it is likely that public transport 

agencies will have to develop new types of services to try and retain existing riders in 

addition to attracting new riders.  

 

The analysis and findings of this thesis are also useful from an activity-based and tour-

based model development standpoint.  Most activity-based and tour-based travel demand 

model systems consist of hierarchical structures involving activity agenda or tour 

formation, mode choice, destination choice, and time of day choice.  The development 

and application of these model systems calls for the ability to accurately represent causal 

relationships that are prevalent in the population.  This thesis suggests that the activity 

agenda or tour formation step may precede the mode choice step for both non-work and 

work tours, although the hierarchy is less clear for the latter.   

 

7.3 Future Research 

Future research efforts should focus on analyzing whether these findings regarding causal 

relationships between tour complexity and mode choice hold in other data sets as well.  In 

addition, the modeling framework can be extended to consider multinomial choice 

situations as opposed to pure binary choice variables considered in this thesis.  Mode 

choice can be expanded to consider multiple modes including SOV, shared ride, public 

transit, and non-motorized modes.  Similarly, tour complexity can be expanded to 
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consider different levels of tour complexity or different tour types such as that presented 

in Strathman and Dueker (1995).  Another consideration that merits further investigation 

is the extent to which findings such as those presented in this thesis are sensitive to model 

specification.  It is possible that statistical indicators of model performance will change 

depending on the model specification chosen.  Such efforts would further aid in 

understanding important causal relationships underlying travel behavior.  

 

Finally, it must be noted that causal relationships are being extracted and examined in 

this thesis from statistical relationships estimated on revealed outcome data.  While such 

data provides insights into what people have done, it does not provide true insights into 

the decision mechanisms and behavioral processes underlying the revealed outcomes.  In 

order to truly understand and identify causal relationships, data regarding processes and 

decision mechanisms are needed.  Future research into the development of 

microsimulation models of activity and travel behavior should include attempts to collect 

and analyze such data.    
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Appendix A: Gauss Codes for Simultaneous Logit Model of Non-work Tours 

 

library maxlik; 

maxset; 

 

load data[4901,131] = "C:\\swiss\\multichoice\\non-work_tours_zurich_4901.dat"; 

one=ones(4901,1); 

intnr = data[., 1 ]; 

tournum = data[., 2 ]; 

hhnr = data[., 3 ]; 

tripdist = data[., 4 ]; 

tripdur = data[., 5 ]; 

beg_time = data[., 6 ]; 

end_time = data[., 7 ]; 

nsegment = data[., 8 ]; 

trip_pur = data[., 9 ]; 

mode_dur = data[., 10 ]; 

mode_dis = data[., 11 ]; 

person = data[., 12 ]; 

targetpn = data[., 13 ]; 

intdur = data[., 14 ]; 

weekday = data[., 15 ]; 

day = data[., 16 ]; 

season = data[., 17 ]; 

age = data[., 18 ]; 

sex = data[., 19 ]; 

employed = data[., 20 ]; 

study = data[., 21 ]; 

auto_lic = data[., 22 ]; 

motr_lic = data[., 23 ]; 

live_st = data[., 24 ]; 

national = data[., 25 ]; 

study16 = data[., 26 ]; 

edu_lev = data[., 27 ]; 

emp_sit = data[., 28 ]; 

school = data[., 29 ]; 

emp_reg = data[., 30 ]; 

worktime = data[., 31 ]; 

occ_posi = data[., 32 ]; 

dis_work = data[., 33 ]; 

pklot_wk = data[., 34 ]; 

n_trp_wk = data[., 35 ]; 
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Appendix A: (Continued) 

