
 Open access Journal Article DOI:10.1007/S00766-017-0274-X

An exploratory study of Twitter messages about software applications
— Source link

Emitza Guzman, Rana Alkadhi, Norbert Seyff

Institutions: University of Zurich, Technische Universität München

Published on: 01 Sep 2017 - Requirements Engineering (Springer London)

Topics: Software evolution, Microblogging, Requirements engineering and Software

Related papers:

 A Needle in a Haystack: What Do Twitter Users Say about Software?

 Bug report, feature request, or simply praise? On automatically classifying app reviews

 A Little Bird Told Me: Mining Tweets for Requirements and Software Evolution

 The Crowd in Requirements Engineering: The Landscape and Challenges

 Mining Twitter Feeds for Software User Requirements

Share this paper:

View more about this paper here: https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-
1piv76w74h

https://typeset.io/
https://www.doi.org/10.1007/S00766-017-0274-X
https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h
https://typeset.io/authors/emitza-guzman-58k4cqwe0t
https://typeset.io/authors/rana-alkadhi-wr33r6loki
https://typeset.io/authors/norbert-seyff-21ap2q88mv
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/technische-universitat-munchen-3oeglcts
https://typeset.io/journals/requirements-engineering-32bjqcnw
https://typeset.io/topics/software-evolution-lmi1etvm
https://typeset.io/topics/microblogging-2smuh0xg
https://typeset.io/topics/requirements-engineering-4h5ayy7e
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/papers/a-needle-in-a-haystack-what-do-twitter-users-say-about-ad1aj9duq4
https://typeset.io/papers/bug-report-feature-request-or-simply-praise-on-automatically-3z1bh343sq
https://typeset.io/papers/a-little-bird-told-me-mining-tweets-for-requirements-and-2hh3xetg7s
https://typeset.io/papers/the-crowd-in-requirements-engineering-the-landscape-and-50fqoh5bmp
https://typeset.io/papers/mining-twitter-feeds-for-software-user-requirements-1y51dxpzf7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h
https://twitter.com/intent/tweet?text=An%20exploratory%20study%20of%20Twitter%20messages%20about%20software%20applications&url=https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h
https://typeset.io/papers/an-exploratory-study-of-twitter-messages-about-software-1piv76w74h

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2017

An Exploratory Study of Twitter Messages about Software Applications

Guzman, Emitza ; Alkadhi, Rana ; Seyff, Norbert

Abstract: Users of the Twitter microblogging platform share a considerable amount of information
through short messages on a daily basis. Some of these so-called tweets discuss issues related to software
and could include information that is relevant to the companies developing these applications. Such
tweets have the potential to help requirements engineers better understand user needs and therefore pro-
vide important information for software evolution. However, little is known about the nature of tweets
discussing software-related issues. In this paper, we report on the usage characteristics, content and
automatic classification potential of tweets about software applications. Our results are based on an
exploratory study in which we used descriptive statistics, content analysis, machine learning and lexical
sentiment analysis to explore a dataset of 10,986,495 tweets about 30 different software applications. Our
results show that searching for relevant information on software applications within the vast stream of
tweets can be compared to looking for a needle in a haystack. However, this relevant information can
provide valuable input for software companies and support the continuous evolution of the applications
discussed in these tweets. Furthermore, our results show that it is possible to use machine learning and
lexical sentiment analysis techniques to automatically extract information about the tweets regarding
their relevance, authors and sentiment polarity.

DOI: https://doi.org/10.1007/s00766-017-0274-x

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-205004
Journal Article
Accepted Version

Originally published at:
Guzman, Emitza; Alkadhi, Rana; Seyff, Norbert (2017). An Exploratory Study of Twitter Messages
about Software Applications. Requirements Engineering, 22(3):387-412.
DOI: https://doi.org/10.1007/s00766-017-0274-x

