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ABSTRACT

Changes in stride frequency and length with speed are key

parameters in animal locomotion research. They are commonly

measured in a laboratory on a treadmill or by filming trained captive

animals. Here, we show that a clustering approach can be

used to extract these variables from data collected by a tracking

collar containing a GPS module and tri-axis accelerometers and

gyroscopes. The method enables stride parameters to be measured

during free-ranging locomotion in natural habitats. As it does not

require labelled data, it is particularly suitable for use with difficult to

observe animals. The method was tested on large data sets collected

from collars on free-ranging lions and African wild dogs and validated

using a domestic dog.

KEY WORDS: Animal locomotion, Stride segmentation,

Unsupervised machine learning

INTRODUCTION

Changes in stride frequency and length with speed are key

parameters in human locomotion research (Maculewicz et al.,

2016; Muro-de-la-Herran et al., 2014) and are routinely used in

quadruped locomotion research (Heglund and Taylor, 1988; Jayne

and Irschick, 2000; Smith et al., 2015; Sue et al., 2011; Witte et al.,

2006). Measurement of these parameters enables the locomotor

strategy used by an animal to attain a particular speed to be

determined. They are commonly measured in laboratory-based

experiments using a treadmill or by filming trained captive animals

(Hudson et al., 2012; Williams et al., 2014). These approaches

provide estimates for movement over uniform terrain with a constant

velocity (steady locomotion) (Bertram, 2016). They are, however,

not ideal for species that are difficult to handle or observe (e.g. lions

or African wild dogs). Captive animals may not show the same

locomotor characteristics as wild animals (Hudson et al., 2012;

Williams et al., 2014) and treadmill locomotion can modify gait

patterns (Blaszczyk and Loeb, 1993).

These limitations have been overcome by the development of

animal tracking collars combining Global Positioning System

(GPS) and inertial measurement units (IMUs) (accelerometers/

gyroscopes) which can be sampled at high data rates (>5 Hz). The

detailed data these produce provide the potential to quantify how

stride frequency and length vary with speed under natural

conditions. In a typical deployment of several months, these

collars capture large quantities of data (tens of thousands of strides),

so to achieve realistic workloads an automated analysis system is

required. Such a system needs to be able to remove periods of

non-steady locomotion and segment the data into strides. Previous

studies trained animals to move at steady speeds and removed non-

steady locomotion by using a threshold based on speed (Maes et al.,

2008) and velocity heading (Daley et al., 2016). Stride segmentation

has been carried out using supervised machine learning (Mannini

and Sabatini, 2012; Pfau et al., 2008). This method requires data to

be collected while the animal is being viewed (labelled data) and

this is challenging for difficult to observe wild species.

Clustering (unsupervised machine learning) is an exploratory

approach that aims to find groups in data. It is ideally suited for use

with the data collected from collars on difficult to observe animals as

it does not require labelled data. This approach has previously been

applied to characterise the behaviours of birds (Sakamoto et al., 2009)

and humans (Trabelsi et al., 2013). To our knowledge, it has not been

applied to the problem of stride segmentation in quadrupeds.

We developed an algorithm to estimate stride frequency and

length during steady locomotion using a clustering approach. It was

tested on large data sets collected from collars on African wild dogs

(3290 strides) and lions (10,480 strides) and validated using a

domestic dog.

MATERIALS AND METHODS

Data collection

Data were collected from two female adult lions, a male and a

female African wild dog and a lurcher using custom-built Royal

Veterinary College (RVC) GPS-enabled wildlife collars (Wilson

et al., 2013) (Table S1). The lions and wild dogs are part of an

ongoing study by the RVC and Botswana Predator Conservation

Trust (BPCT) in Botswana (RVC CRERB 2013 1233 and a

Botswana research permit EWT 8/36/4). MATLAB 2015a

(Mathworks, Natick, MA, USA) was used for data analysis. The

collars contained a GPS module and an IMU (Hubel et al., 2016).

The current study used data from the highest resolution operating

state (5 Hz GPS, 300 Hz accelerometer and 100 Hz gyroscope).

The precision of the velocity and position data was improved

by fusing GPS/IMU data with a Kalman filter (Wilson et al.,

2013). Stride parameters were estimated from the Kalman-filtered

GPS measurements and data from the y/z-axis accelerometers

(Fig. 1I). Typical measurements from a wild dog are shown in

Fig. 1A–C.

