
METHODOLOGY ARTICLE Open Access

An exploratory data analysis method to reveal
modular latent structures in high-throughput
data
Tianwei Yu

Abstract

Background: Modular structures are ubiquitous across various types of biological networks. The study of network

modularity can help reveal regulatory mechanisms in systems biology, evolutionary biology and developmental

biology. Identifying putative modular latent structures from high-throughput data using exploratory analysis can

help better interpret the data and generate new hypotheses. Unsupervised learning methods designed for global

dimension reduction or clustering fall short of identifying modules with factors acting in linear combinations.

Results: We present an exploratory data analysis method named MLSA (Modular Latent Structure Analysis) to

estimate modular latent structures, which can find co-regulative modules that involve non-coexpressive genes.

Conclusions: Through simulations and real-data analyses, we show that the method can recover modular latent

structures effectively. In addition, the method also performed very well on data generated from sparse global

latent factor models. The R code is available at http://userwww.service.emory.edu/~tyu8/MLSA/.

Background

Modularity refers to the organization of biological units

(genes, proteins etc.) into quasi-autonomous groups [1].

It is an abstract concept that may take different forms

in different networks. In systems biology, the most com-

mon modular structures are co-regulated genes by com-

mon transcription factors (TFs) [2-4], proteins that

interact with common hub proteins [5,6], and metabo-

lites in the same metabolic pathway [7]. Unsupervised

learning methods, such as methods for dimension

reduction and clustering, are used to find underlying

data structures [8,9], and generate lower-dimensional

data for downstream analysis [10-12]. Given the modu-

lar organization of the network, the ideal structure esti-

mation and dimension reduction should capture local

signals, rather than vague global signals that do not

reflect the true properties of the network.

To understand the modules, the key is to find the

activity levels of the controlling nodes. However the

activity levels, e.g. transcription factor (TF) activities in

gene expression, are not directly measured. Studies that

incorporate TF-gene linkage databases with gene expres-

sion data showed that multiple TFs can act on a gene,

and the expressions of the genes within a module regu-

lated by the same set of TFs can be modeled reasonably

well by linear functions with proper data transformation

[13,14]. These studies also suggested that the transcrip-

tion levels of the TFs themselves generally do not reflect

the activity levels, which argues for the usage of latent

variable models. Given the high dimensionality of the

data and the high noise level, the success of such mod-

els relies on the availability of prior knowledge about

the network topology. However, the knowledge in

TF-gene relationships is still scarce for many organisms.

In addition, for measurements taken at the protein or

metabolite level, it is hard to define such causal linkages,

as the controlling factors are not easy to pinpoint.

Hence we ask the question: given a matrix of expression

levels alone, can we identify hidden factors that work in

combinations to exert control over subgroups of biologi-

cal units? The loading matrix of a modular system

should be sparse, because the modular organization con-

fines the impact of most of the controlling factors to be

local rather than global. In addition, the non-zeroCorrespondence: tyu8@emory.edu

Department of Biostatistics and Bioinformatics, Rollins School of Public

Health, Emory University, Atlanta, USA

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

© 2010 Yu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://userwww.service.emory.edu/~tyu8/MLSA/
mailto:tyu8@emory.edu
http://creativecommons.org/licenses/by/2.0

loadings should form blocks, with every block corre-

sponding to one module.

Methods for the identification of tight clusters, such

as gene-shaving [15], bi-clustering [16] and context-

dependent clustering [17], cannot identify hidden fac-

tors that act in linear combinations. The factor model

framework allows linear combinations of factors to act

on each gene. Traditional methods in this area, such as

principal component analysis (PCA), independent com-

ponent analysis (ICA), Bayesian decomposition [18] etc,

are of limited use because they do not enforce sparsity

on the loading matrix. Loading matrix sparsity can be

achieved through penalization in sparse principal com-

ponent analysis (SPCA) [19], and proper sparsity priors

in sparse Bayesian factor models [20]. However these

methods do not enforce block structures in the loading

matrix. Here we describe a projection-based method for

the identification of modular latent structures. We refer

to the method as MLSA (Modular Latent Structure

Analysis) in this manuscript.

Methods
The goal of our method is to find a collection of low-

dimensional subspaces that explain the expression of

subgroups of genes very well. Consider a data matrix

Gp × n with p genes measured at n conditions. Our goal

is to find a series of orthonormal basis Bn k
j

j×{ }() , where j

is the index of the basis, and kj is the dimensionality of

the jth basis, such that with each B matrix, a subgroup

of the genes have large proportions of their variation

explained by the subspace defined by B. We first

describe the objective function and the corresponding

optimization method for the identification of a single

module with known or assumed dimensionality. We

then describe a forward-selection scheme to identify a

module when the dimensionality is unknown. In addi-

tion, an overall workflow for finding multiple modules

in a dataset is presented.

The MLSA method requires that all expression vec-

tors are standardized to have length 1. The exact stan-

dardization depends on the data properties and

assumptions. The easiest is to simply scale each row

vector of the matrix to achieve length 1. Column-wise

normalization such as mean removal or quantile nor-

malization could be performed in order to remove large

experimental bias, and row-wise mean removal could be

performed if the user considers only relative changes in

each gene is important. After standardization, when

seeking a subspace B, the length of the projected vector

in the subspace can be used to judge the amount of var-

iation explained by the subspace.