An exploratory study of Twitter messages about software

applications

Emitza Guzman1
• Rana Alkadhi2

• Norbert Seyff1,3

� Springer-Verlag London Ltd. 2017

Abstract Users of the Twitter microblogging platform

share a considerable amount of information through short

messages on a daily basis. Some of these so-called tweets

discuss issues related to software and could include infor-

mation that is relevant to the companies developing these

applications. Such tweets have the potential to help

requirements engineers better understand user needs and

therefore provide important information for software evo-

lution. However, little is known about the nature of tweets

discussing software-related issues. In this paper,we report on

the usage characteristics, content and automatic classifica-

tion potential of tweets about software applications. Our

results are based on an exploratory study in which we used

descriptive statistics, content analysis, machine learning and

lexical sentiment analysis to explore a dataset of 10,986,495

tweets about 30 different software applications. Our results

show that searching for relevant information on software

applications within the vast stream of tweets can be com-

pared to looking for a needle in a haystack. However, this

relevant information can provide valuable input for software

companies and support the continuous evolution of the

applications discussed in these tweets. Furthermore, our

results show that it is possible to use machine learning and

lexical sentiment analysis techniques to automatically

extract information about the tweets regarding their rele-

vance, authors and sentiment polarity.

Keywords Requirements engineering � Software
evolution � User feedback � Content analysis � Textmining

1 Introduction

Twitter users write over five hundred million messages

every day. Users discuss topics such as music, television,

sports, politics and technology through these so-called

tweets. This wide range of topics also includes software

applications. Tweets about software applications could be

similar to app reviews and discuss software failures and

requests for new features [18, 26, 49]. Thus, tweets might

be a relevant source of information for software companies.

Stakeholders such as requirements engineers may benefit

from these tweets, as they might allow them to better

understand their users’ needs and identify requirements

relevant to the evolution of their software applications.

Furthermore, tweets could allow for the collection of

information from remote users, who are typically difficult

to involve. The obtained insights may then be used to make

informed decisions within software evolution processes.

However, little is known about the number and rele-

vance of tweets regarding software applications and their

impact on software evolution. In our research [22], we are

the first to investigate the characteristics of tweets on

software applications and their relevance to different

stakeholders that are not necessarily developers (e.g.,

requirements engineers, project managers and users).

This manuscript is based on work published at the

International IEEE Requirements Engineering Conference

& Emitza Guzman

guzman@ifi.uzh.ch

Rana Alkadhi

alkadhi@in.tum.de

Norbert Seyff

norbert.seyff@fhnw.ch

1 University of Zurich, Zurich, Switzerland

2 Technische Universität München, Garching, Germany

3 FHNW, Windisch, Switzerland

Requirements Engineering (Springer)
DOI 10.1007/s00766-017-0274-x Published online 15 July 2017
Preprint in final layout
Final publication is available at https://link.springer.com/article/10.1007/s00766-017-0274-x

http://orcid.org/0000-0002-5439-5509
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0274-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0274-x&domain=pdf

[22]. We report on the results of an exploratory study in

which we collected and analyzed 10,986,494 tweets about

30 popular software applications in order to understand

their relevance for requirements engineering and software

evolution. In our study, we investigated general charac-

teristics of tweets (e.g., length, frequency and popularity)

and used descriptive statistics to report on the results.

Furthermore, we randomly selected 1000 tweets of the

collected dataset and manually analyzed them using con-

tent analysis techniques [45]. Finally, we investigated the

automatic analysis potential by applying machine learning

and lexical sentiment analysis on the manually analyzed

data for automatically extracting information about their

relevance, authors and sentiment.

Our results show that tweets about software applications

contain relevant information for software companies. How-

ever, due to the large number and high frequency in which

tweets are communicated, manual analysis is a cumbersome

and time-consuming task. Thus, automated approaches are

needed for automatically analyzing tweets about software

applications. Furthermore, our results reveal that automated

approaches, such as machine learning, are promising for fil-

tering tweets relevant to non-technical stakeholderswithin the

company and the general public, whereas they are less

encouraging for detecting tweets that are relevant to technical

stakeholders. Additionally, the use of machine learning for

detecting tweets about software applications authored by

humans or bots yields very promising results. There is a strong

positive correlation between the results of automatic lexical

sentiment analysis and human judgment when analyzing

tweets about software applications that arewritten by humans.

Automatic approaches can help to identify irrelevant

tweets and those authored by bots—which might not need a

response from the software company. Additionally, the

automatic extraction of sentiment information can be use-

ful when prioritizing tweets, as the sentiment could be an

indicator of the urgency of reacting to a specific tweet.