 

dis_schl = data[., 36 ]; 

pklot_sc = data[., 37 ]; 

n_tr_sch = data[., 38 ]; 

av_bike = data[., 39 ]; 

av_egbik = data[., 40 ]; 

av_motor = data[., 41 ]; 

av_auto = data[., 42 ]; 

weather = data[., 43 ]; 

workday = data[., 44 ]; 

leavehom = data[., 45 ]; 

why_nlv = data[., 46 ]; 

when_lv = data[., 47 ]; 

comp_pwk = data[., 48 ]; 

kilo_pwk = data[., 49 ]; 

y_ljny_r = data[., 50 ]; 

n_jny_3m = data[., 51 ]; 

m_ljny_r = data[., 52 ]; 

d_ljny_r = data[., 53 ]; 

n_nights = data[., 54 ]; 

means_r = data[., 55 ]; 

ds_jny_i = data[., 56 ]; 

ds_jny_e = data[., 57 ]; 

air_12m = data[., 58 ]; 

air_5y = data[., 59 ]; 

n_air_5y = data[., 60 ]; 

y_l_air = data[., 61 ]; 

air_pur = data[., 62 ]; 

hol_trp = data[., 63 ]; 

pck_tour = data[., 64 ]; 

mn_airpt = data[., 65 ]; 

y_tkoff = data[., 66 ]; 

m_tkoff= data[., 67 ]; 

d_tkoff = data[., 68 ]; 

nair_12m = data[., 69 ]; 

n_ck_12m = data[., 70 ]; 

hhld_w = data[., 71 ]; 

canton = data[., 72 ]; 

hhdate = data[., 73 ]; 

language = data[., 74 ]; 

city_typ = data[., 75 ]; 

city_rur = data[., 76 ]; 

hhsize = data[., 77 ]; 
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Appendix A: (Continued) 

 

hh6plus = data[., 78 ]; 

n_targtp = data[., 79 ]; 

hhincome = data[., 80 ]; 

perm_add = data[., 81 ]; 

add_swit = data[., 82 ]; 

y_in_add = data[., 83 ]; 

faml_typ = data[., 84 ]; 

rent_own = data[., 85 ]; 

n_apartm = data[., 86 ]; 

n_2ndhom = data[., 87 ]; 

own_park = data[., 88 ]; 

n_park = data[., 89 ]; 

n_auto = data[., 90 ]; 

n_motor = data[., 91 ]; 

n_smotor = data[., 92 ]; 

n_engbik = data[., 93 ]; 

n_bike = data[., 94 ]; 

n_bik_lc = data[., 95 ]; 

bad_ch_1 = data[., 96 ]; 

nwk_ch_1 = data[., 97 ]; 

work_c_1 = data[., 98 ]; 

sim_comx = data[., 99 ]; 

pr_mode4 = data[., 100 ]; 

uni_mult = data[., 101 ]; 

kid = data[., 102 ]; 

kid5 = data[., 103 ]; 

kid6_17 = data[., 104 ]; 

dri_lic = data[., 105 ]; 

age0_5 = data[., 106 ]; 

age6_17 = data[., 107 ]; 

age18_24 = data[., 108 ]; 

age25_34 = data[., 109 ]; 

age35_44 = data[., 110 ]; 

age45_54 = data[., 111 ]; 

age55_64 = data[., 112 ]; 

age65_74 = data[., 113 ]; 

age75 = data[., 114 ]; 

male = data[., 115 ]; 

female = data[., 116 ]; 

pr_pur = data[., 117 ]; 

nwf_firs = data[., 118 ]; 

nwf_mid = data[., 119 ]; 
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Appendix A: (Continued) 

 

nwf_last = data[., 120 ]; 

chain_tp = data[., 121 ]; 

beg_c = data[., 122 ]; 

end_c = data[., 123 ]; 

pmode5 = data[., 124 ]; 

mode3 = data[., 125 ]; 

auto = data[., 126 ]; 

complx = data[., 127 ]; 

tourmode = data[., 128 ]; 

m_sov = data[., 129 ]; 

m_hov = data[., 130 ]; 

m_other = data[., 131 ]; 