We use gi to denote the expression vector of the ith

gene, and li to denote its projection length. Given

B = (b1,b2,...,bk), where the b′s are unit vectors orthogo-

nal to each other, and k is the number of dimensions of

the subspace,

li i i i k= + + +(’) (’) ... (’)g g g  1
2

2
2 2 (1)

The objective function

In the search for a matrix B, the true module member-

ship information is missing. Ideally genes not belonging

to the module should not contribute to the estimation

of B. Thus the problem is estimation in the presence of

a latent variable (module membership). To address this

issue, we adopt the intuition of the expectation-maximi-

zation (EM) algorithm [21], although no explicit likeli-

hood function is assumed. A weight is defined as a

function of the projection length, wi = h(li), to reflect

the belief of whether a gene belongs to the module

based on its projection length on the current estimate of

the basis. Naturally, it should give higher weights to

genes closer to the estimated module subspace. The

exact form of the weight function is discussed in the

next sub-section. With the weights, the objective func-

tion is defined on all genes. We find B by maximizing

the sum of the squared weighted projection lengths,

with the constraint that the column vectors of B form

an orthonormal basis.

B = … =

= ∀

⊥ ≠

()
=∑(, ,)

,

,

,

  



 

1 2
1

2

1

k

j

j m

i i
i

p
w l

j

j m

argmax

Subject to
(2)

With a modular system, we expect the objective func-

tion to have multiple local optima, each major local

optimum corresponding to one module. Our goal is to

seek out a collection of major local optima.

Weight functions

In this study, we examine two forms of weight function.

The first is a sigmoid function.

w
e li = −

+ −
1

1

1  ()
i

(3)

The parameter j defines the steepness of the curve.

When its value is large enough, the shape of the sigmoid

function approaches a step function. We can always use

a large j, e.g. 50, to achieve strong contrast between the

two groups of genes. When j is large enough, further

increasing its value brings little change to the shape of

the curve.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 2 of 13

The parameter δ defines the inflection point of the

sigmoid curve. It is the critical parameter that defines

which genes contribute to the estimation of the basis of

the module. We find this parameter by considering the

distribution of projection length of the null genes -

genes not belonging to the module, hence limiting the

amount of contribution of such genes.

The parameter δ can be determined using the F distri-

bution. Based on the theory of linear least squares [22],

for genes not belonging to the module, i.e. independent

from the basis of the module, the F-statistic,

F
l

k

n k

l
= ×

− −

−

2 1

1 2
(4)

where n is the number of samples, and k is the dimen-

sionality of the subspace, follows the Fk, n-k-1 distribu-

tion. Using a stringent alpha-level cutoff, e.g. 0.001 to

account for the large number of genes, we can find the

corresponding cutoff in projection length.

 


= − − −
− − + − − −

kF k n k

n k kF k n k

1 1

1 1 1

, ,

() , ,
(5)

Because the sigmoid function gives high weight to

genes that belong to the module (l > δ) and very low

weight to genes that do not (l < δ), it is the most intui-

tive for defining modules.

The second weight function is a simple linear weight,

w li i= (6)

With this simple weight function, there is no need to

pre-specify what projection length corresponds to genes

belonging to the module. On the other hand, genes irre-

levant to the module can still contribute to the basis

selection to a small extent.

The algorithm for finding the latent factors when the

dimensionality of the subspace is known or assumed

Here we present an EM-like iterative algorithm for the

optimization, which accommodates both, and potentially

other, weight functions. In this section we assume k is

fixed. The selection of k is discussed in subsequence

sections. The algorithm iterates between finding the w’s

and the b′s.

When the w’s are fixed, we first shrink the expression

vector of each gene,

g gi i iw∗ = (7)

and denote the new weighted expression matrix G*.

The objective function is maximized by taking the first k

right singular vectors of G*. This is because the objec-

tive function can be written as,

() (’) (’)w l w wi i
i

p

ii

p

j
j

k

i j
j

k

i

p
2

1

2

1

2

1

2

11= = = ==∑ ∑ ∑ ∑∑= =g gi i  (8)

which is the sum of squares of the projection of the

weighted data onto the k-dimensional subspace.

When the b′s are fixed, every gene is given a weight

based on its projection length in the subspace (eq. 3 or

eq. 6). We can iterate between finding the b′s and find-

ing the w’s until convergence:

Algorithm 1. Finding B when k is fixed.

(A) Initiate the b′s using k randomly selected ortho-

normal vectors.

(B) Find the latent factors of the module. Iterate:

(B.1) Find the projection length of each gene.

(B.2) Find the weight of each gene (eq. 3 or eq.

6).

(B.3) Multiply each expression vector with its

weight.

(B.4) Perform singular value decomposition on

the weighted data matrix. Retain the k right sin-

gular vectors as the new b′s.

(B.5) Perform linear regression of every new b
against all the k b′s from the previous iteration.

If k minus the sum of the R2 is less than a pre-

determined threshold, which means the subspace

changes very little in the current iteration, stop

the iteration and go to step (C). Otherwise return

to step (B.1).

(C) Module membership determination. For

every observed projection length l*, we compute

the corresponding F statistic F* using equation 4.

Find:

FDR l p prob F F genes with projection length l* * / # *() × ≥()() ≥(=)) ,

where p is the number of genes in the matrix. This

is a conservative FDR estimate because we use the

count of all genes in the place of the count of null

genes. Find the cutoff value h - the smallest l* that

achieves FDR less than a pre-specified threshold,

and assign all the genes with equal or larger projec-

tion length to the module.

(D) If k >1, rotate the basis with oblique rotation, using

only loadings from genes with projection length ≥ h.

In step (B.2), when using the sigmoid weight function,

we initially use a small j value such as j* = j/10, and

slowly increase at j* each iteration, until the target j

value is reached. The initial smaller j values results in

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 3 of 13

smaller penalty to genes with short projection length,

which allows the algorithm a larger search space.