Pre-processing

The reaction to gravity measured by the accelerometers was

removed using a 3rd order zero-phase (Oppenheim and Schafer,Received 13 July 2016; Accepted 29 October 2016
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2013) high-pass Butterworth filter (0.5 Hz cut-off frequency). The

remaining signal was segmented using a sliding window approach

(Fig. 1B,C). Windows (4 s long) were overlapped by 0.2 s (Fig. 1C)

until steady locomotion was detected. Windows containing steady

locomotion were not overlapped (Fig. 1C).

Steady locomotion

We assumed that there would be little variation in the phase

difference between the signals from the y/z-axis accelerometers

(over 4 s) during steady locomotion. The phase locking value (PLV)

was used to provide a measure of phase synchronisation between the
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Fig. 1. Examples of the signals recorded by the animal tracking collar, steady locomotion detection and gait classification. Signals were measured from

a free-ranging African wild dog (male). (A–C) GPS speed (A), and y-axis (B) and z-axis (C) acceleration (see I) measured during steady slow gallop (SG), the

transition to a trot and steady trotting. The modified sliding window signal segmentation approach is shown beneath the plots in C. (D–F) Steady locomotion

detection. (D) The results of filtering thewindowed y- and z-axis accelerometer signals with a band pass filter (pass band ±0.3 Hz around the stride frequency) for

steady SG (i), the gait transition (ii) and steady trotting (iii). (E) The instantaneous phase of the filtered y and z accelerations. (F) The relative phases. The phase

locking value (PLV) for steady SG and trotting is 0.984; the PLV for the gait transition is 0.802. (G) Feature space (calculated from multiple high sample rate

recordings collected from African wild dog) for all locomotion types (N=1992, 4 s windows) and steady-state locomotion (N=622, 4 s windows). Features have

been calculated from a 4 swindow of data. (H) Result of k-means gait classification intowalking (N=21, 4 swindows), trotting (N=116, 4 swindows), and slow (SG,

N=396, 4 s windows) and fast (FG, N=89, 4 s windows) galloping clusters. Note the large separation between trotting and the other gaits and the clear distinction

between the two galloping gaits. (I) Alignment of the three-axis accelerometer in the animal tracking collar.
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two signals (Aydore et al., 2013):

PLV ¼
1

T

X

T

t¼1

eiQðtÞ

�

�

�

�

�

�

�

�

�

�

: ð1Þ

PLV ranges from 0 to 1, with 1 representing the case where the

relative phase (RP) between signals is identical and 0 when there is

no phase synchrony. Θ(t) is the relative phase, T is the number of

samples and t is each discrete sample. RP is:

QðtÞ ¼ fyðtÞ � fzðtÞ; ð2Þ

where φy and φz are the instantaneous phases (IPs) of the windows of

y- and z-axis accelerometer signals, respectively. IP was calculated

using the Hilbert transform (Bracewell, 1999); as it is only

meaningful for a narrow band signal, the windows of

accelerometer signals were filtered (zero-phase, 5th order

Butterworth bandpass filter; passband ±0.3 Hz the stride frequency).

Transients introduced by the Hilbert transform were removed by

extracting the middle 3.6 s of the windowed signal (Fig. 1D–F).

Examples of bandpass-filtered accelerometer signals from a steady

slow gallop, the transition to trot and steady trot are shown in

Fig. 1D (i to iii, respectively). Fig. 1E,F shows the IPs and RPs of

these signals. The phase synchronisation of the accelerometer

signals during steady transverse gallop and trot can clearly be seen

in Fig. 1Di–Fi and Diii–Fiii (PLV for both gaits is 0.984). The lack

of synchronisation that occurs during the gait transition can be seen

in Fig. 1Dii–Fii (PLV=0.521). A PLV threshold of 0.98 resulted in a

balance between distinct clusters and retaining sufficient data

(Fig. 1G, H). The total number of strides was reduced by 83% for the

lurcher, by 44% and 47% for the two wild dogs and by 20% and

32% for the two lions. Fig. S1 and Table S6 allow comparison

between the PLV method and the speed threshold method used in

previous studies (Maes et al., 2008; Schmidt and Biknevicius,

2014).

