AOTROR Ludlow Larry F .
TITLE :- An Expioratory Investigation of Rasch hodel

POB DRTE
note.

EDRS PRICE dESCRIPTORS -

IDEHTIPIRRS *Data Interpiretation: Rasch Hodel: *Besiduals
Residuals.
Apr 81
37p.: Paper presented at the $A$ nnual keeting of the American Edycational Research Association (65th, Los Angełes, CA, April 13-17, 1981).

Bpo1/pc02 Plus postage.
*Goodness of pit: *Latent Trait Theory; *uDdels: Statistical inailysis (Statistics)
abstacict
Residual patterns should be studied in order to understand when and why data deviate from a model. This paper illustrates some techniques foi exploring residual patterns resultfig fron the aifference between observed and expected scores as predicted by a Rasch model for polychotozous data. The score residual divided. by its standard deviation $1 s^{\circ}$ cälled a standardized residual. a variety of plots of residuals are presented to illustrate residual pattern in.terpretation. A śystematic analysis of.residuals can offer the investigator a decision facilitation technique not found in conventional sumary fit statistics. ( $\mathrm{gin}^{\text {i }}$

[^0]Moins docyment has bem reproduced as fecteved from the aprion or crozazestion ongosiung r
O Minor changee heve been mede to mprove repropuction quatay memt oo not necueserily repitsent officiel NE poerion or policy

AN EXPLORATORY INVESTIGATION OF RASCH MODEL RESIDUALS


Paper presented at the Amefican Educational Research Association Annual Convention, £os Angeles, Cal., April 12-17, 1981

Models are convenient expressions of how we think things ought to be.. When we use models to understand experience, however, it is inevitable that less than a perfect explarration results. This need not mean. the end.of the model." By 'studying the residuals from our expectations we can learn from, and come to, a better understanding of our experiences.

The importance of inspęcting residuals to gain information leading to bētter models,and béter understood data has been clearly demojstrated in the analysis of variance literature by, among others, Anscombe and Tukey (1963) and Draper and Smith (1966). Likewise, the analysis of covariance structures depends on the interpretion of residuals in the model testing stages(Joreşkog,1979). The .psychometric literature, however, does not reveal as comprehensive an effort at the investigation Of residual patterns in order to un'derstand when and why data deviate from a model. For example, when thë Rasch model is applied to dichatomous data. the best analyses may computefit statistics for ítems across people and for people across items - (Mead, 1975). . But these st'atistics are often'inadequate to locate the source of model departure. And; since these statistics: are sensitive to sample size anduest leng̈th there is controverṣy regarding the magnitude-to be regarded as misfifting.

Although these summary statistics have, demonstrated their usefulnéss, the analysis of model fit must be carried further; Just as Draper and Smith dirge the display of residual patterns in
addition to summary statistics* so may the. same approach; be applied in our work. This paper illustrates some techniques found useful for exploring residual patterns resulting from the difference between observed and expected scores as predicted by a Rasch model for polychotomous data developed by.Geoff Masters (Masters, 1980; Masters and Wright, $198 \dot{8}_{1}^{\circ}$ ).

We can derive three alternative forms with which to compute a residual from the model. The observed minus expected score yields what we call, a score residual, The score residual divided by its variance is called a logic residual. The score residual divided by its standard deviation is called a standardized residual.

Our choice of the residual to inspect was based on how yell it provided useful information. The score residual was rejected because floor and ceiling effects restricted the variation in the extremes. This led to our formulation of the logit residual which proved to be sensitive to variations in the extremes, but perhaps too much so. The same patterns could be found when comparing logit and standardized. result's, but the adjustment to tables and pictures in order to handle the magnitude of legit residuals proved to be an inconvenience. Since the standardized residuals manifest a familiar metric, interpretation of their patterns became the easiest of the choices.

In Sloane's (1981) discussion the summary approach to residuIls suggesteásome misfitting items. Positive fits result when
moréable chilắren score lóver than expected" (yielding negative residuals) and less able children score higher tban. 'expected (yielding positive residuals). Negative fits result when able. chiloren do better than expected (positive residuals) .. ánd less able children do worse than expected (negative residuals). But these summary statistics ' do not tell us exactly who has scored. unusually on which items, nor how widespread the problemis.

