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Abstract Antipatterns are poor design choices that are conjectured to make object-
oriented systems harder to maintain. We investigate the impact of antipatterns on
classes in object-oriented systems by studying the relation between the presence
of antipatterns and the change- and fault-proneness of the classes. We detect 13
antipatterns in 54 releases of ArgoUML, Eclipse, Mylyn, and Rhino, and analyse (1)
to what extent classes participating in antipatterns have higher odds to change or to
be subject to fault-fixing than other classes, (2) to what extent these odds (if higher)
are due to the sizes of the classes or to the presence of antipatterns, and (3) what
kinds of changes affect classes participating in antipatterns. We show that, in almost
all releases of the four systems, classes participating in antipatterns are more change-
and fault-prone than others. We also show that size alone cannot explain the higher
odds of classes with antipatterns to underwent a (fault-fixing) change than other
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classes. Finally, we show that structural changes affect more classes with antipatterns
than others. We provide qualitative explanations of the increase of change- and
fault-proneness in classes participating in antipatterns using release notes and bug
reports. The obtained results justify a posteriori previous work on the specification
and detection of antipatterns and could help to better focus quality assurance and
testing activities.

Keywords Antipatterns · Mining software repositories ·
Empirical software engineering

1 Context and Problem

Antipatterns—such as those presented in Brown et al. (1998)—have been proposed
to embody poor design choices. These antipatterns stem from experienced software
developers’ expertise and are conjectured in the literature to negatively impact
systems by making classes more change-prone and–or fault-prone. They are opposite
to design patterns (Gamma et al. 1994), i.e., they identify “poor” solutions to
recurring design problems, for example Brown’s 40 antipatterns describe the most
common pitfalls in the software industry (Brown et al. 1998). They are generally
introduced by developers not having sufficient knowledge and/or experience in
solving a particular problem or having misapplied some design patterns. Despite the
many studies on antipatterns summarised in Section 6, only a few studies empirically
analysed the impact of antipatterns on source code-related phenomena (Bois et al.
2006; Khomh et al. 2009b), in particular class change- and fault-proneness, even
though such phenomena directly impact the developers’ work.

Examples of Antipatterns In practice, antipatterns are in-between design and im-
plementation: they concern the design of one or more classes, but they concretely
manifest themselves in the source code as classes through specific code smells
(Fowler 1999). Often, antipatterns are defined in terms of thresholds imposed on
metric values (Moha et al. 2008a, b). An example of antipattern is the LazyClass,
which occurs when a class does too little, i.e., has few responsibilities in a system.
A LazyClass is a class with few methods and fields; its methods have little com-
plexity. It often stems from speculative generality during a system design and–or
implementation.

Another example of antipattern is the MessageChain, which occurs when the
realisation of a functionality of a class requires a long chain of method invocations
between objects of different classes. A MessageChain is conjectured to impact
change- and fault-proneness because of the high number of indirections. Classes
using message chains are detected by computing the number of transitive invocations
of a class to other classes.

The two previous antipatterns are quite simple. A more complex example of
antipattern is the Blob. A Blob, also called God Class, is a large and complex class
that centralises the behaviour of a portion of a system and only uses other classes
as data holders, i.e., data classes. A Blob prevents the use of polymorphism through
inheritance, making changes more complex and risk-prone. A class is a Blob if it has
a low cohesion, it is large, some of its method names recall procedural programming,
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and it is associated to data classes, which only provide fields and–or accessors to their
fields.

Goal and Process In this paper, using data mined from version control systems, we
study whether classes participating in an antipattern have an increased likelihood
to change than other classes between any two given releases. Also, by combining
data from version control and issue-tracking systems, we assess whether classes
participating in antipatterns have a higher likelihood than others to be involved
in issues documenting faults; we use a set of faults that, in some cases, have been
manually validated by a third-party, as explained in Section 2. We also study the
possible effect of class sizes on the results of our study by comparing the sizes of
classes participating in antipatterns with those of other classes. Finally, we study the
kinds of changes affecting classes participating in antipatterns.

Study We perform the study on ten releases of ArgoUML, 13 of Eclipse, 18 of
Mylyn, and 13 of Rhino, and across the changes and fault-fixing changes occurring
between the releases. We detect 13 antipatterns in the classes of these systems
(see Section 2.2) to investigate their relations with change- and fault-proneness.
We show that antipatterns do have a negative impact on class change- and fault-
proneness and that certain kinds of antipatterns do have a higher impact than
others. We also show that size alone cannot explain the higher change- and fault-
proneness of classes participating in antipatterns. We finally discuss the kinds of
changes that affect classes participating or not in antipatterns, i.e., addition/deletion
of methods/attributes, changes of method signatures and method implementation.

Relevance Understanding if antipatterns increase the likelihood of classes to change
or to be subject to fault-fixing is important from both researchers’ and practitioners’
points of view. We show that the presence of antipatterns is related to an increase
of class change- and fault-proneness. We also bring evidence that, like design
patterns (Aversano et al. 2007; Bieman et al. 2003; Di Penta et al. 2008; Vokác
2004), particular kinds of antipatterns are more correlated to change- and fault-
proneness than others. Therefore, within the limits of its threats to validity, this study
provides quantitative evidence that antipatterns indeed may affect the developers’
work negatively and, thus possibly, software evolution. Thus, we justify a posteriori
previous work on antipatterns and prove to be true the conjecture from the literature
on the negative impact of antipatterns.

We also provide evidence to practitioners—developers, quality assurance per-
sonnel, and managers—of the importance and usefulness of antipattern detection
techniques to assess class change- and fault-proneness. With the availability of such
information, a tester could decide to focus on classes participating in antipatterns,
because she knows that such classes are likely to contain faults. Similarly, a manager
could use such techniques to assess the volume of classes participating in antipatterns
in a to-be-acquired system and, thus, adjust her offer and forecast the system cost-of-
ownership and–or plan for refactorings.

Organisation Section 2 describes the empirical study definition and design.
Section 3 presents the study results. Sections 4 and 5 discusses the results and the
threats to their validity. Section 6 relates our study with previous work. Finally,
Section 7 concludes the paper and outlines future work.
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Table 1 Summary of the characteristics of the analysed systems

Systems Releases (#) Classes LOCs Changes Fault-fixing
changes

ArgoUML 0.10.1–0.26.2 (10) 792–1,841 128,585–316,971 40,409 2,064
Eclipse 1.0–3.3.1 (13) 4,647–17,167 781,480–3,756,164 196,193 24,335
Mylyn 1.0.1–3.1.1 (18) 1,625–2,762 207,436–276,401 36,328 118
Rhino 1.4R3–1.6R6 (13) 89–270 30,748–79,406 6,925 1,068

2 Study Definition and Design

The goal of our study is to investigate the relation between classes participating in
antipatterns and their change- and fault-proneness as well as the kinds of changes
impacting antipatterns. The quality focus is the source code change- and fault-
proneness, which, if high, can have a concrete effect on developers’ effort and on
the overall project development and maintenance cost and time.

The perspective is that of researchers, interested in the relation between antipat-
terns and evolution phenomena in software systems. Also, results can be of interest
to developers, who perform development or maintenance activities and need to take
into account and forecast their effort, and to testers, who need to know which classes
are important to test. Finally, they can be of interest to managers and–or quality
assurance personnel, who could use antipattern detection techniques to assess the
future changes and faults of in-house or to-be-acquired source code to better quantify
its cost-of-ownership.

The context of this study consists in the change history and issue-tracking systems
of four Java systems.1 ArgoUML is an open source UML-based system design tool.
Eclipse is an open-source integrated development environment. It is a platform used
both in open-source communities and in industry. Mylyn is a plug-in for Eclipse,
which aims at reducing information overload and making developers’ multi-tasking
easier. Rhino is an open-source implementation of a JavaScript interpreter.