Convergence of the algorithm

For the linear weight function, we can show that the

value of the objective function is non-decreasing in the

iterations proposed in Algorithm 1. From iteration (t-1)

to (t), the first step is the SVD of the weighted expres-

sion matrix. The weight is simply li
(t-1) for gene i. It fol-

lows from the property of SVD that the first k right

singular vectors maximize the sum of squares of the

projection lengths. With all the row vectors shrunken by

a factor of li
(t-1), we have:

l l l li
t

i
t

i

p

i
t

i
t

i

p

() () () ()−

=

− −

=





 ≥ 



∑ ∑1

1

2 1 1

1

2
(9)

This is true because the left hand side of the inequal-

ity represents the sum of squares of the projection

lengths using the singular vectors, and the right hand

side represents the sum of squares of the projection

lengths using another non-optimal basis.

By rearranging (9), we have

A l l li
t

i

p

i
t

i
t= () () − ()





≥−

=

−∑ () () ()1 2

1

2
1

2
0 (10)

Next we examine the re-weighting step. Now for every

gene, we re-assign the weight to be li
(t) . We hope to

show that

l l l li
t

i
t

i

p

i
t

i
t

i

p

() () () ()



 ≥ 





=

−

=
∑ ∑

1

2 1

1

2
(11)

This is equivalent to showing

B l l li
t

i
t

i
t

i

p

= () () ()





≥−
−

=
∑ () () ()2 2 1 2

1

0 (12)

We subtract A from B,

B A l li
t

i
t

i

p

− = () ()





≥−
−

=
∑ () ()2 1 2

1

2

0 (13)

Then because of (10), we have B≥0. Hence (11) is

true. Combining (9) and (11), we have

l l l li
t

i
t

i

p

i
t

i
t

i

p

() () () ()



 ≥ 





=

− −

=
∑ ∑

1

2
1 1

1

2
(14)

Thus we have shown that with every iteration, the

value of the objective function is non-decreasing. Hence

convergence to a local optimum is guaranteed.

For the sigmoid weight function, this property doesn’t

hold. Intuitively, with this weight function, the step of

finding the w’s can be seen as defining module member-

ship of each gene. The iteration is between defining the

members and estimating the subspace. In practice, the

algorithm with sigmoid weight converged in all the

simulations and real data analyses we performed.

A forward - selection procedure for the automatic

determination of k

The number of dimensions k could be different for dif-

ferent modules. In order to automatically select k and

the corresponding basis, we describe a forward selection

procedure. The procedure is based on the fact that fac-

tors within the same module co-regulate some of the

genes. Thus when a subset of the factors in a module

are found, the residuals of the genes belonging to the

module, after fitting to the found factors, provide infor-

mation regarding the factors that are not yet found.

Algorithm 2. The forward selection procedure for

the detection of a single module.

(1)Set k = 1. Use Algorithm 1 to find b1. Currently B

contains only b1. Exit if the proportion of genes

associated with b1, as determined in step (C) of

Algorithm 1, is larger than a threshold, e.g. 50%, in

which case b1 is considered a global factor.

(2)Iterate:

(2.1) Using the current B matrix, apply the pro-

cedure in step (C) of Algorithm 1 to find the

genes belonging to the current estimated mod-

ule. Let the corresponding projection length cut-

off be h.

(2.2) Select genes belonging to the module, and

find their residuals. Multiply the residuals by

1 1 2/ − to restore the range of the residuals to

0[1]. This is done because we make no prior

assumption about the relative regulation strength

from each hidden factor.

(2.3) Using only the normalized residuals from

(2.2), apply Algorithm 1 with k = 1, to find the

next basis b′.

(2.4) Using all the genes, apply the procedure in

step (C) of Algorithm 1 to determine the set of

genes that are associated with the newly found

basis b′. Use the hypergeometric test to determine

if this set of genes significantly overlap with the

genes associated with B. If the test result is signifi-

cant, add the new basis to the B matrix, and return

to step (2.1); else, abandon b′ and go to step (3).

(3) If more than one b′s are found, rotate the

basis with oblique rotation, using only loadings

from genes with projection length >h, which is

found in step (2.1).

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 4 of 13

In step 2.4, because an FDR level is used in determin-

ing genes associated with the module (Step C, Algo-

rithm 1), the hypergeometric test is adjusted for the

existence of the false-positives in a conservative manner.

Assuming the count of genes associated with B is m1,

the count of genes associated with b′ is m2, the overlap

is r, and the FDR cutoff is l, we use m′1 = ceiling(m1(1-

l)), m’2 = ceiling(m2(1-l)), and r’= floor(r(1-l)2) for the

calculation of the hypergeometric p-value,

P
m l
p m

l
m

m
l r p

=
() ()

()
′ −
− ′ ′

′
≥ ′∑ 2

1 1

2

,

where p is the number of genes in the data.

We can iterate Algorithm 2 to find a series of modules.

The overall workflow is presented in Additional file 1:

Figure S1. The number of genes assigned to the module

is used as the stopping criterion. In a modular system,

modules can be of different sizes. The number of genes

assigned to the module can be seen as equivalent to the

percentage of variance explained in the PCA setting.

When the number of genes in the newly found module is

smaller than a threshold, the iteration is stopped.

Algorithm 3. Finding a series of modules from a

dataset.

Iterate:

(1)Find a module using Algorithm 2.

(2)If the number of genes in the module is smal-

ler than a threshold, end the iteration. Else, take

one of the following routes:

(2.a) Remove all genes assigned to the mod-

ule from the data matrix, return to step (1);

Or alternatively,

(2.b) For each gene, keep the residual by sub-

tracting the projection onto the basis of the

module, return to step (1).