/* dummy variables definition */ 

 

shopping = (pr_pur .==4) ; 

leisure = (pr_pur .==5) ; 

service = (pr_pur .==3) ; 

pschool = (pr_pur .==2) ; 

business = (pr_pur .==1) ; 

pmale = (sex .==1) ; 

old = (age.>60) ; 

young = (age.<18 .and age.>0) ; 

high_inc = (hhincome.>=6) ; 

car_0 = (n_auto .==0) ; 

car_1 = (n_auto .==1) ; 

car_ge2 = (n_auto.>=2) ; 

low_inc = (hhincome .<3 .and hhincome.>0) ; 

with_kid = ((hhsize-hh6plus).>0) ; 

hhsize1 = (hhsize .==1) ; 

hhsize2 = (hhsize .==2) ; 

hhsize3 = (hhsize .==3) ; 

hhsize4 = (hhsize.>3) ; 

high_edu = (EDU_LEV .==6 .or EDU_LEV .==7) ; 

with_kid = (kid5.>0) ; 

with_you = (kid6_17.>0) ; 

weekend = (weekday .==5) ; 

bad_weat = (weather.>=4 .and weather.<=7) ; 

rain = (weather .==5) ; 

working = (workday .==1) ; 

ad1_you1=  (kid6_17.>0 .and hhsize.==2) ; 

ampeak=(beg_c.==7 .or beg_c.==8); 

pmpeak=(beg_c.==16 .or beg_c.==17); 
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Appendix A: (Continued) 

 

proc lpr(b,z); 

 

local x,y,ux,uy,alpha,delta,p00,p01,p10,p11; 

 

x = one~hhsize~high_inc~low_inc~car_ge2~pmale~service~pschool; 

y = one~hhsize1~ad1_you1~hhsize4~old~young~service~shopping~ampeak~pmpeak; 

 

ux=x*b[1:8,.];      /*  utility for auto */ 

uy=y*b[9:18,.];   /*  utility for complex chain */ 

 

alpha=b[19,.];     /* joint dependence */ 

 

delta= 1 + exp(ux) + exp(uy) + exp(ux + uy + alpha) ; 

 

p00=one./delta;              /*  probability of non-auto & simple   */ 

p01=exp(uy)./delta;     /*  probability of non-auto & complex   */ 

p10=exp(ux)./delta;      /*   probability of  auto & simple   */ 

p11= exp(ux+uy+alpha)./delta;         /*   probability of auto & complex   */ 

 

retp (      (1-auto) .* (1-complx).*ln( p00 )   

           + (1-auto) .*  complx.*ln( p01 )  

           +       auto .*  (1-complx).*ln( p10 )  

           +       auto .*   complx.*ln( p11 )            ) ;   

 

endp; 

 

b0={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

 

{b,f,g,cov,ret}=maxlik(data,0,&lpr,b0); 

 

call maxprt(b,f,g,cov,ret);       
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Appendix B: Gauss Codes for Simultaneous Logit Model of Work Tours 

 

library maxlik; 

maxset; 

load data[1711,131] = "C:\\swiss\\multichoice\\work_tours_zurich_1711.dat"; 

one=ones(1711,1); 

intnr = data[., 1 ]; 

tournum = data[., 2 ]; 

hhnr = data[., 3 ]; 

tripdist = data[., 4 ]; 

tripdur = data[., 5 ]; 

beg_time = data[., 6 ]; 

end_time = data[., 7 ]; 

nsegment = data[., 8 ]; 

trip_pur = data[., 9 ]; 

mode_dur = data[., 10 ]; 

mode_dis = data[., 11 ]; 

person = data[., 12 ]; 

targetpn = data[., 13 ]; 

intdur = data[., 14 ]; 

weekday = data[., 15 ]; 

day = data[., 16 ]; 

season = data[., 17 ]; 

age = data[., 18 ]; 

sex = data[., 19 ]; 

employed = data[., 20 ]; 

study = data[., 21 ]; 

auto_lic = data[., 22 ]; 

motr_lic = data[., 23 ]; 

live_st = data[., 24 ]; 

national = data[., 25 ]; 

study16 = data[., 26 ]; 

edu_lev = data[., 27 ]; 

emp_sit = data[., 28 ]; 

school = data[., 29 ]; 

emp_reg = data[., 30 ]; 

worktime = data[., 31 ]; 

occ_posi = data[., 32 ]; 

dis_work = data[., 33 ]; 

pklot_wk = data[., 34 ]; 

n_trp_wk = data[., 35 ]; 

dis_schl = data[., 36 ]; 

pklot_sc = data[., 37 ]; 

n_tr_sch = data[., 38 ]; 
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Appendix B: (Continued) 