The four systems have different sizes and belong to different domains. Eclipse
is a large system (release 3.3.1 is larger than 3.5 MLOCs) and, therefore, close to
the size of many real industrial systems. It is also developed partly by a commercial
company, IBM, and thus is likely to embody industrial practices. ArgoUML, Mylyn,
and Rhino have wide ranges of sizes, are open-source, and also have different
architectures. Specifically, ArgoUML is a monolithic system, Eclipse has a plugin-
based architecture, Mylyn is an Eclipse plugin, and Rhino a component of a larger
system, i.e., the Mozilla/Firefox Web browser. Previous studies—performed also on
ArgoUML and Eclipse—suggested that systems exhibiting different architectures
exhibited different change-proneness and underwent different kinds of changes
(Aversano et al. 2007; Di Penta et al. 2008).

Table 1 summarises the main characteristics of the systems: the first and last
analysed releases, the numbers of releases considered, the system sizes ranges in
LOCs, and the overall numbers of considered changes and fault-fixing changes.
(Detailed figures are available in a technical report (Khomh et al. 2009a); fault

1http://argouml.tigris.org/, http://www.eclipse.org, http://www.eclipse.org/mylyn/, and http://www.
mozilla.org/rhino/.

http://argouml.tigris.org/
http://www.eclipse.org
http://www.eclipse.org/mylyn/
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
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classification for Mylyn is only available for the first three releases (Eaddy et al.
2008).)

We do not include release 2.1 of Eclipse in our study because we observed that
the number of committed changes and fixed faults between release 2.1 and 2.1.1
is about one order of magnitude smaller than those numbers between any other
two subsequent releases. Also, the number of classes did not substantially change
between 2.0, 2.1, and 2.1.1. Finally, the period of time between 2.1 and 2.1.1 is also
shorter (three months) than those between other pairs of releases. Thus, we preferred
to consider the period between releases 2.0 and 2.1.1 as one “release” for consistency.

For the four systems, it is relevant to study the relation between antipatterns,
change- and fault-proneness, and class sizes, because the percentages of classes
participating in antipatterns are not negligible. Figure 1 shows that these percentages
vary across releases in the four systems and that it is always higher than 45%, with
peaks as high as 80%. We further report that classes participating in antipatterns
participate, in average, to two antipatterns in ArgoUML, three in Eclipse, two in
Mylyn, and two in Rhino and to, in maximum, between seven and nine antipatterns
in ArgoUML, 13 and 24 antipatterns in Eclipse, six and seven antipatterns in Mylyn,
and five and seven antipatterns in Rhino. (Detailed data is available elsewhere
(Khomh et al. 2009a).)

Table 2 shows the distribution of the antipatterns of interest, detailed in
Section 2.2. A cell in the table reports on the left side of the dash (respectively, on
its right), the number of classes in the first release of a given system (respectively,
its last), which participates in a given antipattern, followed by their percentages with
respect to the total numbers of classes. For example, the cell at the intersection of
the ArgoUML column and the AntiSingleton row reports that in its first release,
352 classes were AntiSingleton, representing 44.44% of the total number of its
classes, while in the last release, only three classes were AntiSingleton, representing
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0.16% of the total number of its classes. Percentages go as high as 51.71% of classes
participating in LazyClass in the first release of Eclipse.

2.1 Research Questions

Our study aims at addressing six null hypotheses, specifically concerning the relations
between classes participating in antipatterns and their: change-proneness (RQ1 and
RQ2), fault-proneness (RQ3 and RQ4), size (RQ5), and kinds of changes (RQ6).

RQ1 What is the relation between antipatterns and change-proneness? We investi-
gate whether classes participating in at least one antipattern are more change-prone
than others, by testing the null hypothesis: H01: the proportion of classes undergoing
at least one change between two releases is not dif ferent between classes in antipatterns
or not.

RQ2 What is the relation between kinds of antipatterns and change-proneness? We
analyse whether certain antipatterns imply more changes than others, by testing the
null hypothesis: H02: classes participating in certain antipatterns are not more change-
prone than others.

RQ3 What is the relation between antipatterns and fault-proneness? This research
question focuses on the relation between antipatterns and fault-fixing issues. The
null hypothesis is: H03: the proportion of classes undergoing at least one fault-f ixing
change between two releases does not dif fer between classes participating or not in at
least one antipattern.

RQ4 What is the relation between particular kinds of antipatterns and fault-
proneness? We also analyse the influence of kinds of antipatterns on fault-proneness,
by testing the null hypothesis: H04: classes participating in certain kinds of antipatterns
are not more prone to fault-f ixing than other classes.

RQ5 Does the presence of antipatterns in classes relate to the sizes of these classes?
This research question stems from El Emam et al. (2001) findings showing that many
metrics correlate to size. Specifically, we study whether the higher change- and–or
fault-proneness of classes participating in antipatterns is due to their sizes (in terms
of LOCs) or to the presence of the antipatterns, by testing the hypothesis: H05: classes
participating in antipatterns are not larger than other classes.

RQ6 What kind of changes are performed on classes participating or not in an-
tipatterns? We study whether classes participating in antipatterns undergo more (or
less) structural changes (addition/removal/change of/to attributes, addition/removal
of methods, or changes to the methods signatures) than other kinds of changes by
testing the hypothesis: H06: classes participating in antipatterns do not undergo a
number of structural changes dif ferent than other kinds of changes.

Hypotheses H01 to H05 are one-tailed because we are interested in investigating
only whether antipatterns relate to an increase of change-proneness, fault-proneness,
and size. Hypothesis H06 is two-tailed because we investigate whether the presence
of antipatterns is related to a higher or a lower number of structural changes.
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2.2 Independent Variables

We use our previous approach, DECOR (Defect dEtection for CORrection; Moha
et al. 2008a, b, 2010), to specify and detect antipatterns. DECOR is based on a
thorough domain analysis of code smells and antipatterns in the literature, from
which is built a domain-specific language. This language uses rules to describes
antipatterns, with different types of properties: lexical (e.g., class names), structural
(e.g., classes declaring public static variables), internal (e.g., number of methods),
and the relation among properties (e.g., association, aggregation, and composition
relations among classes). Using this language, DECOR proposes the descriptions
of several antipatterns. It also provides algorithms and a framework, DeTeX, to
convert antipattern descriptions automatically into detection algorithms. DeTeX
allows detecting occurrences of antipatterns in systems written in various object-
oriented programming languages, such as Java.

Moha et al. (2010) showed that the current detection algorithms obtained from
DECOR ensure 100% recall and have precisions between 41.1 and 87% for three
antipatterns: Blob, SpaghettiCode, and SwissArmyKnife (Moha et al. 2010). The
detection algorithms for these three antipatterns have an average accuracy of 99%
for the Blob, of 89% for the SpaghettiCode, and of 95% for the SwissArmyKnife;
and a total average of 94%. In the following, we focus on 13 antipatterns from Brown
et al. (1998) and Fowler (1999):

– AntiSingleton: A class that provides mutable class variables, which consequently
could be used as global variables.

– Blob: A class that is too large and not cohesive enough, that monopolises most
of the processing, takes most of the decisions, and is associated to data classes.

– ClassDataShouldBePrivate (CDSBP): A class that exposes its fields, thus violat-
ing the principle of encapsulation.

– ComplexClass: A class that has (at least) one large and complex method, in terms
of cyclomatic complexity and LOCs.

– LargeClass: A class that has (at least) one large method, in term of LOCs.
– LazyClass: A class that has few fields and methods (with little complexity).
– LongMethod: A class that has a method that is overly long, in term of LOCs.
– LongParameterList (LPL): A class that has (at least) one method with a too long

list of parameters with respect to the average number of parameters per methods
in the system.

– MessageChain: A class that uses a long chain of method invocations to realise (at
least) one of its functionality.

– RefusedParentBequest (RPB): A class that redefines inherited method using
empty bodies, thus breaking polymorphism.