Window stride frequency estimation

The stride frequency for a window of data was estimated from the

z-axis accelerometer signal using an autocorrelation approach. The

biased autocorrelation estimate ( �̂zz) for a finite length (T ) sampled

signal is given by:

�̂zz ¼
1

T

X

T

t¼t

zðt � tÞzðtÞ; ð3Þ

where z is the window of data from the z-axis accelerometer and τ is

the lag (samples). For a cyclic signal, such as that measured during

locomotion (Fig. 1C), the autocorrelation coefficients peak at lags

equivalent to the periodicity of the signal. The lag of the first

positive peak in the autocorrelation coefficients was found to

represent the stride period for galloping gaits and half the stride

period for trotting and walking.

Clustering

To identify gait, clustering was performed on three features derived

from the windowed accelerometer signals; features were selected

using domain knowledge. The first two features were the standard

deviation (s.d.) of the windowed y- and z-axis accelerometer signals,

the third was the autocorrelation estimate of the stride frequency

(Fig. 1G,H). Features were normalised to have zero mean and

unit s.d. before they were clustered using the k-means algorithm.

The number of clusters was determined using the Davis–Bouldin

criterion (Davies and Bouldin, 1979) and human inspection.

Stride parameters

Once the windows of data had been assigned a gait, it was possible

to extract stride segments using the MATLAB peak find method.

This enabled the individual stride frequency, length (GPS position

data) and speed to be estimated. The vertical accelerations in each

stride were registered using dynamic time warping (Ramsay and

Silverman, 2005) so they were independent of speed; their

magnitude was normalised to be between −1 and 1. Statistical

parametric mapping (SPM) and random field theory (RFT) were

used to test for differences between registered stride traces (Pataky

et al., 2013).

Validation

Validation was carried out by comparing stride parameter estimates

from collar data measured on a male lurcher (moving freely off the

lead) with those from video footage of the animal moving along a

line at a range of speeds and gaits on a level playing field (RVC

repository). Two video cameras were positioned parallel to the line

(Hero3, GoPro Inc., San Mateo, CA, USA; 120 frames s−1,

720×1280 pixels). Footage was calibrated using a 0.8 m-long stick

placed on the line in front of each camera. To allow gait

identification and calculation of stride parameters, we recorded

the foot on/off events. Two symmetrical (lateral walking and

trotting) and two asymmetrical (transverse and rotary gallop) gaits

were identified using anteroposterior sequence analysis

(Abourachid, 2003; Maes et al., 2008).

Lines were fitted to the stride frequency versus speed data and the

stride length versus speed data for each method and gait using the

least squares algorithm (Heglund and Taylor, 1988; Hudson et al.,

2012; Wilson et al., 2013). The slopes of the linear regressions

estimated from collar and video data were compared using analysis

of covariance. Further validation was carried out by fitting lines to

the stride speed estimates calculated from the stride length and

frequency values versus the stride speed estimate from the Kalman-

filtered GPS speed data. We assumed accurate parameter estimates

would result in a line with a slope not significantly different from

one.

RESULTS AND DISCUSSION

The variation of stride frequency and length with stride speed

(collar data) for a lurcher, two wild dogs and two lions is shown in

Fig. 2A–F. Stride frequency increased linearly with speed for the

lurcher and lions within all gaits and for wild dogs during trotting

and galloping but not during walking (Fig. 2A–C; Table S2). The

rate of change of stride frequency decreased as the animal moved

faster (Fig. 2A–C; Table S2). During galloping, stride frequency

increased gradually with speed (Fig. 2A–C; Table S2). Our results

are consistent with previous work (Heglund and Taylor, 1988; Maes

et al., 2008). The lions used a lower stride frequency at a given speed

than the smaller lurcher and wild dogs (Table S1). Stride length

increased linearly with increasing speed (Fig. 2D–F; Table S2). This

relationship has been found in other studies (Hudson et al., 2012;

Maes et al., 2008).