The overall factor model

After finding a collection of B matrices, we consider all

the b′s as latent variables, each of which governs a sub-

set of genes. We can combine them into an overall fac-

tor model with a sparse loading matrix to interpret the

gene expression. Let K be the total number of b′s found,

F be the row-combined factor matrix of all the b′s, L be

the loading matrix, and E be the unexplained expres-

sion, we have a factor model,

G L F Ep n p K K n p n× × × ×= +

The values in L can be filled in two ways. The first is

by performing linear regression of each gene against the

factors of the modules the gene is assigned to. The

regression is necessary because the factors are rotated

and potentially non-orthogonal to each other. Alterna-

tively, we can perform regularized regression of each

gene against all the factors. In this report, we used lasso

[23] with BIC model selection to determine the factors

associated with each gene.

Simulation study

MLSA was compared to PCA, ICA, factor analysis with

oblique rotation, gene shaving [15], and sparse principal

component analysis (SPCA) [19] through penalized

matrix decomposition [24]. For SPCA, parameter selec-

tion was done using cross-validation as provided in the

PMA package [24]. Four modes of the MLSA method

were tested in combination with the forward-selection

scheme: (1) linear weight; removing genes belonging to

the module after finding each B matrix; (2) linear

weight; retaining the residuals from all genes after find-

ing each B matrix; (3) sigmoid weight; removing genes

belonging to the module after finding each B matrix;

and (4) sigmoid weight; retaining the residuals from all

genes after finding each B matrix.

We considered two classes of latent factor models.

The first was the modular system, in which a number of

modules exist. Each module contained a subset of genes

controlled by module-specific latent factors. Every gene

could only belong to one module. Different levels of

within-module loading sparsity were considered. The

second was the global sparse factor model, in which the

latent factors controlled all genes through a sparse load-

ing matrix. Four types of input signals were used for the

hidden factors - Gaussian, sine wave, square wave, and

sawtooth wave (Additional file 1: Figure S2). A number

of scenarios belonging to the following four classes were

simulated (Table 1): (1) modular latent structures with

hidden factors randomly drawn from the four types; (2)

modular latent structures with Gaussian hidden factors;

(3) global sparse latent structures with hidden factors

randomly drawn from the four types; (4) global sparse

latent structures with Gaussian hidden factors. From

every possible combination of the parameters (Table 1),

100 simulated data matrices were generated and

analyzed.

Within every module, we separately constructed the

loading matrix and the matrix of factor scores. The

sparsity of the loading matrix was achieved by drawing

samples from the binomial distribution. Once the non-

zero positions in the loading matrix was determined, for

every simulated gene, if there were m controlling fac-

tors, we divided [0, 1] into m regions by drawing (m-1)

samples from the uniform distribution between 0 and 1.

We then used the sizes of the regions as the loadings

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 5 of 13

for the gene. Half of the loadings were then multiplied

by -1 to generate negative loadings. The factor scores

were generated one factor at a time. When all the four

types of factors were used, we first randomly drew the

factor type. Then for the non-Gaussian factors, the peri-

odicity τ was drawn randomly from [20, 40], and subse-

quently the phase shift was drawn randomly from [0, τ].

Simulated expression matrix of the module was then

generated by multiplying the loading matrix with the

factor matrix. The simulated matrices from all modules,

together with some pure noise genes generated from the

Gaussian distribution, were row-combined into a single

data matrix. For the global sparse factor model, the

matrix was generated as data containing a single mod-

ule. As the last step, noise generated from the Gaussian

distribution was added to the simulated expression

matrix.

Among the methods being compared, only MLSA

could assign the identified factors into modules. In

order to compare the performance, we used the infor-

mation of the true hidden factors to group the identified

factors. Given a simulated data matrix generated from a

total of K true hidden factors, we allowed each method

to find up to 1.5 × K factors. Notice that K is the com-

bined factor count from all modules in the data. In the

modular setting, the hidden factors formed groups. In

the global sparse factor model, each hidden factor

belonged to its own group. First, we performed linear

regression of every identified factor against each hidden

factor group, and recorded the multiple R2. The

identified factor was then assigned to the group yielding

the largest R2. The K identified factors with the largest

R2 values were retained for the next step. Secondly, we

performed linear regression of every true hidden factor

against the identified factors assigned to its group, and

recorded the multiple R2 as the level of recovery of the

true hidden factor. After repeating the simulation from

every parameter setting 100 times, we compared the

methods by the distribution of the multiple R2 values.

The ideal method should yield multiple R2 values close

to one.

Results

Simulation results

For the modular latent structure model, a total of 72 sce-

narios were simulated, and for the global sparse factor

model, a total of 36 scenarios were simulated (Table 1).

Representative results are shown in the main text. More

results are in the Additional file 1.

Figure 1 shows part of the results from simulated

modular latent structure models. In all the scenarios,

the data contained 10 modules with 100 genes per mod-

ule. Every module was governed by 1 to 3 (randomly

chosen) latent factors. Another 1000 pure noise genes

were also included. The two left columns of the subplots

are scenarios in which the hidden factors were drawn

from four possible types, and the two right columns are

scenarios where the hidden factors were drawn from the

standard Gaussian distribution. The columns of the sub-

plots correspond to different signal-to-noise ratios, and

the rows of the subplots correspond to different levels

of within-module sparsity (proportion of zero loadings).

For example, the sub-plot at the top-right corner corre-

sponds to the scenario in which 60% of the within-mod-

ule loadings were zero, and signal variance is equal to

that of noise variance.

In all the scenarios, the linear weight and sigmoid weight

performed similarly. When the latent variables were all

from the standard Gaussian distribution (Figure 1, right

panels), MLSA using module removal recovered the hid-

den factors nearly perfectly (black/blue solid lines). Using

residual retention mode, the fidelity of factor recovery suf-

fers (dashed lines), because some hidden factors are not

entirely orthogonal to each other. Still, if we consider

R2
≥0.49 (coefficient of multiple correlation ≥ 0.7) as good

recovery, then at least 98% of the hidden factors were

recovered. SPCA showed very strong performance (green

line), in many cases approaching that of MLSA, recovering

84~93% of the hidden factors. Gene shaving recovered

24~49% of the hidden factors. As expected, the non-sparse

global methods PCA, ICA and factor analysis performed

much worse.