FThe first picture created to study this was a plot of standardized residuals against. child abilities (Figure l). This plot contains the original sample of 500 children. Frompleft to right the abilities increase. X's'represent 10 or more children witha given ability and residual. Each column of points shows the spread of residuals for the children with that ability. for instance, the leftmost column shows the l-4 residuals for the least able child. The picture we expect for data fitting the model is a randomp pattern with a medn near zero and a standard deviation near one for each vertical array of residuais.

## 1.

What we see in. Figure 1 indicates something else. A rectangle marking off plus and minus 3 standard deviations was added to the picture to highlight the asymmetry of the aistribution in the 4 th quadrant. The points outside the area are able children with large negative residuals. 'it' is recognized that very able children wíll appear unusual only when they miss easy items, hence $\therefore$ large negative résidals. Likewise, the least able children will only appear "unusual when they succeed'ọn relatively hard items,
yielding large positive residuals. The task, then, becomes one 'of finding out' who the able children are, which easy'items.were míssed, and whether a valid explanation, other than one of chance occurence, can be suggested for the large negative residuals.
. . One way to see what is happening is to print.the person by item residual matrix and to scanit,for patterns. This matrix. can bé ćonstructed according to various sorting schemes depending upon whaf aspect the investigator wishes to highlight. It may, a.lso be built according to group membership. 'such. a matrix may indicate unusual behaviors 'individuals or groubs of people have had on single items or blocks of items. Examples of this type of 'matrix can be' found in Wright and Stone (1979).

Figure 2 shows such a matrix. In this example the columns are items sorted by their difficulty. and the rows are children sorted by their ability,' Both sorts are descending. various summaries may be collected in the margins. The entries in the matrix are standeŕrdizeg truncated residuals. Any residual with an absolute value equal to of greater than 9 was set equal to 9 . The summary 'S statistics, however, were computed from real valued standardized residuals. In these matrices; a criterion must, be set so that data are sufficịently focused when person by item interactions , are brought out. This, allows for the matrix to bimple enough . to grasp: Ths criterion was set wiuch that, only negative residuaïs equal to or less than -3.0 and only children who had at least one suoh residual ate displayed. Thi's matrix concentrates on

## surprising mistakes.

In the SUBJ. ID field in the left, margin of the matrix, the first' 2 columns are the age of the child in months and the third column is the child's sex. ("1". for boys', n2" for girls). The sight most margin has"the child's logit ability.

Inspection of the ID field suggests that boys and'girls are spread equally throughout the ability" range. There does appear to be' some age differentiation, however. The older children generally have the greater abilities while the younger children are primarily in the lower ability range. The fact that older children perform better on a developmental instrument is hardiy sur: prising. of interest to us is whether the failures en relatively easy items can be explained by a characterisíic of the item that led to a reiated group of children having had unexpecited trouble with it.

In order to simplify this demonstration we chose to emphasize what appeared to be an age factor operating in.an unexpected direction. First fe.controlled for sex 'by looking'only' at boys and thén selected the 56 oldest and. 42 youngest ones.

Figure 3 is the plot of the 98 boy abilities by their residuals. This plot corresponds with that of. Figure l. At this point, though, we do hot know the age of the most ableichildren in Figuse 3, nor what, items are involved, nor if there is even a dif-
ference in the abilities distributed among the two age groups.

Figure 4 presents the residual matrix for the reduced. Set of 98 boys. In the ID field the first 2 columns are the age and the third column is the age group classification. ("1" if the age $\because$ is less than 47 months, ${ }^{\prime}{ }^{2}{ }^{\prime \prime}$ if the age is greater than 59 months). The criterion was set for negative residuals equal to 'or less than -2.0. . This matrix highlights those more able chil-. dren who have done worse than expected.

This concludẽs our discussion of search techniques for understanding the sumary statistics used by Sloane. These results do not completely explain her misfitting items because the girls are not included as part of our older and younger boy dichotomy. The point sheuld be clear, howeyer, that the misfit'in Sloane's original solution can be explored throúgh a` residual analysis. Inspection of the residual matrices is one way of understanding why an item has misfit the model.

Now we look at the subrsample of ' 98 boys to see if the variable definition has remained the same for the two age groups. Our intent is to demonstrate a process that may be applied, whenever the question" is asked "Have these groups of people petrformed the same on the insțrument? ${ }^{n}$.