Our method was validated against estimates from video data from

the lurcher (Fig. 2G–N). The slopes and intercepts of the linear

regressions estimated from the two methods were compared using

analysis of covariance; no significant differences in slope (P<0.05)

were found (Table S3); the intercepts were significantly different

(P<0.05) (note the large data variability for stride frequency,
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Fig. 2. Variation of stride frequency and length with speed for steady locomotion estimated from data collected using an animal tracking collar during

walk, trot, and slowand fast galloping. (A–F) Stride frequencyand length estimates for a lurcher (A,D), twoAfricanwild dogs (B,E) and two lions (C,F). Each point

represents one stride. For the lurcher,N=49, 392, 174 and 76 for the walk, trot, slow gallop (SG) and fast gallop (FG). For the wild dogs,N1=19, 802, 1229 and 321

and N2=26, 316, 430 and 147 for the walk, trot, SG and FG. For the lions, N1=766, 3101 and 385 and N2=1865, 3928 and 435 for the walk, trot and gallop.

(G–N) Comparison of stride frequency and length estimated from data collected using an animal tracking collar and from video footage for a lurcher. Note that stride

parameter estimates from video data are calculated over individual strides. The anteroposterior sequencemethod was used to identify walking (G,K), trotting (H,L),

SG (I,M) and FG (J,N) from video footage. Collar data were segmented into different gaits using the k-means algorithm. Linear regression lines are shown using

solid lines, and 95% confidence intervals (CI) using dash/dotted lines.We found no significant difference between the slope of the lines fitted to the stride parameter

estimates from collar or video data (analysis of covariance, P>0.05). The number of strides from the video footage for walk, trot, transverse gallop (TG) and rotary

gallop (RG) gaits was 25, 41, 21 and 15, respectively. cl, data collected using an animal tracking collar; v, data from video footage.
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Fig. 2G–J, and the low r2 values, Table S3). While the range of

speeds for each gait varies with the method used, they both return

values that are reasonable compared with other work (Maes et al.,

2008) and predictions from dynamic similarity (Heglund et al.,

1974; Iriarte-Díaz et al., 2006). Dynamic similarity predicts that the

walk to trot transition occurs at a Froude number between 0.5 and 1

and the trot to gallop transition occurs between 2 and 3 (Heglund

et al., 1974; Iriarte-Díaz et al., 2006) (Table S4). Further validation

was carried out by fitting regression lines to the GPS measured

stride speeds and the stride speed predicted from stride length and

frequency estimates obtained from GPS position data and

accelerometer data (Fig. S2). The slopes of the lines were not

significantly different from one (P<0.05) (Table S5).

Fig. 3 shows the mean and 2 s.d. of the stride cut vertical

accelerations for each gait and animal. The traces recorded during

trotting for all species are similar (Fig. 3D–F; visual comparison).

The lower signal to noise ratio of the accelerometer signal during

walking makes comparison between species difficult (Fig. 3A–C).

The timing of the first positive and negative peaks in the traces for

the slow (Fig. 3G,H; first positive peak marked by ‘a’, negative by

‘b’) and fast (Fig. 3I,J; first positive peak marked by ‘c’, negative by

‘d’) gallops in the dogs appears to be different. Analysis using SPM/

RFT found significant differences (P<0.05) between the traces at

these locations and over the majority of the stride (Fig. S3).

As the collared animal does not have to be directly observed, our

method reduces demands on field staff and equipment, and enables

the study of free-ranging locomotion at self-selected speeds.

It extends the range and number of species and habitats in which

locomotion can be investigated, providing a tool to improve

understanding of energetics, resource selection and the impact of
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human intervention on animal populations. While it does not suffer

the drop in performance associated with a surrogate approach

(Campbell et al., 2013), it does require the correct number of

clusters to be chosen. This simply requires a visual check and

comparison with expected gait transition values (Heglund et al.,

1974). Our results fit with previous observations (Biancardi and

Minetti, 2012) that dogs perform transverse and rotary gallops

at low and high speeds, respectively (Fig. 2A,D and B,E and

Fig. 3G,I), and that lions perform a rotary gallop regardless of speed

(Fig. 2C,F and Fig. 3K). It is unlikely, however, that our method

would allow the separation of transverse and slow rotary galloping

(Maes et al., 2008). Further work may enable other gait parameters,

such as foot contact times, to be determined and this would allow

finer gait classification and the ability to distinguish between

transverse and slow rotary galloping. Our method could be extended

to the classification of animal behaviour (Grünewälder et al., 2012),

with the potential to reveal unseen behaviours (Brown et al., 2013),

increase our understanding of elusive species and reduce observer

effects.
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