– SpaghettiCode: A class declaring long methods with no parameters and using
global variables. These methods interact too much using complex decision
algorithms. This class does not exploit and prevents the use of polymorphism
and inheritance.

– SpeculativeGenerality (SG): A class that is defined as abstract but that has very
few children, which do not make use of its methods.

– SwissArmyKnife: A class whose methods can be divided in disjunct set of many
methods, thus providing many different unrelated functionalities.
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We choose only these antipatterns because (1) they are well-described by Brown
et al. (1998), (2) we could find enough of their occurrences in several releases
of several of the studied systems, and (3) they are representative of design and
implementation problems with data, complexity, size, and the features provided by
classes. The specifications of these antipatterns are outside of the scope of this paper
and available in Moha (2008).

Our independent variables are the number of classes participating in the 13
antipatterns. In our computations, we use variables APi, j,k, which indicate the
number of times that a class i participates in an antipattern j in a release k. For RQ1
and RQ3, we aggregate these variables into a Boolean variable APi,k indicating if a
class i participates or not in any antipattern.

2.3 Dependent Variables

Dependent variables measure the phenomena related to classes participating in
antipatterns.

RQ1 and RQ2 Change-proneness refers to whether a class underwent at least a
change between release k (in which it was participating in some antipatterns) and
the subsequent release k + 1. Changes are identified, for each class in a system, by
looking at commits in their control-version systems (CVS or SVN). For the sake of
simplicity, we assumed to have one class per file. This assumption could introduce an
error in case of non-public top-level classes and inner classes. We did not find any
inner class participating in any antipattern in the analysed releases of the systems.
Non-public top-level classes are rare and did not participate in any antipattern.

RQ3 and RQ4 Fault-proneness refer to whether a class underwent at least a fault-
f ixing change between releases k and k + 1. Fault fixing changes are documented in
text reports that describe different kinds of problems in a system. They are usually
posted in issue-tracking systems—e.g., Bugzilla for the four studied systems—by
users and developers to warn their community of pending issues with its function-
alities; issues in these systems deal with different kinds of change requests: fixing
faults, adding features, restructuring, and so on. We trace faults/issues to changes by
matching their IDs in the commits (Fischer et al. 2003).

For Mylyn and Rhino, we consider a set of manually-validated and publicly-
available faults (Eaddy et al. 2008). For ArgoUML, issues dealing with fixing
faults are marked as “DEFECT” in the issue tracking system.2 For Eclipse, such
a “DEFECT” tag was not used and, given the high number of issues (34,634 between
releases 1.0 and 3.4), a manual classification is not practical. Thus, we consider issues
posted on the Eclipse Bugzilla that (1) are referred to as “Bug <issueID>” in the
CVS commits, (2) have the Resolution field set to “FIXED” or the Status field set
to “CLOSED”, i.e., they indeed required some changes, and (3) are not tagged as
“Enhancement” in the Severity field. Our choice, however, does not guarantee that
all the considered issues are fault-fixing issues.

2http://argouml.tigris.org/issues

http://argouml.tigris.org/issues
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RQ5 We measure the sizes of classes participating or not in antipatterns using their
LOCs, excluding comments and blank lines. Each classes is associated with its size,
the total number of antipatterns and the kinds of antipatterns in which it participates.
Abstract and native methods and methods declared in interfaces count for zero LOC
as they do not have a body (or have a body not implemented in Java).

RQ6 We count the number of structural and non-structural changes occurring in
antipattern classes vs. other classes between two releases k and k + 1. As in previous
work (Aversano et al. 2007; Di Penta et al. 2008), we consider as structural changes
those changes that would alter the class interface, i.e., addition/removal/change
of/to attributes, addition/removal of methods, or changes to the method signatures,
i.e., change of return type, exception(s) being thrown, parameter type, addition/re-
moval/change of parameters. We consider as non-structual changes those related to
method bodies. Changes were identified using an analyzer developed with JavaCC3

(and used in our previous work), which extracts class diagram models from source
code, and a Perl script, which identifies differences between two models. Further
kinds of changes—e.g., those modifying exception-handling code—could also be
considered, although we opt for a lightweight analysis because (1) we perform it on
all revisions of all classes and (2) our focus is to identify the main changes affecting
classes participating in antipatterns.

2.4 Analysis Method

RQ1 and RQ3 We study whether changes to and faults in a class are related to the
class participating in antipatterns, regardless of the kinds of antipatterns. Therefore,
we test whether the proportions of classes exhibiting (or not) at least one change/fault
significantly vary between classes participating in antipatterns and other classes. We
use Fisher’s exact test (Sheskin 2007) for H01 and H03. We did not consider releases
where either only antipattern or non-antipattern classes changed because of a very
small number of changes (e.g., less than 10).

We also compute the odds ratio (OR) (Sheskin 2007) indicating the likelihood of
an event to occur, e.g., change. OR is defined as the ratio of the odds p of an event
occurring in one sample, i.e., the set of classes participating in some antipatterns
(experimental group), to the odds q of it occurring in the other sample, i.e., the set
of classes participating in no antipattern (control group): OR = p/(1−p)

q/(1−q)
. An odds

ratio of 1 indicates that the event (e.g., change) is equally likely in both samples. OR
> 1 indicates that the event is more likely in the first sample (experimental group of
classes participating in some antipatterns) while an OR < 1 indicates the opposite
(control group of classes not participating in any antipatterns).

RQ2 and RQ4 We want to understand the relation of specific kinds of antipatterns
with changes and faults. Let us focus on RQ2 and changes. We use a logistic regres-
sion model (Hosmer and Lemeshow 2000) to correlate the presence of antipatterns
with changes. While in other contexts, e.g., Gyimóthy et al. (2005), such a model was
used for prediction purposes; as in Khomh et al. (2009b) and Vokác (2004), we use it

3http://javacc.dev.java.net/

http://javacc.dev.java.net/
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as an alternative to the Analysis Of Variance (ANOVA) for dichotomous dependent
variables to test H02 and H04.

In a logistic regression model, the dependent variable is commonly a dichotomous
variable and, thus, it assumes only two values {0, 1}, e.g., changed or not. The
multivariate logistic regression model is based on the formula:

π(X1, X2, . . . , Xn) = eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn
(1)

where:

– Xi are characteristics describing the modelled phenomenon, in our case the
number of classes participating in an antipattern of kind i.

– 0 ≤ π ≤ 1 is a value on the logistic regression curve. The closer the value is to 1,
the higher is the probability that a class participating in this kind of antipattern
underwent a change.

Then, we count, for each antipattern, the number of times that, across the analysed
releases, the p-values obtained by the logistic regression are significant. We use t =
75% (as in current state of the art literature (Conte and Campbell 1989; Vicinanza
et al. 1991)) to assess whether classes participating in a specific kind of antipattern
have significantly greater odds to change than others: If these classes are more likely
to change in more than t releases, then we say that this antipattern has a significant
impact on increasing the change-proneness.

RQ5 We perform the analysis related to RQ5 in three steps. First, we compare, for
each release, the average size of (1) classes participating in at least one antipattern
and (2) classes participating in no antipattern. We use the Mann–Whitney test and
compute Cohen d effect size (Cohen 1988). For independent samples and unpaired
analyses, the Cohen d effect size is the difference between the means M1 and M2

divided by the pooled standard deviation σ =
√

(σ 2
1 + σ 2

2 )/2 of both groups: d =
(M1 − M2)/σ . The effect size is small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8,
and large for d ≥ 0.8 (Cohen 1988). We expect the test results to be statistically
significant and the odds ratios to be greater or equal to 1 because many antipatterns
are, according to their definitions, related to size, e.g., Blob, ComplexClass and
LargeClass.