The contributions of this work are threefold. First, our

results provide insights into how Twitter is used to com-

municate about software. Second, we report on the rele-

vance of these tweets on software applications for different

stakeholders within software companies. Finally, we show

that the application of automated analysis techniques on

tweets about software applications is a promising direction

for extracting information about their relevance for dif-

ferent stakeholders, authors and sentiment polarity.

The main extensions of this manuscript compared to our

previous paper [22] are:

• An experiment to evaluate the potential of using

machine learning techniques for the detection of bots-

generating tweets about software applications;

• An experiment to evaluate the potential of applying

lexical sentiment analysis for the automatic extraction

of the sentiments present in tweets about software

applications;

• A manual analysis of an additional sample of 1000

tweets using content analysis techniques [45] to study

characteristics of bots-generating tweets about software

applications. A further analysis of the bot-authored

tweets identified by using descriptive statistics;

• An extension of the relevance experiment by analyzing

the performance of additional machine learning

classifiers;

• A more detailed discussion about the usage and content

studies conducted, as well as related work.

The remainder of the paper is structured as follows: Sect. 2

describes the research design. Section 3 describes a study

investigating Twitter usage when writing about software

applications, while Sect. 4 describes a study analyzing the

content of tweets about software applications. Section 5

describes an experiment using machine learning techniques

for classifying tweets with respect to their relevance to

different stakeholder groups, whereas Sect. 6 describes an

experiment also using machine learning to classify the

authors of tweets as humans or bots. Section 8 describes an

experiment employing lexical sentiment analysis for

automatically extracting the sentiment polarity present in

tweets. Moreover, Section 9 discusses our main findings,

the main threats to validity of our work and sketches future

research directions. Finally, Sect. 9 discusses related work

and Sect. 10 concludes the paper.

2 Research design

2.1 Research goal and questions

The goal of this study is to explore the current use of

Twitter to communicate about software applications and

the relevance of this communication for requirements

engineering and software evolution. To achieve this goal,

we explored the usage and content of tweets relevant to

software applications. Additionally, we investigated the

automation potential regarding the classification of

tweets.

Usage describes how users communicate through

Twitter about software applications. In particular, we

answered the following question:

• General characteristics What are the relevant charac-

teristics of tweets about software applications in terms

of frequency, length, interaction, popularity, hashtags

and duplication? Which clients are used for posting

Requirements Eng

them and how often do software companies tweet about

their software?

Content describes the different semantic categories present

in tweets and their characteristics. In particular, we

answered the following questions:

• Categories What type of content is present in tweets

related to software applications?

• Relevance Is the content relevant to software applica-

tion stakeholders?

• Sentiment What is the attitude of users when writing

about specific content?

Automation potential describes the potential of applying

automation techniques to process tweet content related to

software applications. In particular, we answered the fol-

lowing questions:

• Relevance What is the performance of supervised

machine learning techniques when classifying tweets

related to software applications according to its

relevance for different stakeholders?

• Human or Bot What is the performance of supervised

machine learning techniques when classifying tweets as

human or bot generated?

• Sentiment What is the performance of lexical sentiment

analysis when extracting the sentiment polarity present

in tweets about software applications?

We chose to focus on filtering irrelevant tweets, detecting

tweets authored by bots and extracting sentiment polarities

from tweets due to their usage potential during software

evolution and requirements engineering. Filtering irrele-

vant tweets for specific stakeholders and detecting those

authored by bots can reduce information overload as it

helps to single out those tweets that need a reaction from

the software company. Additionally, the automatic

extraction of sentiment polarity can help detect the satis-

faction level of users tweeting about a specific software

application and this information can be useful when pri-

oritizing tweets for software evolution tasks.

2.2 Dataset

We limited the scope of our study to popular mobile and

desktop applications. We identified these applications by

investigating their number of downloads through charts

published by three different distribution platforms.1

We collected tweets for the top ten applications of each

distribution platform as we assumed they would be men-

tioned in a large number of tweets. We imported tweets

over a period of 2 months starting on November 19, 2015.