 

av_bike = data[., 39 ]; 

av_egbik = data[., 40 ]; 

av_motor = data[., 41 ]; 

av_auto = data[., 42 ]; 

weather = data[., 43 ]; 

workday = data[., 44 ]; 

leavehom = data[., 45 ]; 

why_nlv = data[., 46 ]; 

when_lv = data[., 47 ]; 

comp_pwk = data[., 48 ]; 

kilo_pwk = data[., 49 ]; 

y_ljny_r = data[., 50 ]; 

n_jny_3m = data[., 51 ]; 

m_ljny_r = data[., 52 ]; 

d_ljny_r = data[., 53 ]; 

n_nights = data[., 54 ]; 

means_r = data[., 55 ]; 

ds_jny_i = data[., 56 ]; 

ds_jny_e = data[., 57 ]; 

air_12m = data[., 58 ]; 

air_5y = data[., 59 ]; 

n_air_5y = data[., 60 ]; 

y_l_air = data[., 61 ]; 

air_pur = data[., 62 ]; 

hol_trp = data[., 63 ]; 

pck_tour = data[., 64 ]; 

mn_airpt = data[., 65 ]; 

y_tkoff = data[., 66 ]; 

m_tkoff= data[., 67 ]; 

d_tkoff = data[., 68 ]; 

nair_12m = data[., 69 ]; 

n_ck_12m = data[., 70 ]; 

hhld_w = data[., 71 ]; 

canton = data[., 72 ]; 

hhdate = data[., 73 ]; 

language = data[., 74 ]; 

city_typ = data[., 75 ]; 

city_rur = data[., 76 ]; 

hhsize = data[., 77 ]; 

hh6plus = data[., 78 ]; 

n_targtp = data[., 79 ]; 

hhincome = data[., 80 ]; 
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Appendix B: (Continued) 

 

perm_add = data[., 81 ]; 

add_swit = data[., 82 ]; 

y_in_add = data[., 83 ]; 

faml_typ = data[., 84 ]; 

rent_own = data[., 85 ]; 

n_apartm = data[., 86 ]; 

n_2ndhom = data[., 87 ]; 

own_park = data[., 88 ]; 

n_park = data[., 89 ]; 

n_auto = data[., 90 ]; 

n_motor = data[., 91 ]; 

n_smotor = data[., 92 ]; 

n_engbik = data[., 93 ]; 

n_bike = data[., 94 ]; 

n_bik_lc = data[., 95 ]; 

bad_ch_1 = data[., 96 ]; 

nwk_ch_1 = data[., 97 ]; 

work_c_1 = data[., 98 ]; 

sim_comx = data[., 99 ]; 

pr_mode4 = data[., 100 ]; 

uni_mult = data[., 101 ]; 

kid = data[., 102 ]; 

kid5 = data[., 103 ]; 

kid6_17 = data[., 104 ]; 

dri_lic = data[., 105 ]; 

age0_5 = data[., 106 ]; 

age6_17 = data[., 107 ]; 

age18_24 = data[., 108 ]; 

age25_34 = data[., 109 ]; 

age35_44 = data[., 110 ]; 

age45_54 = data[., 111 ]; 

age55_64 = data[., 112 ]; 

age65_74 = data[., 113 ]; 

age75 = data[., 114 ]; 

male = data[., 115 ]; 

female = data[., 116 ]; 

pr_pur = data[., 117 ]; 

nwf_firs = data[., 118 ]; 

nwf_mid = data[., 119 ]; 

nwf_last = data[., 120 ]; 

chain_tp = data[., 121 ]; 

beg_c = data[., 122 ]; 
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Appendix B: (Continued) 