Second, we perform the same test and compute the same odds ratios between
the set of classes participating in each antipattern and those not participating in any
antipattern. We expect that, for some antipatterns, the test would not be significant
and–or the odds ratios would be lower than 1. Indeed, while the definitions of some
antipatterns directly relate to their size, others specifically target small classes, e.g.,
LazyClass, or are orthogonal to size, e.g., ClassDataShouldBePrivate.

Third, we again perform Fisher’s exact test and compute the odds ratios between
large classes participating or not to size-related antipatterns, i.e., Blob, Complex-
Class, and LargeClass. We single out the classes whose sizes are greater than the
75% percentile and divide them in two sets: those participating in the considered
antipatterns and those that do not participate in these antipatterns. We expect that
classes participating in Blob, ComplexClass, and LargeClass antipatterns are not
significantly larger than the largest classes.
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Table 3 Change-proneness ORs. Releases where Fisher’s exact test did not show significant
differences are highlighted in gray; ORs < 1 are also highlighted in gray

RQ6 We again use Fisher’s exact test to compare the proportions of structural
changes in classes participating in antipatterns with those of non-structural changes,
also in classes not participating in any antipattern.

3 Study Results

This section reports the results of our empirical study, which are further discussed in
Section 4. Detailed results can be found in a technical report (Khomh et al. 2009a)
while raw data is available on-line.4

3.1 RQ1: What is the Relation between Antipatterns and Change-proneness?

Table 3 summarises the odds ratios when testing H01. Each row shows, for each
system, a release number and the ORs of classes participating in at least one
antipattern in that release to exhibit at least one change before the next release.
In all releases, except Eclipse 1.0, Fisher’s exact test indicates a significant difference
of proportions between change-prone classes among those participating and not in
antipatterns.

4http://www.ptidej.net/downloads/experiments/emse10

http://www.ptidej.net/downloads/experiments/emse10
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Odds ratios vary across systems and, within each system, across releases. While
in few cases, ORs are close to 1, i.e., the odds is even that a class participating in an
antipattern changes or not, in some pairs of systems/releases, such as ArgoUML 0.20,
Mylyn 2.0M3, or Rhino 1.5R41, ORs are greater than 25. Overall, ORs for Eclipse
are lower than those of other systems, by one or two orders of magnitude. The odd
ratios of classes participating in some antipatterns to change are, in most cases, higher
than that of other classes.

We therefore conclude that, in most cases, there is a relation between antipatterns
and change-proneness: a greater proportion of classes participating in antipatterns
change with respect to other classes. The rejection of H01 and the ORs provide a
posteriori concrete evidence of the impact of antipatterns on change-proneness.

3.2 RQ2: What is the Relation between Kinds of Antipatterns
and Change-proneness?

Table 4 summarises the results of the logistic regression for the relations between
change-proneness and the different kinds of antipatterns. A cell in the table re-
ports the number (and percentage) of releases, for a given system, in which the
participation of classes in a given antipattern significantly correlate with change-
proneness. For example, the cell at the intersection of the ArgoUML column and
the AntiSingleton row indicates that, in eight releases of ArgoUML out of ten (80%),
classes participating in the AntiSingleton antipattern were significantly more change-
prone than other classes.

From Table 4, we can reject H02 for some antipatterns, i.e., for antipatterns that
are significantly correlated to change-proneness in at least 75% of the releases, high-
lighted in gray. Following our analysis method, only MessageChain has a significant
impact on change-proneness in all systems: classes participating in this antipattern
are more likely to change than classes participating in other or no antipattern in

Table 4 Number (percentage) of releases where each antipattern significantly correlates with
change-proneness
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more than 75% of the releases. Other antipatterns have significant impact on a subset
of the systems: LongMethod in ArgoUML, Eclipse, and Mylyn; LongParameterList
in ArgoUML and Eclipse; AntiSingleton and RefusedParentBequest in ArgoUML;
Complexclass and LazyClass in Eclipse.

We conclude that there is a relation between kinds of antipatterns and change-
proneness but not for all antipatterns and not consistently across systems and
releases.

3.3 RQ3: What is the Relation between Antipatterns and Fault-proneness?

Table 5 summarises Fisher’s exact test results and ORs for H03. Similarly to
Table 3, each row shows, for each system, a release number and the ORs of classes
participating to at least one antipattern in that release to exhibit at least one fault-
fixing change before the next release. The differences in proportions are significant
and thus we can reject H03 in all cases. The proportion of classes participating in
antipatterns and reported in faults is between 1.32 and 31.29 times larger than that
of other classes.

Odds ratios for faults are not always higher than those for changes: although
classes participating in antipatterns are more likely to exhibit fault-fixing changes
than other classes, they seem to be even more likely to undergo restructuring changes
in addition to fault-fixing changes than other classes.

Therefore, we conclude that there is a relation between antipatterns and fault-
proneness; although this relation is not as strong as the relation with change-
proneness.

Table 5 Fault-proneness ORs. Releases where Fisher’s exact test did not show significant differences
are highlighted in gray
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3.4 RQ4: What is the Relation between Particular Kinds of Antipatterns
and Fault-proneness?

Table 6 reports the results of the logistic regression for the relations between
fault-proneness and kinds of antipatterns. Similarly to Table 4, a cell in the table
reports the number (and percentage) of releases, for a given system, in which the
participation of classes in a given antipattern significantly correlates with fault-
proneness. For Mylyn, we could analyse only three releases for fault-proneness and
for Rhino, only nine releases, because of the limited number of faults occurring in
some releases (<10). We can reject H04 for MessageChain in Eclipse and Rhino;
AntiSingleton, ComplexClass, LazyClass and LongMethod in Eclipse.

We conclude that there is a relation between kinds of antipatterns and fault-
proneness but not for all antipatterns and not consistently across systems and
releases.

3.5 RQ5: Do the Presence of Antipatterns in Classes Relate to the Sizes
of These Classes?

We found that, as expected, classes participating in some specific kinds of antipat-
terns are significantly larger than classes not participating in antipatterns (with a
medium to large effect size). (Detailed results are reported in the technical report
(Khomh et al. 2009a).) Yet, we observe the following exceptions:

– Classes participating in AntiSingleton are not significantly larger than classes not
participating in any antipattern in ten out of 18 Mylyn releases;

– Classes participating in LazyClass are significantly smaller than other classes in
all the analysed releases of ArgoUML, Mylyn, and Rhino. This observation was
expected because, by definition, LazyClasses are small;

Table 6 Number (percentage) of releases where each antipattern significantly correlates with fault-
proneness
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– Classes participating in RefusedParentBequest are not significantly larger than
classes not participating in any antipattern in one out of ten ArgoUML releases,
15 out of 18 Mylyn releases, and nine out of 13 Rhino releases;

– Classes participating in SpeculativeGenerality are not significantly larger than
classes not participating in any antipattern in five out of ten ArgoUML releases,
all 18 Mylyn releases, and all 13 Rhino releases.

In Eclipse, all kinds of antipatterns have a significantly larger size than classes not
participating in any antipattern, although for the above-mentioned antipatterns the
effect size was generally small while for the others it was medium to small.

Finally, Table 7 reports results of the Fisher’s exact test (highlighted ORs are
statistically significant), comparing change- and fault-proneness of classes having a
size greater than the 75% percentile of the overall size distribution and participating
or not in the Blob, ComplexClass, and LargeClass antipatterns. For example, for
Eclipse release 1.0, the ORs of large classes participating (or not) to Blob, Complex-
Class, and LargeClass are 0.98 for change-proneness and 2.12 for fault-proneness.
ORs are greater to 1 in:

1. ArgoUML: six out of ten releases for change-proneness and four out of seven
releases for fault-proneness;

2. Eclipse: nine out of 13 releases for change-proneness and eight out of 13 releases
for fault-proneness (plus two other cases where the ORs are just above one);

3. Mylyn: 13 out of 15 releases for change-proneness (plus another case where the
ORs is just above one), while it was not possible to get statistically-significant
results for fault-proneness, due to the limited number of detected occurrences;

4. Rhino: seven out of eight releases for change-proneness and four out of five
releases for fault-proneness.

However, the Fisher’s exact test only reported statistical significance in a small
number of cases—due to the limited number of classes having a size above the 75%
percentile of the distribution.