For this purpose, we employed an open-source library2

which provides access to the Twitter Search API.3 This

API searches for public tweets published in the past

7–9 days and returns the tweets matching a specified

search query. We defined the search query to return tweets

that were written in English and whose content included

the name of at least one of the 30 chosen applications.4 The

collected tweets can be stand-alone statements written by

Twitter users or replies to tweets written by other users. In

total, we obtained 10,986,494 tweets about 30 different

desktop and mobile software applications, which we used

as a dataset for our research.

Table 1 shows an overview of the selected software

applications and presents their name, version, domain and

the number of imported tweets. For all but four applica-

tions, we were able to collect over 1000 tweets. The

domains of the applications vary significantly, and we

could identify 14 different domains. Included are two

systems belonging to the operating system domain. How-

ever, in the remainder of the paper we use the term soft-

ware application to refer to these systems.

2.3 Method

We studied Twitter usage to communicate about soft-

ware applications with the help of descriptive statistics.

In particular, we analyzed the general characteristics of

tweets about software applications. We used content

analysis techniques [45] on a random sample of our

dataset to study the content of tweets about software

applications. While conducting this analysis, we manu-

ally identified the content categories of these tweets and

assessed their relevance to different stakeholder groups.

In addition, we also studied their sentiment. Furthermore,

we investigated the automation potential of tweet

analysis by applying machine learning and lexical sen-

timent analysis techniques on the manually analyzed

data. In particular, we measured the performance of the

techniques for identifying tweets that are relevant to

different stakeholders, for filtering tweets about software

applications that are generated by humans or bots and

for automatically extracting the sentiment polarity pre-

sent in the tweets.

Table 2 shows the amount of tweets analyzed for the

different parts of our study and the techniques used in each

one.

1 http://www.apple.com/itunes/charts/, https://play.google.com/store/

apps/top, http://www.amazon.com/best-sellers-software/zgbs/software.
2 http://www.tweepy.org/.

3 https://dev.Twitter.com/rest/public/search.
4 The search query is: tweepy.Cursor (api.search, q¼ ’APP_NAME -

filter:retweets’, lang¼ ’en’), where APP_NAME is the name of the

software application. We ran the query iteratively (every 7–9 days)

for each software application in our dataset.

Requirements Eng

http://www.apple.com/itunes/charts/
https://play.google.com/store/apps/top
https://play.google.com/store/apps/top
http://www.amazon.com/best-sellers-software/zgbs/software
http://www.tweepy.org/
https://dev.Twitter.com/rest/public/search

3 Usage

In the following, we use descriptive statistics to summarize

our findings on how Twitter users communicate about

software applications.

3.1 Procedure

During the collection of our dataset, we gathered all tweets

which mentioned at least one of the names of the 30 software

applications under analysis. However, it is possible that tweets

Table 1 Dataset

Software Version* Domain #Tweets

Adobe photoshop Desktop and mobile Photograph and video 32,663

Afterlight Mobile Photograph and video 8734

Akinator the genie Desktop and mobile Entertainment 1905

Amazon music Desktop and mobile Music and audio 135,042

Amazon shopping Mobile Shopping 77,090

Architecture of radio Mobile Education 1137

Avast Desktop and mobile Security 26,376

Facebook Desktop and mobile Social networking 1,917,568

Facetune Mobile Photograph and video 2644

Google photos Desktop and mobile Photograph and video 74,218

HotSchedules Mobile Productivity 3501

Instagram Desktop and mobile Photograph and video 1,611,882

Kindle Desktop and mobile Books 91,683

LEO privacy guard Mobile Tools 411

McAfee Desktop Security 34,911

Messenger by facebook Desktop and mobile Social networking 75,115

Microsoft office Desktop and mobile Productivity 56,501

Norton Desktop Security 156,711

Pandora radio Desktop and mobile Music and audio 59,869

Snapchat Mobile Photograph and video 2,888,469

Spotify music Desktop and mobile Music and audio 352,265

True skate Mobile Sports 34,765

TurboTax Desktop and mobile Finance 14,899

Ultimate guitar tabs Desktop and mobile Music and audio 705

Unified remote full Mobile Tools 249

Videoshop Mobile Photograph and video 2249

WiFi tether router Mobile Communication 8

Windows 7 Desktop Operating system 158,290

Windows 10 Desktop Operating system 538,655

YouTube Desktop and mobile Photograph and video 2,627,979

Total= 10,986,494

We considered them to have both desktop and mobile versions

* Some software applications have mobile and Web versions (e.g., Facebook and Instagram)