When the latent variables were generated from a mix-

ture of four types of signals (Figure 1, left panels), the

Table 1 Simulation settings

Parameters Values

Modular factor model

Type of hidden factors Gaussian, mixed

Number of samples 100

Number of modules 5 10

Number of genes per module 200 100

Maximum number of factors per module 4 3

Minimum number of factors per module 1

% non-zero loadings within module 40%, 70%, 100%

Number of pure noise genes 200, 1000

Signal to noise ratio 0.5, 1, 2

Global sparse factor model

Type of hidden factors Gaussian, mixed

Number of samples 100

Number of genes 2500 #

Number of factors 20

Average number of factors governing each
gene

0.5, 1, 2, 5, 10,
20

Signal to noise ratio 0.5, 1, 2

2000 potentially governed by the factors, 500 pure noise genes.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 6 of 13

percentage of hidden factor recovery was much lower.

At the cutoff of R2
≥0.49, MLSA recovered 59~64% of

the hidden factors, while SPCA recovered 43~47%, and

gene shaving recovered 18~43%. Interestingly, among

the global methods, PCA showed much stronger perfor-

mance compared to its own performance in the Gaus-

sian hidden factor scenarios, recovering 28~32% of the

hidden factors (red line). One interesting characteristic

of MLSA is that the latent factors were either recovered

with high fidelity, or totally missed. This can be

explained by the fact that the method only seeks strong

signals from subsets of the genes.

Next we explored the ability of MLSA to recover

latent factors when the true model was a sparse global

latent structure, instead of modular structure (Figure 2).

With Gaussian hidden factors, the results were similar

to the modular scenarios when the sparsity is high

(average # factors/gene = 1 or 2). A clear deterioration

was seen when the average number of factors per gene

reached 5. Nonetheless, MLSA still recovered more than

90% of the factors at the cutoff of R2
≥0.49. The perfor-

mance of SPCA (11~34% recovery) is not as competitive

as in the modular structure scenarios, falling behind

gene shaving (19~55% recovery). With mixed-type

Figure 1 Simulation results from modular latent structure models. In every simulation, 10 modules, each consisting of 100 simulated genes,

were generated. The number of latent factors per module was randomly selected between 1 and 3. The latent factors were either independent

Gaussian (two right columns), or randomly chosen from a mixture of four types (two left columns). Gaussian random noise was added to

achieve different signal to noise ratios (columns), and different levels of within-module sparsity (proportion of zero loadings) were tested (rows).

An additional 1000 pure noise genes were generated from the standard Gaussian distribution. Each simulation setting was repeated 100 times.

The success of latent factor recovery was evaluated by the R2 values obtained by the regression of each latent factor against the identified

factors assigned to the module to which the latent factor belongs. The relative frequencies (10 equal-sized bins between 0 and 1, equivalent to

the histogram) of the R2 values are plotted.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 7 of 13

hidden factors, MLSA recovered 47~61% of the hidden

factors, while SPCA recovered 26~33% and gene shaving

recovered 17~51%. Again we observed stronger perfor-

mance of PCA compared to its own performance in the

Gaussian hidden factor scenarios.

Overall, the results showed that MLSA was able to

recover most latent factors when the factors were gener-

ated independently from the Gaussian distribution.

When the factors were generated from a mixture of

four types, a portion of the true factors were missed by

MLSA. Still MLSA performed much better than the

other methods tested.

The yeast cell cycle data

The Spellman cell cycle data consists of four time-series,

each covering roughly two cell cycles [25]. The array

data consists of 73 conditions and 6178 genes. A num-

ber of cell-cycle related genes exhibited strong

periodicity in expression. Because of phase differences,

the cell cycle related genes cannot be easily summarized

by clusters [9].

We applied MLSA to the cell cycle data as a whole, in

order to discover common patterns across the four time

series. The results described here were obtained using

the sigmoid weight function. Because of the existence of

strong global factors, we used the version of MLSA that

retains the residuals from all genes after finding each B

matrix. Aside from 11 single factors, MLSA found two

modules each consisting of two factors. One of the

modules was made of two signals of strong periodicity

(Figure 3a). Although the periodicity values vary across

the four time series, the results clearly confirmed that

the same set of genes were involved. Heatmap of the

genes belonging to the module show clear periodic

behavior with different phase shifts (Figure 3b). The

results are consistent with the biological knowledge that

Figure 2 Simulation results from sparse global latent structure model. In every simulation, 2000 simulated genes were generated from a

latent variable model with 20 latent factors. The latent factors were either independent Gaussian (two right columns), or randomly chosen from

a mixture of four types (two left columns). Gaussian random noise was added to achieve different signal to noise ratios (columns), and different

levels of sparsity were tested (rows). An additional 500 pure noise genes were generated from the standard Gaussian distribution. Each

simulation setting was repeated 100 times. The success of latent factor recovery was evaluated by the R2 values obtained by the regression of

each latent factor against the identified factors that are most correlated with it. The relative frequencies (10 equal-sized bins between 0 and 1,

equivalent to the histogram) of the R2 values are plotted.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 8 of 13

cell-cycle related genes are activated at different phases

of the cell cycle [25]. When other methods used in the

simulation were applied to the cell cycle data, it was

clear that non-cell cycle-related signals, such as high-fre-

quency oscillation and linear trend, interfered with the

signal separation, yielding no single factor that primarily

reflected cell cycle alone. In addition, these methods

failed to link the genes with similar periodicity but

different phase shifts to a single module.