ORs are always above one (in most cases above two) and reach 13.66 every time
the Fisher’s exact test found a statistically-significant difference in the proportions of
changes and fault-fixing changes between classes participating or not in size-related
antipatterns. Therefore, large classes participating in antipatterns change more and
are more fault-prone than large classes not participating in any antipatterns.

We conclude that classes participating in antipatterns are generally larger than
other classes. This conclusion was expected because, many antipatterns, such as Blob,
ComplexClass, LargeClass, or LongMethod, stem from an excessively large size and
of other negative characteristics of the classes. We also conclude that, except for
some releases of the analysed systems, some kinds of antipatterns (AntiSingleton,
LazyClass, RefusedParentBequest, and SpeculativeGenerality) describe symptoms
of poor design that are unrelated to size.

We thus generally conclude that some kinds of antipatterns are related to size as
expected by their def initions but size only does not explain the classes greater change-
and fault-proneness.
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Table 8 Proportion of
changes to antipattern classes
vs. other classes: Fisher’s exact
test result and ORs

Systems p-values ORs

ArgoUML <0.01 1.22
Eclipse <0.01 1.03
Mylyn <0.01 1.19
Rhino 0.08 1.04

3.6 RQ6: What Kind of Changes are Performed on Classes Participating
or Not in Antipatterns?

While studying the relation between kinds of antipatterns and change- and fault-
proneness, we also studied the kinds of changes impacting classes participating
in antipatterns. Table 8 reports Fisher’s exact test results and odds ratios for the
proportions of structural changes to classes participating in antipatterns with respect
to those of other classes. For simplicity’s sake, and because there are no substantial
variations across releases, we report results obtained by aggregating data from the
whole history of each system, rather than for each release separately.

Table 8 shows that classes participating in antipatterns in Rhino do not undergo
more structural changes than other changes: it is a small system and, therefore, the
different kinds of changes may occur to any class. Although, we can reject H06 for
Eclipse, the OR ≈ 1 downplays this rejection, which we explain by the extensive use
of inheritance in Eclipse (Aversano et al. 2007), leading to few structural changes to
classes.

Detailed analysis for different kinds of antipatterns reveal that, for all antipatterns
except LazyClass in ArgoUML, Mylyn and Rhino, and RefusedParentBequest
in Eclipse, classes participating in antipatterns undergo more structural changes
than others changes (e.g., changes in the method implementations). The methods
implementations of LazyClasses, as reported in Section 3.2, change to increase their
behaviour. Changes in the method organisations and implementations of Refused-
ParentBequest are generally performed to correct them.

We conclude that structural changes occur more often on classes participating to
antipatterns than other changes.

4 Discussion

We now discuss the results using the releases’ histories. We also discuss the relation
between antipattern and developers’ intent and refactoring activities. Table 9 sum-
marises our findings.

4.1 Correlations Among Antipatterns

We analysed whether a correlation exists between the presence of different antipat-
terns and, hence, between the rules and metrics used in their definitions (i.e., the
metrics thresholds and values in each revisions of each system). We used the non-
parametric Spearman correlation, which results indicate that Blob, ComplexClass
and LargeClass are lowly correlated (0.5 < ρ < 0.7 (Cohen 1988)) in all releases
of ArgoUML, Mylyn and Rhino, but in none of Eclipse. For all other antipatterns
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Table 9 Summary of our findings

ArgoUML Eclipse Mylyn Rhino Explanations

RQ1 � ∼ � � Future changes could impact
several classes

RQ2—LongMethod � � � × Complex code likely requires
more changes

RQ2—MessageChains � � � � Chains of messages possibly
increase the change impact

RQ3 � � � � Antipatterns may increase the risk
that developers introduce faults

RQ4—MessageChains × � × � Long chains of messages reduce the
developers’ view of the context,
which may lead to more faults

RQ5 � � � � Size, per se, does not explain the
change-/fault-proneness of classes
participating in antipatterns

RQ6 � � � � Classes participating in antipatterns
are more subject to changes
impacting their interface and,
thus, possibly their change-
and fault-proneness

and releases, we obtained no correlation among antipatterns (ρ � 0.5). We expected
that we would not find correlations among antipatterns because their definitions are
different and capture different types of design pitfalls. We also analysed whether
we could find a correlation between the presence of different antipatterns and tra-
ditional object-oriented metrics, such as Chidamber and Kemerer’s metric suite. As
expected, we could not find a correlation that was consistent across the systems and
their releases because antipatterns are higher level than metrics, thus showing that
antipatterns, albeit detected using metrics, bring different information to developers
than metrics.

4.2 Statistical Significance/Unexpected Ratios

Tables 3 and 5 show that, in most cases, classes belonging to antipatterns are more
change- and fault-prone than others. However, there is a case were H01 could not
be rejected for lack of statistical significance and four cases with unexpected ORs,
which indicate that classes participating in antipatterns changed less than others
(highlighted in the tables).

We explain the lack of statistical significance for Eclipse 1.0 by the major changes
between releases 1.0 and 2.0, which imply that many classes were added/changed
(Eclipse size increased from 781 to 1,250 KLOCs and 4,647–6,742 classes), irrespec-
tive of their participation in antipatterns.

The first case with an unexpected OR concerns classes having changed between
Eclipse 2.0 and 2.1.1, with OR = 0.75. Eclipse 2.1 introduced several new features
with respect to 2.0, including navigation history, sticky hovers, prominent status
indication, and so on.

The second, third, and fourth cases concern classes having changed between
releases 3.0 and 3.2. Eclipse 3.0 was a major improvement over the 2.x series, with
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a new runtime platform implementing the OSGi R3.0 specifications5 to become a
Rich Client Platform and support any type of tooling (not necessarily an IDE).
Eclipse 3 had many problems at first, corrected in the subsequent 3.0.1, 3.0.2, and
3.2 releases. No less than 15, 153 − 11, 166 = 3, 987 classes were added between 3.0
and 3.2, which did not only participate to antipatterns. Eclipse size increased by
3, 271 − 2, 260 = 1, 011 KLOCs.

4.3 Changes/Faults Odds Ratios

For ArgoUML, change-proneness ORs are never smaller than 3.98. The highest OR
occurs between releases 0.20 and 0.22, period during which a major restructuring6

took place with many faults fixed and 293 issues resolved. ORs for fault-fixing
are high but often lower than those for change-proneness, which suggests that
antipatterns are potential symptoms of change-proneness, but not necessarily of
fault-proneness: they make a system harder to maintain because future changes will
likely impact several classes, but only indirectly impact fault-proneness. The highest
fault-related OR occurs between releases 0.14 and 0.16, period during which many
fault-fixing activities took place. Release 0.16 is the release with the highest number
of fault-fixing changes (Khomh et al. 2009a): 851, the second-highest is release 0.26
with 591.

For Eclipse, we found lower ORs than those of other systems for both change-
and fault-proneness. We explain such a difference by the fact that ∼80% of Eclipse
classes participate in at least one antipattern, with a higher proportion of these classes
to be LazyClasses (e.g., 51.71% in the first release). Therefore, we expected to find
lower ORs because Eclipse includes many more classes participating in antipatterns
than not. The high proportion of LazyClasses conforms to the results of previous
studies (Aversano et al. 2007), which observed that Eclipse is designed to evolve
through sub-classing, which, in turn, leads to a lower class change-proneness.

Eclipse is the only system with greater ORs for fault/issue- than change-proneness.
We recall that we considered issues, as discussed in Section 2.3, and that as discussed
in our previous study (Antoniol et al. 2008), a majority of Eclipse issues are likely not
related to faults but to other maintenance activities, such as restructuring. Thus, it is
consistent to find more classes impacted by issues with respect to faults only.