Table 2 Research method overview

Study focus Used method Dataset size Location

Usage Descriptive statistics 6,437,286 Sect. 3

Content Content analysis 1000* Sect. 4

Automation potential: relevance Machine learning 1000* Sect. 5

Automation potential: human or bot Content analysis and machine learning 1000 Sect. 6

Automation potential: sentiment Lexical sentiment analysis 1000* Sect. 7

* The same annotated sample, result of the manual content analysis detailed in Sect. 4

Requirements Eng

including the software names are unrelated to the software,

lack a clear contextor contain a largeamountof noise. To focus

our work on tweets actually discussing the software applica-

tion, we used the results of the manual tweet analysis (see

Sect. 4) as a filter. We decided to only include software

applications in our work in which at least 70% of the tweets

included in the manual analysis were actually related to the

specific software application and had a clear meaning and

context.5

Following this strategy, tweets discussing Afterlight,

Google Photos, Instagram, McAfee, Norton, True Skate

and YouTube were excluded. Furthermore, we also

excluded the WiFi Tether Router application from our

analysis due to the small number of concerning tweets

present in the dataset. In total, 22 applications represented

by 6,437,286 tweets were included in our usage analysis.

3.2 Results

Tweets were generated daily for most of the 22 applica-

tions. We calculated an average generation frequency of

31,336.17 tweets per day, per application (me-

dian¼ 719.06, SD¼ 11,496.78). However, we also found

that this number varies greatly: from 4.02 to 46,588.21

tweets per day (see Fig. 1). These results show that in the

long run, for the majority of the analyzed software appli-

cations, the number of tweets received per day is too large

for manual analysis and filtering.

The average length of tweets mentioning software

applications was 13.52 words (median¼ 13, SD¼ 6.39) or

83.41 characters (median¼ 81, SD¼ 36.76).6 This result

shows that the length of tweets mentioning software appli-

cations is similar to other tweets (average length of 15.40

words or 86.30 characters) [31]. In their tweets, users can

include media (i.e., photographs and videos) and links to

enrich the tweets content, which in terms of length are lim-

ited to 140 characters. We found that 15.1% of the tweets

include links, 4.94% includemedia, and 4.61% include both.

Twitter allows for bidirectional communication, and users

can therefore reply to each other and complement their tweets in

case clarifications are needed. Reply tweets compose 22.77%of

the tweets in our dataset, indicating a high interaction between

users communicating about software applications.

Users can also react to tweets by liking them, which is

used to show appreciation for a tweet. Furthermore, they

can re-tweet a message to their followers. Both actions

can be considered as indicators for the popularity of a

tweet.7 We found that 34.01% of the tweets in our dataset

were liked by other users, with an average of 5.06 likes

(median¼ 1, SD¼ 138.34). Another 12.06% of the ana-

lyzed tweets were re-tweeted, for an average of 5.13 re-

tweets per tweet (median¼ 1, SD¼ 114.57). Compared

with the re-tweeting of random public tweets [63] (2.19%

of tweets are re-tweeted), the proportion of re-tweeted

tweets about software applications is considerably higher.

Twitter users can include hashtags in their tweets, which

are keywords preceded with a # character to facilitate

grouping and retrieving tweets discussing similar topics. In

our dataset, 14.77% of the tweets contain hashtags with an

average of 0.28 hashtags per tweet (median¼ 0, SD¼ 0.87).

Interestingly, only 3.83% of all tweets include the name of the

software application as a hashtag.8 Suh et al. [63] found that

including URLs and hashtags in a tweet has a strong corre-

lation with the tweet re-tweetability. However, we found no

such correlation in our dataset with only 13.42% of the re-

tweeted tweets including hashtags, 7.91% including links and

3.9% including both. Furthermore, the number of hashtags

used in the tweet has no effect on the number of re-tweets nor

likes the tweet receives (q ¼0.013 and q ¼0.1, respectively).

With respect to company involvement, 21 out of the 22

companies developing the software applications had official

Twitter accounts dedicated to the analyzed applications9 and

17 actively used these accounts. Figure 2 presents more

details by showing the number of tweets generated by the

software companies and their reply rates. Although most

software companies are involved in the discussion of their

software applications, less than 1% of the total tweets are

generated by them. On average, software companies com-

municate 3.71 tweets per day (median¼ 0.15, SD¼ 11.51).