The factors in the other two-factor module didn’t

show periodic behavior. To analyze the validity of the

module, we resorted to functional analysis based on

gene ontology (GO) [26]. Among the 415 genes in the

module, 132 were involved in the biological process of

translation (p-value 2 × 10-27), and another 39 genes

were involved in other aspects of gene expression.

A large number of other biosynthetic and catalytic pro-

cesses, including amino acids, steroid, alcohol etc, were

Figure 3 MLSA results from the yeast cell cycle data. (a) The factor scores of the module that contains 2 sinusoidal factors; (b) heatmap of

all the genes belonging to the module. The rows are genes re-arranged by hierarchical clustering with average linkage; the columns are arrays

arranged according to the time series.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 9 of 13

also significantly over-represented by the genes in the

module. A clear functional consistency is observed in

this module.

The NCI-60 cell lines gene expression data

Next we studied the NCI-60 cell lines gene expression

data as measured by U133A array [27]. The NCI-60 cell

lines are a collection of cell lines from diverse human

cancers. The gene expression and drug response of

these cell lines have been studied extensively for the elu-

cidation of cancer mechanisms and screening for drugs.

The array data consists of 60 samples and 22215 genes.

After finding the factors by MLSA, we performed reg-

ularized regression by lasso to select factors for each

gene. The BIC criterion was used in conjunction with a

p-value cutoff of 1 × 10-3 for factor selection. A total of

12 factors were identified by MLSA. Two of the factors

belong to one module, and three other factors belong to

another module (Table 2).

We tested whether each factor was associated with the

tissue origin of the tumors by one-way analysis of var-

iance (ANOVA). At the single factor level, six of the fac-

tors were significantly associated with the tissue origin

of the cancer at the alpha level of 0.01, and two others

at alpha level of 0.05 (Table 2). Examination of the box-

plots showed some strong differences of factor scores

based on tissue origin (Figure 4). Notice that factors in

each multi-factor module are unidentifiable and the

scores were obtained by oblique rotation [28]. This is

because once the module subspace is determined, we

can rotate the basis within the subspace and the value

of the objective function (eq. 2) doesn’t change. This is

similar to the situation in exploratory factor analysis.

We further examined the gene lists in the two multi-

factor modules through gene ontology. For the two-fac-

tor module, over-represented biological processes

include mRNA metabolic process (p-value 1.0 × 10-13),

DNA replication (p-value 0.00018), chromatin modifica-

tion (p-value 0.00021), blood vessel development

(p-value 0.00077), cytoskeleton organization (p-value

0.00077), cell adhesion (p-value 0.0022), apoptosis

(p-value 0.0033) and more than 120 other processes,

many of which have clear links to tumor development.

For the three-factor module, over-represented biological

processes include small GTPase mediated signal trans-

duction (p-value 0.0020), RNA splicing (p-value 0.0013)

and 14 other processes. Although the functional consis-

tency of this module was not as clear-cut as the other

module, we noticed that the module consisted very

strong signals separating some cancer types from others

(Table 2).

The squamous cell lung carcinomas data

The third dataset we studied was the squamous cell lung

carcinomas data from 129 patients [29]. The array data

consists of 130 samples and 22215 genes. Clinical infor-

mation, including tumor stage, differentiation, survival

etc. are also available.

MLSA identified a five-factor module, a six-factor

module, a three-factor module, two two-factor module

and another 18 single factors. By performing Cox pro-

portional hazard regression with survival outcome, and

ordered logistic regression with tumor stage or tumor

differentiation as outcome, we found that the five-factor

module was significantly associated with tumor differen-

tiation (p-value 0.0097). The gene list of this module

over-represents many biological processes associated

with tumor development, such as cell adhesion (p-value

4.0 × 10-10), cell proliferation (p-value 5.6 × 10-7),

immune response (p-value 6.1 × 10-7), response to

wounding (p-value 2.1 × 10-5), blood vessel development

(p-value 6.6 × 10-4), and cell migration (p-value 0.0014).

One of the two-factor modules was significantly asso-

ciated with tumor stage (p-value 0.0094). Its genes over-

represent processes such as regulation of osteoblast dif-

ferentiation (p-value 0.0016), bone remodeling (p-value

0.0017), and negative regulation of inflammatory

response (p-value 0.0086).

The six-factor module was associated with survival out-

come with marginal significance (p-value 0.060). The

genes in this module over-represents biological processes

in immune response and macromolecule biosynthesis,

such as lymphocyte activation (p-value 8.0 × 10-6), transla-

tional elongation (p-value 1.6 × 10-15), post-translational

protein modification (p-value 0.0024), and protein amino

acid phosphorylation (p-value 0.0012). Another two-factor

module associated with differentiation with marginal sig-

nificance (p-value 0.063). Its genes over-represent pro-

cesses such as protein metabolic process (p-value

0.001334), regulation of organelle organization (p-value

Table 2 List of modules from the NCI60 data

Module # genes associated
(out of 22215 genes)

Factor F-test
p-value*

1 4238 1 0.0076

2 3602 2 6.2 × 10-12

3 7.5 × 10-9

3 1008 4 0.072

4 1314 5 0.14

5 796 6 0.042

7 7.6 × 10-4

8 3.0 × 10-7

6 304 9 0.022

7 231 10 2.9 × 10-5

8 188 11 0.34

9 134 12 0.054

* ANOVA of factor score against tissue origins of the cancer cell lines.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 10 of 13

0.0040), ubiquitin-dependent protein catabolic process (p-

value 0.0081), and coenzyme metabolic process (p-value

0.0092). Among the five multi-factor modules, four were

associated with clinical outcomes to some extent. Three of

the 18 single factors also showed significant associations

with the outcomes.