Verifying H01 for Mylyn between releases 2.0M3 and 2.0 results in an extreme
OR = 206.60, which we explain by the amount of issues fixed between the releases:
304.7 Table 5 shows that antipatterns are correlated with fault-fixing changes. The
OR reflects this relation plus that with other changes unrelated to faults, such as
restructuring, which impacted classes in antipatterns.

For Rhino, ORs for change-proneness range between 10.41 in release 1.4R3
and 33.05 in 1.6R4, two numbers which we explain by (1) the number of new

5http://www.eclipse.org/osgi/
6http://argouml.tigris.org/servlets/NewsItemView?newsItemID=1675
7http://eclipse.org/mylyn/new/new-2.0.html

http://www.eclipse.org/osgi/
http://argouml.tigris.org/servlets/NewsItemView?newsItemID=1675
http://eclipse.org/mylyn/new/new-2.0.html
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features added in release 1.5R1: many classes not participating in antipatterns were
added/changed and (2) the number of issues between releases 1.6R3, 1.6R4, and
1.6R5: respectively 4, 7 and 24.8 More faults have been filled against 1.6R4 than other
releases, thus explaining the change of ORs.

4.4 Kinds of Antipatterns and Changes/Faults

Tables 4 and 6 show that antipatterns impact change- and fault-proneness but that
we could not reject H02 or H04 for all of them, in particular LargeClass, Blob, Class-
DataShouldBePrivate, SpaghettiCode, SpeculativeGenerality and SwissArmyKnife.
We explain this fact by the low number of classes participating in these antipatterns;
for examples, on average, in Eclipse, there are 479 LargeClasses for 11,618 classes per
release and in ArgoUML, 80 for 960 classes per release (Khomh et al. 2009a). The
number of occurrences of the SpaghettiCode is even lower, with, on average, two per
Eclipse release. No SpaghettiCode was found in ArgoUML, Mylyn and Rhino.

Eclipse, ArgoUML, Mylyn, and Rhino use extensively object orientation. They
“divide to conquer”, which helps to avoid: Blob, which is a class that knows/does too
much; LargeClass and SwissArmyKnife, which are complex classes that provides too
many services; and SpeculativeGenerality, which is an abstract class with very few
children. The use of polymorphism and encapsulation explains the few number of
ClassDataShouldBePrivate, which occurs when the data encapsulated by a class is
public, as well as the SpaghettiCode, which is a class with too many long methods
with too many branches.

Among the remaining antipatterns, we rejected, for MessageChain, H02 for all
systems and H04 for Eclipse and Rhino. The MessageChain antipattern characterises
classes that use long chains of calls to perform their functionality, which makes
them dependent on classes “far” from each other. Finding many occurrences of
the MessageChain is not surprising in Eclipse and Rhino. Eclipse has thousands
of classes; developers fixing issues are likely to touch many classes because of
their dependencies with one another and the likelihood of faults related to these
dependencies is high. Rhino is small but the classes forming its parse tree and
interpreter are tightly coupled.

The other antipatterns satisfy the conditions to reject H02 or H04 for at least one
system. By tracking their occurrences through releases, we found that antipatterns
are generally removed from the systems while new ones are introduced. Thus, some
antipatterns are in small number or are absent in some releases; thus, the logistic
regression analysis indicated that some antipatterns are statistically significant only
in some releases.

Classes participating in the antipatterns ComplexClass and LazyClass are more
change- and fault-prone than others in Eclipse. ComplexClass characterises classes
with a higher number of complex methods than the average class, thus developers
adding new features or fixing issues are more likely to touch these classes, which
consequently increases their likelihood to have faults. This observation confirms
Fowler and Brown’s warnings about complex classes. Lazy classes tend to be

8https://bugzilla.mozilla.org/buglist.cgi?query_format=specific&order=relevance+desc&bug_status=
__all__&product=Rhino&content={1.6R3|1.6R4|1.6R5}

https://bugzilla.mozilla.org/buglist.cgi?query_format=specif/ic&order=relevance+desc&bug_status=__all__&product=Rhino&content={1.6R3|1.6R4|1.6R5}
https://bugzilla.mozilla.org/buglist.cgi?query_format=specif/ic&order=relevance+desc&bug_status=__all__&product=Rhino&content={1.6R3|1.6R4|1.6R5}
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removed or changed to increase their behaviour, while others are introduced:
there were 2,765 lazy classes in Eclipse 1.0 (59% of the system), 8,967 in 3.3.1
(52%). Class org.eclipse.search.internal.core.SearchScope, for
example, was a lazy class in 1.0 but, in 3.0, 2 methods and 2 constructors were
added and the inner class WorkbenchScope was removed. New lazy classes, e.g.,
org.eclipse.team.internal.ccvs.ui.actions.ShowEditorsAction,
were introduced.

Classes participating in AntiSingleton are more fault/issue-prone in Eclipse and
more change-prone in ArgoUML than other classes. They are generally removed
from the system or changed. In Eclipse, 16% of the AntiSingleton classes were
removed between releases 1.0 and 3.0 and only 53% of the classes were still
AntiSingleton in that release; the other classes were changed. For example, all meth-
ods of org.eclipse.compare.internal.CompareWithEditionAction, an
AntiSingleton, were removed between releases 1.0 and 3.0 and the class became a
LazyClass with no behaviour.

We can reject H02 for LongMethod for ArgoUML, Eclipse, and Mylyn, and
H04 for Eclipse. LongMethod classes are more change-prone than any other class,
and more fault-prone than other Eclipse classes, possibly because such classes are
complex and thus more likely to change to fix issues. Faults are also more likely to
be introduced when changing these classes due to their complexity. Moreover, we
observe that LongMethod classes keep on participating in this antipattern during
their evolution and are, in general, central to the system core features. Previous
studies, e.g., Aversano et al. (2007), confirm that central classes are more change-
prone.

Classes participating in RefusedParentBequest are more change-prone than
others in ArgoUML, possibly due to the need for re-organising badly organised
hierarchies: this antipattern occurs when a subclass does not use attributes and/or
public/protected methods inherited from its parent. We expected this results because
ArgoUML implements deep hierarchies of models, diagram elements, and tools.

Although classes participating in antipatterns are more change- and fault-prone
than other classes; in some situations, an antipattern may be the best and possibly
only way to implement some requirements and–or functionalities. For example, one
of the LargeClass in Eclipse is class org.eclipse.swt.internal.win32.OS, which is the
unique access point to the underlying Windows platform for the Standard Widget
Toolkit. While the class is large, it provides a unique access point to non-object-
oriented, platform-dependent resources, thus increasing portability and possibly
efficiency.

5 Threats to Validity

With our study, we show that antipatterns do impact the change- and fault-proneness
of classes and that certain kinds of antipatterns have a greater impact than others.
However, we do not claim that antipatterns cause changes and faults. Indeed, our
study cannot say anything about the reasons for classes to have antipatterns and,
consequently, the reasons for changes/faults to occur/appear in these classes. We only
empirically verified that classes with antipatterns are more change- and fault-prone
that others, thus confirming the conjecture in the literature.

http://org.eclipse.swt.internal.win32.OS


Empir Software Eng

In addition, some parts of the source code of a system will always change as
new functionalities are added and as faults are fixed. Thus, we cannot use only the
correlation between antipatterns and change proneness to predict which classes will
change in the future. Indeed, the fact that some classes are more likely to change in a
release has complex reasons that are beyond the scope of this paper, as already noted
by Zimmermann et al. (2004).