This result shows that that the majority of the companies

represented in our study use Twitter to communicate with

their users, but the frequency of this communication varies.

Another finding of our analysis shows that Twitter users

make use of many different clients (e.g., Twitter for

iPhone, Instagram, Facebook, Twitterfeed, Twitter Web

Client and TweetDeck) to communicate their messages. On

average, they use 2994.47 different clients (median¼ 550,

SD¼ 1512.53) per software application. A possible reason

for this large variety is that users tend to post tweets in their

5 We consider tweets that do not belong to the unrelated, unclear or

noise categories as fulfilling these criteria. A definition of each

category can be found in Table 3.
6 We follow Twitter’s suit and count each link as 23 characters and

do not consider media and photographs for the count.

7 Previous research [35] found that 75% of the re-tweets occur less

than a day after the concerned tweet has been posted. Thus, we

consider that the number of re-tweets and likes is in most cases

complete due to them being collected after the tweet has been present

for at most 7–9 days (because of the Twitter API restrictions

described in Sect. 2.2).
8 This includes all different hashtag combinations of the software

application name. For example, for Adobe Photoshop: #AdobePho-

toshop, #Adobe #Photoshop, etc.
9 Windows 7 and Windows 10 share the common Twitter account

@Windows.

Requirements Eng

current context [55] and therefore use varying clients,

depending on the context from which they tweet.

We also inspected our dataset for duplicate tweets (i.e.,

tweets having exactly the same text, including URLs and hash-

tags used within the text) and found that 9.5% of the tweets are

duplicates (not including re-tweets). In terms of total numbers,

the average number of duplicate tweets per software application

is 192,207.46 (median¼ 2639.5, SD¼ 71,452.93) (see Fig. 3).

In some cases, duplicate tweets might have the same tweet

text but different URLs. For example, it is common among

spammers onTwitter to take advantage of theURL shortening

services to disseminate various URLs that redirect users to

maliciousWeb sites [67].With this inmind,we also inspected

duplicate tweets that have the same text but different URLs. In

the analyzed tweets, 17.09% of the tweets are duplicates (but

might have different URLs) with an average of 1,183,630.89

duplicate tweets per software application (median¼ 15,333,

SD¼ 82,217.77). Another Twitter feature that has been

abused by spammers is hashtags. Spammers post a large

number of hashtags of trending topics which are unrelated to

the tweet text to diffuse their tweets [7]. By also removing

hashtags in calculating duplicates, the percentage of duplicate

tweets increased to 19.02% with an average of 1,143,312.63

duplicate tweets per software application (median¼ 16,864.5,

SD¼ 90,250.7).

One possible cause for tweet duplication is bots. Bots

are programs that post tweets automatically to, e.g., lure

users into purchases. To further explore the relationship

between tweets about software applications and bots, we

inspected the users generating the highest numbers of

duplicate tweets per software application. For 17 of the 22

software applications, the users producing the majority of

the duplicates were actually bots—i.e., Twitter users dis-

playing typical bot communication behavior as described

by Chu et al. [13]. For the remaining five applications, the

cause for the high number of duplicate tweets was the

actual software companies tweeting about their software.

Additionally, we found that an average of 154.21 different

clients per software application (median¼ 18, SD¼ 63.66)

includes the term ‘‘bot’’ in their name. This inclusion could

30,928.52
46,588.21

1,211.53

5,681.69

1,243.39
965.63

2,178.1

1,478.76
2,553.06

911.31

8,687.98

30.73 42.65
18.34

36.27

6.63
4.02

56.47

11.37

526.82 425.42
240.31

Fig. 1 Daily tweet rate per software application (graph shown in logarithmic scale)

Reply Tweet Total Tweets

101

2,759

172

741

103

645 512

1,905

9 10
15

4
3

4

2 2

Fig. 2 Total and reply tweets from the software companies, active on Twitter, to which the analyzed software applications belong (graph shown

in logarithmic scale)

Requirements Eng

be a reflection of the clients’ actual purpose. The profusion

of bots and their association with different client names

could also explain the high number of clients per software

application found in this study. Bot characteristics are

described in more detail in Sect. 6.