 

end_c = data[., 123 ]; 

pmode5 = data[., 124 ]; 

mode3 = data[., 125 ]; 

auto = data[., 126 ]; 

complx = data[., 127 ]; 

tourmode = data[., 128 ]; 

m_sov = data[., 129 ]; 

m_hov = data[., 130 ]; 

m_other = data[., 131 ]; 

 

/* dummy variables definition */ 

pmale = (sex .==1) ; 

old = (age.>60) ; 

young = (age.<18 .and age.>0) ; 

high_inc = (hhincome.>=6) ; 

car_0 = (n_auto .==0) ; 

car_ge2 = (n_auto.>=2) ; 

low_inc = (hhincome .<3 .and hhincome.>0) ; 

with_kid = ((hhsize-hh6plus).>0) ; 

hhsize1 = (hhsize .==1) ; 

hhsize2 = (hhsize .==2) ; 

hhsize3 = (hhsize .==3) ; 

hhsize4 = (hhsize.>3) ; 

high_edu = (EDU_LEV .==6 .or EDU_LEV .==7) ; 

with_kid = (kid5.>0) ; 

with_you = (kid6_17.>0) ; 

weekend = (weekday .==5) ; 

bad_weat = (weather.>=4 .and weather.<=7) ; 

rain = (weather .==5) ; 

working = (workday .==1) ; 

 

freepark= (pklot_wk .==1); 

country= (city_rur.==2); 

fulltime=(emp_sit .==1); 

independ= (occ_posi .==1);  

swiss= (national .==1); 

beg6_8=(beg_c .==6  .or  beg_c .==7 .or beg_c .==8); 

beg13_14=(beg_c .==13  .or  beg_c .==14); 

end12 = (end_c .==12) ;  

owner= (rent_own.==3); 
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Appendix B: (Continued) 

 

proc lpr(b,z); 

 

local x,y,ux,uy,alpha,delta,p00,p01,p10,p11; 

 

x=one~pmale~freepark~country~fulltime; 

y = one~hhsize1~high_inc~independ~swiss~owner~beg6_8~beg13_14~end12;  

 

ux=x*b[1:5,.];      /*  utility for auto */ 

uy=y*b[6:14,.];   /*  utility for complex chain */ 

alpha=b[15,.];  /* joint dependence */ 

 

delta= 1 + exp(ux) + exp(uy) + exp(ux + uy + alpha) ; 

 

p00=one./delta;              /*  probability of non-auto & simple   */ 

p01=exp(uy)./delta;     /*  probability of non-auto & complex   */ 

p10=exp(ux)./delta;      /*   probability of  auto & simple   */ 

p11= exp(ux+uy+alpha)./delta;         /*   probability of auto & complex   */ 

 

retp (      (1-auto) .* (1-complx).*ln( p00 )   

           + (1-auto) .*  complx.*ln( p01 )  

           +       auto .*  (1-complx).*ln( p10 )  

           +       auto .*   complx.*ln( p11 )            ) ;   

endp; 

 

b0={0,0,0,0,0,  0,0,0,0,0,   0,0,0,0,0}; 

{b,f,g,cov,ret}=maxlik(data,0,&lpr,b0); 

 

call maxprt(b,f,g,cov,ret);       

 

 

 

 

 

 

 

 


	University of South Florida
	Scholar Commons
	4-22-2004

	An Exploration of the Relationship between Mode Choice and Complexity of Trip Chaining Patterns
	Xin Ye
	Scholar Commons Citation


	Table 4.2      Person Characteristics of Swiss Travel Microc
	Characteristic

	Swiss Sample
	Household Size
	Table 4.2 Person Characteristics of Swiss Travel Microcensus