We now discuss the threats to validity of our study following the guidelines for case
study research (Yin 2002). Construct validity threats concern the relation between
theory and observation; in this study, they are mainly due to measurement errors.
The identification of changes is reliable because based on the CVS/SVN change logs.
Yet, it may not reflect exactly the commits related to a (fault-fixing) change and
developers’ efforts accurately because developers follow different patterns for com-
mitting their changes, e.g., from committing changes as faults are fixed to committing
all changes once a week. However, these varying patterns do not affect our measure
of change-proneness because we just observed whether a class underwent at least
one change during a given period of time.

We were able to identify fault-fixing changes for ArgoUML, Mylyn and Rhino
using an existing classification (Eaddy et al. 2008). The only cases where some
fixed issues might not be related to faults is Eclipse, as we pointed out in our
previous work (Antoniol et al. 2008). We mitigated the use of possibly erroneous
faults by discarding issues explicitly labeled as “Enhancements” and focusing on
issues marked as “FIXED” or “CLOSED” because they required some changes. It
is unlikely, in Eclipse, that hard-to-fix issues would stay longer “OPENED” than
others, because Eclipse is being backed up by IBM, which strives to offer a stable
product.

We did not include release 2.1 of Eclipse but its inclusion is unlikely to change
our results: between releases 1.0 and 2.0, we observed 11,632 class change commits,
and 1,541 fault fixings; between 2.0 and 2.1, 21,211 class change commits and 1,756
fault fixing; while between 2.1 and 2.1.1 only 3,664 change commits and 240 fault
fixings. We thus observed that the number of committed changes and fixed faults
between release 2.1 and 2.1.1 is about one order of magnitude smaller than those
numbers between any other two subsequent releases. Moreover, we analyzed the
odds ratios of classes participating in antipatterns to exhibit changes/faults, with
respect to classes not participating in antipatterns, between releases 2.1 and 2.1.1.
The Fischer’s exact test indicated a significant difference, with odds ratios of 2.59
for change proneness and of 1.59 for fault proneness, thus consistent with the results
obtained when analyzing other pairs of subsequent releases.

Finally, we observe that DECOR includes its authors’ subjective understanding of
the antipatterns and that the accuracy of its detection algorithms is not perfect (Moha
et al. 2010). DECOR accuracy impacts our results because we may have classified a
class not participating in an antipattern as participating in it and vice-versa. Other
techniques and tools should be used to confirm our findings.

Threats to internal validity do not affect this study, being an exploratory study
(Yin 2002). We do not claim causation, but relate the presence of antipatterns with
the occurrences of changes, faults, and issues. Nevertheless, we tried to explain—
by looking at specific changes, commit notes, and change histories—why some
antipatterns could have been the cause of changes/issues/faults. We are aware that
antipatterns can be dependent to each other and relied on the logistic regression
model-building procedure to select the subset of non-correlated antipatterns. When
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studying antipatterns, we did not exclude that, in a particular context, an antipattern
can be the best way to implement or design a (part of a) system. For example,
automatically-generated parsers are often Spaghetti Code, i.e., very large classes with
a high number of very long methods with many branches. However, this observation
does not impact our study because we only consider antipatterns as warnings.

Conclusion validity threats concern the relation between the treatment and the
outcome. We paid attention not to violate assumptions of the performed statistical
tests. Also, we mainly used non-parametric tests that do not require to make
assumption about the data set distribution. For Mylyn, we are aware that fault-
proneness is analysed on only three releases for which the manual fault classification
is available (Eaddy et al. 2008), thus it would be difficult to draw strong conclusions
for this system about the relation between antipatterns and fault-proneness.

Reliability validity threats concern the possibility of replicating this study. We
attempted to provide all the necessary details to replicate our study. Moreover,
the source code repositories and issue-tracking systems of the studied systems are
available to obtain the same data. The raw data used to compute the statistics is
available on-line.4

Threats to external validity concern the possibility to generalise our results. First,
we studied four systems having different sizes and belonging to different domains.
Nevertheless, further validation on a larger set of systems is desirable, considering
systems from different domains, as well as several systems from the same domain,
to better analyze the cross-domain and inter-domain influence of antipatterns on
change- and fault-proneness. Second, we used a particular yet representative subset
of antipatterns. Different antipatterns could lead to different results in future work.

6 Related Work

We now discuss work on antipatterns, design patterns, and metrics, in relation to
software evolution.

Code Smells/Antipatterns Def inition and Detection The first book on “antipat-
terns” in object-oriented development was written in 1995 by Webster (1995); his
contribution includes conceptual, political, coding, and quality-assurance problems.
Riel (1996) defined 61 heuristics characterising good object-oriented programming
to assess a system quality manually and improve its design and implementation.
Fowler (1999) defined 22 code smells, suggesting where developers should apply
refactorings. Mantyla (2003) and Wake (2003) proposed classifications for code
smells. Brown et al. (1998) described 40 antipatterns, including the well-known Blob
and Spaghetti Code. These books provide in-depth views on heuristics, code smells,
and antipatterns aimed at industrial and academic audiences. They are the basis of
all approaches to detect (semi-)automatically code smells and antipatterns, such as
DECOR (Moha et al. 2010) used in this study.

Several approaches to specify and detect code smells and antipatterns exist in
the literature. They range from manual approaches, based on inspection techniques
(Travassos et al. 1999), to metric-based heuristics (Marinescu 2004; Munro 2005;
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Oliveto et al. 2010), using rules and thresholds on various metrics or Bayesian belief
networks (Khomh et al. 2009d).

Some approaches for complex software analysis use visualisation (Dhambri et al.
2008; Simon et al. 2001). Visualisation is an interesting compromise between fully
automatic detection techniques, which are efficient but loose track of the context,
and manual inspections, which are slow and subjective (Langelier et al. 2005).
However, visualisation requires human expertise and is thus time-consuming. Other
approaches perform fully automatic detection and use visualisation techniques to
present their results (Lanza and Marinescu 2006; van and Moonen 2002).

This previous work significantly contributed to the specification and detection of
antipatterns. The approach used in this study, DECOR, builds on this previous work
to offer a method to specify and automatically detect antipatterns.

Code Smells/Antipatterns and Software Evolution Deligiannis et al. (2003, 2004) pro-
posed the first quantitative study of the relation between antipatterns and software
quality. They performed a controlled experiments with 20 students on two systems to
understand the impact of God Classes on the understandability and maintainability
of systems. The results of their study suggested that God Classes affect the evolution
of design structures and considerably affects the subjects’ use of inheritance.

Bois et al. (2006) showed that the decomposition of God Classes into a number
of collaborating classes using well-known refactorings can improve comprehension.
They did not consider source code evolution phenomena.

Wei and Shatnawi (2007) investigated the relationship between the probability of
a class to be faulty and some antipatterns based on three versions of Eclipse and
showed that classes with the antipatterns God Class, Shotgun Surgery and Long
Method have a higher probability to be faulty than other classes. They concluded
on the need for broader studies to validate their results. We provide such a broader
study by studying the impact of 13 antipatterns on change- and fault-proneness in
four systems.

Olbrich et al. (2009), analysed the historical data of Lucene and Xerces over
several years and concluded that God Classes and Shotgun Surgery have a higher
change frequency than other classes; with God Classes featuring more changes. They
neither performed an analysis to control the effect of the size on their results nor
studied the kinds of changes affecting these antipatterns.

Using Azureus and Eclipse, Khomh et al. (2009b) studied the impact of classes
with code smells on change-proneness and the particular impact of certain code
smells. They showed that the likelihood for classes with code smells to change is very
high, except in a few explainable cases. Some of the studied code smells are similar
to some of the antipatterns studied in this paper, although antipatterns identify
poor design solutions at a higher level of abstraction than code smells. Considering
that code smells make classes more change-prone, it is natural that classes having
antipatterns are also more change-prone than classes without antipattern. However,
the study reported in this paper was necessary to confirm this relation because
previous work did not test the different impact between having one, two, or more
particular code smells. It could have been possible that having some combinations of
code smells could have rendered classes more difficult to change and, consequently,
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less change-prone than others. Also, in this paper, we add three additional systems
(ArgoUML, Mylyn and Rhino), we study fault-proneness in addition to change-
proneness, and we analyse the particular kinds of changes occurring on classes
participating in certain antipatterns.