Discussion

The purpose of the MLSA method is to find a collection

of basis, such that each basis explains the expression of

a subset of genes well. In a modular system, multiple

local optima exist, each corresponding to a module. The

MLSA algorithm searches for modules in an iterative

manner. The ideal algorithm should find the global

optimum in each round. However, this is a difficult task.

Using the linear weight function, the MLSA method

finds one local optimum at a time. The issue of not

necessarily finding the global optimum is alleviated by

the purpose of the algorithm - it is intended to find a

series of local optima. If the global optimum is missed

in one round of search, it could still be discovered in

subsequent rounds.

The sigmoid weight function doesn’t guarantee the

value of the objective function to be non-decreasing.

However, it is more intuitive in that genes with small

projections (cutoff defined using null distribution) con-

tribute very little to the estimation of the basis, and

genes with large projections contribute to the estimation

Figure 4 Boxplots of the factor scores for cancer cell lines from different tissue origin. Factors belonging to the same module are boxed.

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 11 of 13

almost equally. The weighting step can be seen as esti-

mating the module membership, and the weighted SVD

step estimates the subspace based on the current esti-

mates of module membership. The use of the weight

function is mainly justified by our simulation study - the

algorithm always converged, and usually within fewer

iterations compared to the linear weight function.

The MLSA method seeks subspaces using a projec-

tion-based algorithm. When hidden factors highly corre-

late with each other, their subspaces overlap. MLSA will

not be able to separate the highly correlated signals.

Rather, the signals will likely be combined into a single

factor when identified. In our simulations using mixed-

type hidden factors, some factors were correlated due to

the characteristics of the wave functions, even though

their periodicities and phases were drawn independently.

In fact 10% of the absolute correlation coefficients

between factors were higher than 0.5, half of which

were higher than 0.66. Given that MLSA makes no

assumption about signal distributions, the most likely

explanation of the worse performance in the mixed-type

signal scenarios compared to the Gaussian signal scenar-

ios is the high correlation of the signals.

After finding each module, there are two ways to

remove the influence of the module before searching

for the next module. MLSA either removes the genes

that are members of the module, or takes the residuals

of all genes. Which method to choose depends on the

characteristics of the data. If the basis of the module

influences a large proportion of the genes, which is

sometimes observed in real microarray data, taking the

residuals is recommended. When using the residuals,

the bases of different modules are strictly orthogonal to

each other. When using module member removal, the

bases of the modules could be weakly correlated. In real

biological systems, some input signals, e.g. transcription

factor activities, could be correlated [13,14]. In the real

data we examined, the correlations between the bases

were relatively low. For example, when the method of

module member removal was applied on the cell cycle

data, the absolute correlations between the factors were

all below 0.2.

A number of parameters are involved in the MLSA

algorithm. For both linear and sigmoid weight function,

an FDR cutoff is needed in order to determine module

membership (Algorithm 1), and a cutoff in alpha level

for the hypergeometric test needs to be defined in the

forward selection of basis (Algorithm 2). Both these

parameters carry straight-forward statistical interpreta-

tions, and proper levels can be selected by the user. For

the sigmoid weight function, two extra parameters need

to be set. The first parameter is the shape parameter j

of the sigmoid function (eq. 3). As we discussed in the

methods section, when j is large, the sigmoid function

approaches a step function, and further increase in j

has little effect on the shape of the curve. Thus the

exact choice is not very critical and a large j value can

always be used. The second is the alpha level for the F

distribution (eq. 4), which determines the inflection

point δ of the weight function (eq. 5). When setting this

parameter, it is necessary to consider the issue of multi-

ple testing. Otherwise the contribution from genes unre-

lated to the module could influence the estimation

result, and the identified basis may carry more global

information, rather than the information local to the

module. This will in turn impact not only the estimation

of the current module, but other modules that have not

been identified yet.

In the search of a series of modules, the stopping rule

is based on the number of genes assigned to the newly

found module (Algorithm 3). In a modular system, this

parameter can be seen as similar to the percentage of

variance explained in the PCA setting. Because modules

are discovered in a sequential manner, and the algo-

rithm for basis estimation (Algorithm 1) isn’t guaranteed

to converge to the global optimum, it is recommended

that a very small cutoff value, e.g. 10 genes, is used in

the module discovery phase. Then the user can select

modules based on the number of genes associated with

each module, possibly after re-assigning the loadings

through gene-by-gene variable selection.

Conclusions

In summary, the problem of identifying modular struc-

tures without any prior information is a difficult one.

The MLSA algorithm utilizes the fact that each module

occupies a subspace of much lower dimension. The

method seeks subspaces in which a subset of genes have

large projections. It performs well in simulations, and

generates biologically relevant results from real datasets.

An interesting observation is that the method also

recovers hidden factors with high fidelity when the true

model is a global sparse factor model, which makes it a

good choice for the purpose of blind source separation.

Additional material

Additional file 1: Supporting Material. Supporting figures and detailed

results of the simulation study.

Acknowledgements

This research is partially supported by NIH grants 1P01ES016731-01,

2P30A1050409 and 1UL1RR025008-01, and a grant from the University

Research Committee of Emory University.

Received: 8 June 2010 Accepted: 27 August 2010

Published: 27 August 2010

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1471-2105-11-440-S1.PDF

References

1. Wagner GP, Pavlicev M, Cheverud JM: The road to modularity. Nat Rev

Genet 2007, 8(12):921-931.

2. Halfon MS, Grad Y, Church GM, Michelson AM: Computation-based

discovery of related transcriptional regulatory modules and motifs using

an experimentally validated combinatorial model. Genome Res 2002,

12(7):1019-1028.

3. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing

modular organization in the yeast transcriptional network. Nat Genet

2002, 31(4):370-377.

4. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N:

Module networks: identifying regulatory modules and their condition-

specific regulators from gene expression data. Nat Genet 2003,

34(2):166-176.

5. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D,

Walhout AJ, Cusick ME, Roth FP, et al: Evidence for dynamically organized

modularity in the yeast protein-protein interaction network. Nature 2004,

430(6995):88-93.

6. Rives AW, Galitski T: Modular organization of cellular networks. Proc Natl

Acad Sci USA 2003, 100(3):1128-1133.

7. Yoon J, Si Y, Nolan R, Lee K: Modular decomposition of metabolic

reaction networks based on flux analysis and pathway projection.

Bioinformatics 2007, 23(18):2433-2440.

8. Kong W, Vanderburg CR, Gunshin H, Rogers JT, Huang X: A review of

independent component analysis application to microarray gene

expression data. Biotechniques 2008, 45(5):501-520.

9. Li KC, Yan M, Yuan SS: A simple statistical model for depicting the cdc15-

synchronized yeast cell-cycle regulated gene expression data. Stat Sinica

2002, 12(1):141-158.

10. Bair E, Hastie T, Paul D, Tibshirani R: Prediction by supervised principal

components. J Am Stat Assoc 2006, 101(473):119-137.

11. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A,

Iversen ES, Liao M, Chen CM, et al: Gene expression predictors of breast

cancer outcomes. Lancet 2003, 361(9369):1590-1596.

12. Segal E, Friedman N, Kaminski N, Regev A, Koller D: From signatures to

models: understanding cancer using microarrays. Nat Genet 2005,

37(Suppl):S38-45.

13. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP: Network

component analysis: reconstruction of regulatory signals in biological

systems. Proc Natl Acad Sci USA 2003, 100(26):15522-15527.

14. Yu T, Li KC: Inference of transcriptional regulatory network by two-stage

constrained space factor analysis. Bioinformatics 2005, 21(21):4033-4038.

15. Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC,

Botstein D, Brown P: ’Gene shaving’ as a method for identifying distinct

sets of genes with similar expression patterns. Genome Biol 2000, 1(2):

RESEARCH0003.

16. Gu J, Liu JS: Bayesian biclustering of gene expression data. BMC Genomics

2008, 9(Suppl 1):S4.

17. Yuan S, Li KC: Context-dependent clustering for dynamic cellular state

modeling of microarray gene expression. Bioinformatics 2007,

23(22):3039-3047.

18. Moloshok TD, Klevecz RR, Grant JD, Manion FJ, Speier WFt, Ochs MF:

Application of Bayesian decomposition for analysing microarray data.

Bioinformatics 2002, 18(4):566-575.

19. Zou H, Hastie T, Tibshirani R: Sparse principal component analysis. Journal

of Computational and Graphical Statistics 2006, 15(2):265-286.

20. Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M: High-

Dimensional Sparse Factor Modeling: Applications in Gene Expression

Genomics. J Am Stat Assoc 2008, 103(484):1438-1456.

21. Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete

Data Via Em Algorithm. J Roy Stat Soc B Met 1977, 39(1):1-38.

22. Kutner MH, Nachtsheim CJ, Neter J, Li W: Applied Linear Statistical Models

New York: McGraw-Hill, 5 2005.

23. Efron B, Hastie T, Johnstone I, Tibshirani R: Least Angle Regression. Annals

of Statistics 2003, 32(2):407-499.

24. Witten DM, Tibshirani R, Hastie T: A penalized matrix decomposition, with

applications to sparse principal components and canonical correlation

analysis. Biostatistics 2009, 10(3):515-534.

25. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,

Botstein D, Futcher B: Comprehensive identification of cell cycle-

regulated genes of the yeast Saccharomyces cerevisiae by microarray

hybridization. Mol Biol Cell 1998, 9(12):3273-3297.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the

unification of biology. The Gene Ontology Consortium. Nat Genet 2000,

25(1):25-29.

27. Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J,

Grimshaw A, Theodorescu D: A strategy for predicting the

chemosensitivity of human cancers and its application to drug

discovery. Proc Natl Acad Sci USA 2007, 104(32):13086-13091.

28. Bernaards CA, Jennrich RI: Gradient Projection Algorithms and Software

for Arbitrary Rotation Criteria in Factor Analysis. Educational and

Psychological Measurement 2005, 65:676-696.

29. Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JM, Macdonald J,

Thomas D, Moskaluk C, Wang Y, et al: Gene expression signatures for

predicting prognosis of squamous cell and adenocarcinomas of the

lung. Cancer Res 2006, 66(15):7466-7472.

doi:10.1186/1471-2105-11-440
Cite this article as: Yu: An exploratory data analysis method to reveal
modular latent structures in high-throughput data. BMC Bioinformatics
2010 11:440.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Yu BMC Bioinformatics 2010, 11:440

http://www.biomedcentral.com/1471-2105/11/440

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/18007649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12134151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12134151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15190252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15190252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17660208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17660208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19007336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19007336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19007336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12747878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12747878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14673099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16144806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16144806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11178228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11178228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18366617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12016054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17666531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17666531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17666531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16885343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16885343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16885343?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The objective function
	Weight functions
	The algorithm for finding the latent factors when the dimensionality of the subspace is known or assumed
	Convergence of the algorithm
	A forward - selection procedure for the automatic determination of k
	The overall factor model
	Simulation study

	Results
	Simulation results
	The yeast cell cycle data
	The NCI-60 cell lines gene expression data
	The squamous cell lung carcinomas data

	Discussion
	Conclusions
	Acknowledgements
	References