Figure 5 is an ability frequency distribution map. The youngest boys are on the upper map, the older boys on the lower. The
numbers indicate the number of people located at the same position. Double digit numbers are read vertically, e.g..in the second map the 1 above the, 8 refers to 18 people with an ability near 3. $Q$. 'The $M$ and $S$ refer to the respective means and standard deviations. Figure'5 shows how much more able the cider boys are than the younger. Figures 6 and 7 show. the ability by residual plots for the younger and older boys, respectively. , There were no negative abilities for the older boys so we removed the negative side of the plot from Figure 7. 'A comparison with Figure 3 confirms that the large negative residuals are due.primarily to the older boys." We' now turn to the :investigation of the items., s

Figure 8 is a plot of residuals against item difficulties. The itents range from easiest at the left to hardest at the right. The rectangle marks off plus and minus 3 standard deviations. The $3 r d$ quadrant shows that the easier items have the large negative residuals. This picture confims what we learned Erom Figures 3 and 4.

The information in the sorted matrices of Figure's 2 and 4 is convenient when the sample in, the matrix does, not exceed 100. At that point three pages, are required to present the picture. This motivates us to seek another way of presenting the residual information for large samples or when group comparispns are to be made. A useful way to comparé groups in terms of. residual, distributions over individual.items is shown infigures 9 and 10 . In Figure 9, for ITEM8, we see the residual distribution for each
group of boys on a line extending from -5 to +5 standardized residual units. The integers on the line represent the number of boys who had a given residual value. Again the numbers are read ' vertically and the $M$ and $S$ represent the group means and standarde deyiations of these. residuals.

This type of map allows a detailed examination of within and between group performances on individual items. Also, we can combine items that are similar and build these maps for groups of people across items. Not only can we find where surprising behaviör has occurred but we can identify which children and iftems'are involved.

A useful summary of all the item maps is contained in Table 1. The Table contains the group means and standard deviations for each item's residuals: This table may be used in a variety of ways. We could take the difference between group means and look at the items with the largest differences. We could look at each item where there was a difference in the sign of the mean. For this example; we chose: to concentrate on the 2 nd column of means and standart deviations, in particular, the negative means.

When data fit the model, residuals are ability and difficulty free and differences in sumary statistics should be attributable to chance. We have seen in these data, however; a combination of high ability and low' difficulty that results in high negative residuals. Ṣince'the oldér boys"are generally the more able we
expect them to havie higher means and smaller standard depiations in the residuals relative to the younger ones.: The negative means for the older boys under column, 2 represent instancés wheré the mean performance by the older boys was worse, in terms of expected behavior than that expected. from the younger ones. Since this instrument väs designed to measpre development it is surprising to see some of the more able, older boys performing consfiderably worse than expected. This is not to say their performance was bad- just that it was not as good as was expected.

We need to know if the 'surprising residual means can be explained, by chance or whether something more fundamentad is at stake. 'From inspecting, the maps for ITEM8 and ITEM14, in Figure 9. it is evident that outliers (indicated by ,asterisks) have. skewed the mean's of the-older boys. These children may aiso bef found in Figure 4 . under the two ifems in question. After tracing the probllem down to two outliers on each item, we conclude the 'items are functioning as intended but we could take" the matter further if we cared to because we have identified.specific children'who had surpris'ing trouble.

Looking at the residual distributions for.ITEM6, ITEM7 and ITEMIL, in Figure 10 , we see that in each case the older boy distribution is bimodal with a group of children about one' standardंdeviation below the mean. Those withpositiye residuals are not surprising. • Those with the negative residuals suggest a pattepr of deficiency or erroneous observation and we may ask if the
larger, negative residuals are from the same children. From a matrix of residuals with a criterion set at -1 we found that, in fact, some of the same children had large residuals on combineLions of two of the three items and these children were in the middle range of the ability distribution for the older boys. Apparently the problem with ITEM6 and ITEM7 is due to a few of the same older boys. Since the median for these items is conoiderably to the right of the respective. means we suggest these items are functioning as intended. It would be reasonable, however', to monitor these items in future applications.

Such an interpretation is not possible, however, for ITEMIl in Figure 10. Here the median approaches the mean but the distributron is still bimodal. Who made the mistakes on this item? Interestingly, it was the most able of the older boys. We determine this by looking again at figure 4 and. noticing the largest residuals beloftg to boys in the, highest ability level. "The problem. with ITEMII may be due to confusion on the part of some of the older boys who did dot know to whom the "in front of instruction was directed.