This previous work raised the awareness of the community towards the impact
of code smells and antipatterns on software development. We build on this previous
work and propose a more detailed and extensive empirical study of the impact of
antipatterns on code evolution phenomena.

Design Patterns and Software Evolution While antipatterns are poor design choices,
design patterns are recurring solutions to design problems, increasing reusability,
expandability and understandability (Gamma et al. 1994). Several authors studied
the impact of design patterns on systems. Vokác (2004) analysed the corrective
maintenance of a large commercial system over three years and compared the fault
rates of classes that participated in design patterns with those of other classes. He
noticed that participating classes were less fault-prone than others with differences
in fault rates ranging from 63 to 154% on average. He also noticed that the Observer
and Singleton patterns are correlated with larger classes; that classes playing roles in
Factory Method were more compact, less coupled, and less fault-prone than others
classes; and that no clear tendency existed for Template Method. His work provided
the first quantitative evidence of a relationship between design patterns and the fault-
proneness of systems.

Bieman et al. (2003) analysed four small and one large systems to evaluate the
impact of design patterns on change-proneness and concluded that participating
classes are rather more change-prone. Khomh and Guéhéneuc (2008) performed an
empirical study of the impact of the 23 design patterns from Gamma et al. (1994) on
ten different quality characteristics and concluded that patterns do not necessarily
promote reusability, expandability and understandability. Other studies focused on
the change-proneness and resilience to change of design patterns (Aversano et al.
2007) and of classes playing a specific role in design patterns (Di Penta et al. 2008).
They concluded that design patterns and change-proneness are related.

In our previous work (Khomh et al. 2009c), we studied the impact on classes of
playing zero, one, and two or more roles in design motifs. We used several metrics,
including the number of past and future changes and the number of faults, to study
the impact of playing roles. We showed, using a representative population of classes,
that classes playing one, two or more roles are more change-prone than classes
playing zero roles. We could not find any statistically significant impact of playing
one role vs. two roles on change- and fault-proneness but classes playing two roles
changed 1.52 times more than classes playing one role. We can relate the impact
on class change- and fault-proneness of participating in two or more antipatterns
with the impact of playing two or more roles in design motifs. Indeed, in both
cases, the impacted classes are bigger than others and play either a central role in
the functioning of the system (design motifs) or in the maintenance of the system
(antipatterns). Future work should study the statistical relations between design
motifs and antipatterns.

While this previous work investigated the impact of design patterns, we study the
impact of antipatterns on code evolution phenomena. Vokác’s work inspired this
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Listing 1 Specification of the Blob Antipattern

study in the use of logistic regression to analyse the correlations between antipatterns
and change- and fault-proneness.

Metrics and Software Evolution Several studies, such as Basili et al.’s seminal work
(Basili et al. 1996), used metrics as quality indicators. Cartwright and Shepperd
(2000) conducted on an industrial C++ system (over 133 KLOCs) an empirical study
that supported the hypothesis that classes in inheritance relations are more fault-
prone than others. Consequently, Chidamber and Kemerer (C&K) DIT and NOC
metrics (Chidamber and Kemerer 1994) could be used to find classes likely to have
higher fault rates. Gyimóthy et al. (2005) compared the capability of sets of C&K
metrics to predict fault-prone classes in Mozilla, using logistic regression and other
machine learning techniques. They concluded that CBO is the most discriminating
metric. They also found LOC to discriminate fault-prone classes well. Zimmermann
et al. (2007) conducted an empirical study on Eclipse showing that a combination
of complexity metrics can predict faults and that the more complex the code, the
more faults. El Emam et al. (2001) showed that, after controlling for the confounding
effect of size, the correlation between metrics and faults disappeared: many metrics
are correlated with size and, therefore, do not bring more information to predict
fault-proneness than size.

In our study, we relate change- and fault-proneness to antipatterns rather than to
metrics and control for the size effect. We do not claim that antipatterns are better
predictor of change- and fault-proneness than metrics: we use them as abstractions
of metrics, thus likely to be better indicators than metrics for developers because
they refer to specific design and implementation styles. Antipatterns can tell the
developers whether a design choice is “poor” or not, by means of thresholds defined
over metrics and of lexical information.

For example, the Blob is defined by imposing some empirical thresholds upon
values of cohesion metrics and other metrics, as shown in Listing 1, suggesting to
the developers whether the class lack cohesiveness, is too large, and is associated to
data classes. If we were to provide developers only with the values of LCOM5, NAD,
and NMD, then they would have to judged by themselves whether such values are
excessive or not and warrant the classes has being tagged as a Blob.

Another important issue about the potential usefulness of antipatterns is whether
they provide more information than size. El Emam et al. (2001) found that many
metrics are correlated to size, thus antipatterns could also be correlated to size
because they use metrics. However, as discussed in RQ5 (Section 3.5), we found
that this is not the case for many antipatterns, i.e., classes participating in some kinds
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of antipatterns are not significantly larger than other classes. Moreover, large classes
participating in antipatterns are generally more change- and fault-prone than other
large classes.

7 Conclusions and Future Work

In this paper, we provided empirical evidence of the negative impact of antipatterns
on classes change- and fault-proneness in four systems: ArgoUML, Eclipse, Mylyn,
and Rhino. We studied the odds ratios of changes, faults, and issues on classes
participating (or not) in 13 antipatterns in (overall) 54 releases of the four systems.
We showed, through the five research questions RQ1–4, that classes participating in
antipatterns are significantly more likely to be subject to changes and to be involved
in fault-fixing changes (issue-fixing changes for Eclipse) than other classes. We also
showed that size alone cannot explain the participation of classes to antipatterns
with RQ5 and, thus, that antipatterns bring additional, complementary information
to developers to analyse their systems. We also studied with RQ6 the kinds of
changes that impacted classes participating in antipatterns and other classes and
found that, in ArgoUML and Mylyn, structural changes are more likely to occur
in classes participating in antipatterns (although odds ratios are not high (≈1.2))
than in other classes, while it is not the case for Eclipse and Rhino. Furthermore,
we analysed the correlations among antipatterns and found that the Blob, Complex-
Class, and LargeClass are correlated with one another in all releases of ArgoUML,
Mylyn, and Rhino, but in none of Eclipse. As expected, other antipatterns are
unrelated.

This exploratory study provides, within the limits of its validity, evidence that
classes participating in antipatterns are more change- and fault/issue-prone than
classes not participating in antipatterns. The study also provides evidence to practi-
tioners that they should pay attention to systems with a high number of classes partic-
ipating in antipatterns, because these classes are more likely to contain faults and to
be the subject of their change efforts. More specifically, managers and developers can
use these results to guide maintenance activities: for example, they can recommend
their developers to avoid MessageChain as this antipattern is consistently related
with high fault and change rates.

Future work includes replicating this study on industrial systems, other than
Eclipse, on systems developed using different languages, and with different an-
tipatterns. We are also interested in studying to what extent similar systems—e.g.,
development environments, parser generators, productivity tools—exhibit similar
relationships between the presence of antipatterns and code change-/fault-proneness.
We also plan to study the categorisation of classes as change-prone, error-prone,
or none, and compute Types I and II errors to assess whether antipatterns perform
better than metrics.

Future work also includes studying further the relations between antipatterns and
other characteristics of systems, such as their architecture and the use of design
patterns. Moreover, it would be desirable to use antipatterns—other than metrics—
to build more accurate/informative change- and fault-prediction methods. Last, but
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not least, further investigation, devoted to mine change logs, mailing lists and issue
reports, is desirable to seek evidence of cause–effect relationships between the
presence of antipatterns—or the need to remove them—and the class change- and
fault-proneness.
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