Where does this leave us? We.cou'l be asked why we did not calibrate the items-spparately for the two "groups of boys and plot the item difficulties against one another with error bands". This wars done in Figure 11 to underscore why it is not necessary and can be misleading. One reason for exploring the residuals from a total sample calibration was to show that the same group
differencés/are seen as when separate calibrations are done. The first thing to check. in Figure, 11 is whether the șame items that the residual, analysis tagged as peculiar also stand out in, the plot. We see they do in' fact either lie outside. ${ }^{\circ} \mathrm{O}$ close "to the 3 standard érror bands. 期葔, important poin however, is not the corroboration. If we saw only this plot we might conclude there was a variable definition problem in these data, one where the items meant one thing to the older boys and another to the younger. But this is not the calse as we have seen by exploring and explaining the residual patterns. Tha plat "in. Figure il merely indicates that fertain itemis àre pêuliar but does iot explain why: The same argument holds true if one is interested in computing t-statistcs to test the difference between paits of item difficulties The residual analysis not only identifies the. same. itess buty may explain'with judicious investigation why there was a peculiarity and shows that, except for ITEME1, it is not necessarily" a problem, of "tbem construction,

In conclustion, we arque that a systematic antalysis of residuals offers the investigator a decision facilitation techinque not found in the conventional summary fit statistics. The propess. may be used to unaerstand individual people, indiyidual items, groups of people or groups of items. Such an understanding of resïdual patterns may prove` useful as, a means of addressing 'i'ssúes of 'item bias' ${ }^{\prime \prime}$ quessing', and 'discrimination'.

## References

Añscombe, F.J. and Tukey,S.W. "The examination and analysis of,' residuals," Téchndmetrics,5,141-160 (1963).
Draper,N.R. and Smith, H. Applied Regression Analysis. John Wiley ana sons', New, 'York, 1966.
Joreskog,k.G. and Sorbom,D. Advances in Factor Analysis and
Structural Equation Methods. Abt Books, Cambridqe, Masts. 1979. Masters,G.N. A Rasch model for rating scales. Unpublished doctoral dissertation, University of Chicago, 1980.
Masters,G.N. and wright, B.D. Rating Scale Amalysis. Chicago: mésa Press, 1981.
Mead,R.J: Analysis of fit to the Rasch model. Unpublished doctoral dissertation, university of Chicagp, 1975.
Sloane, K.D. "An application of the partial" credit model," paper, ". presented at the American Educational Research Association Annual Convention, Lo's Angẹles, Ca., April, 1981. Wright,B.D. and Stone,M.H. Best Test Design. Ćhicago:MESA Press,

## LARRY H, CUDLOW

MESA
DEPARXMENT OF EOUCATIGN UNIVERSITY OF CHICAGO
ano
rehabilitative engineerifg research AHO DEVELOPMENT CENTER
HINES VETERANS ADMINISTRATION HINES - ILLINOIS

PAPER PRESENTED AT THE AMERICAN EDUCATIONAL RESEARCH ASSOCIATION ANHJAL CONVENTION, LOS ANGELES. CAL.. APR1L 12-97. 1981
(TABLES AHO FIGURES)

DIAL: FINE MOTOR. CONCEPT: ALL TODDLERS INCLUDEO: STO RESIOUALS \& 7.00 * $+\cdots$ PLOT OF ABILITIES VS RESIDUALS' ${ }^{\prime}$

dial. fine motor. Concept agembovs lt, 47 OR GT 59 months sto residials plot of abilities vs resiouals


23

FREQUENCY DISTRIBUTION OF 98 PEOPLE *ABILITY MEASURES iN 2, GROUPS
( BOYS YOUNGER THAN 47 MONTHS


BOYS OLDER THAN 59 MONTHS



7

* PLOTS DF ABILITIES VS STANDARDIZEO RESIDUALS


OIAL. FINE MOTOR. CONCEPT. AGE-BOYS LT 47 OR GI 59 MONTHS'STD RESIDUALS

"stanoardized residual freouency distributions

$$
x
$$



## BOYS OLLOER THAN 59 MONTRS

 $\mathrm{Mz}-0.20 \mathrm{SO} \quad 39 \mathrm{Na} 56$
L.h. Ludlow, mesí psychometric laboratory, university of chicago

$\bullet$





[^0]:    ****絴**************************************************************** * Reproductions supplied by EDRS are the best that can be nade from the original document.
    