4 Content

For the manual tweet analysis, we applied the content anal-

ysis method proposed byNeuendorf [45]. During themanual

analysis, three annotators, the authors of this paper, sys-

tematically analyzed the content of a tweet sample according

to an annotation guide. For each tweet, they independently

assessed its type of content, relevance for different stake-

holder groups and sentiment. We subsequently detail the

analysis procedure and describe the results.

4.1 Procedure

The content analysis consisted of the following five steps:

4.1.1 Stakeholder group and content category definition

In this first step, we defined a list of possible content cat-

egories present in tweets. Furthermore, we identified dif-

ferent stakeholder groups for whom tweets discussing a

particular content could be relevant.

Previous research has analyzed tweets from a technical

perspective and investigated how software engineers use

Twitter [10] for their development tasks. Our goal was to

look at tweets from a more general perspective that is not

necessarily technical. Therefore, we used categories found

in app reviews [49], which have a more general focus and

describe a broader type of content, as a starting point for

identifying tweet content categories.

Annotators extended the list by adding new categories

found when individually examining the content of 450

tweets from all software applications in our dataset. For

each newly defined category, they provided a description

and a relevant example. Updates and changes made to the

category definitions were visible to all annotators in real

time. At the end of this step, similar categories were

merged and their definitions were adapted accordingly. The

result of this step is a list of 22 categories10 (see Table 3)

which reflects the content of tweets about software.

Based on the results of this content analysis and our

general knowledge on software engineering and informa-

tion needs in software companies, we identified three high-

level stakeholder groups for whom the defined content

categories could be relevant:

Technical Stakeholders who have a strong and direct

participation in the development and evolution of a soft-

ware application. Examples of such stakeholders include

requirements engineers, product owners, project managers,

developers and testers.

Non-technical Stakeholders whose work influences or is

influenced by software engineering activities. Examples of

such stakeholders include people from sales, marketing,

legal and human resources departments; they all have a

loose participation in the development and evolution of a

software application.

General public End-users and potential end-users of a

software application who, apart from using the software

application, have no link to the software companies.

We discussed our definitions with six requirements

engineering experts—mentioned in the Acknowledgements

section of this manuscript. They agreed with our view and

argued that our classification is well aligned with their

understanding of roles and responsibilities within software

companies. However, within these discussions, we also

conceded that although our classification reflects common

1,917,568

75,115

2,888,469

Duplicated Tweets Total Tweets

352,265

59,869 77,090
135,042

91,683
158,290

56,501

538,655

1,905 2,644
1,137

2,249

411
705

249

3,501

32,663 26,376
14,899

Fig. 3 Total and duplicate tweets per software application (graph shown in logarithmic scale)

10 We do not count the categories unrelated, unclear, noise and other

in this final count.

Requirements Eng

practice, responsibilities and roles might differ from com-

pany to company and personal skills and competences

might also have an impact on the information needs of

stakeholders within software companies.

4.1.2 Annotation guide design

We systematized the manual analysis by creating a guide

including definitions and examples of the content cate-

gories and sentiment polarity scales, as well as definitions

of the different stakeholder groups. Furthermore, we

avoided strong disagreements by conducting three anno-

tation trials of 50 tweets each: This led to slight modifi-

cations and adjustments of the content categories and

sentiment polarity definitions and examples.

Note that within the guide, we did not define the rele-

vance of the content categories for the identified stake-

holder groups. In fact, it was an aim of our study to derive

this mapping based on the actual tweet content and its

context. However, before we started the analysis, we dis-

cussed the tweet content that could potentially be relevant

to the different stakeholder groups with each other and also

with the same group of requirements and software engi-

neering experts, who had already supported us in validating

our stakeholder group definitions (see Sect. 4.1.1).

4.1.3 Tweet sampling

We used stratified random sampling to select 1000 tweets

for our manual analysis. In total, we selected 33 to 34

tweets per each of the 30 software applications in our

dataset. The sample size is comparable to other studies

performing manual content analysis of software user con-

tent [49, 51].

4.1.4 Tweet sample annotation

In this step, each annotator inspected each of the sampled

tweets and labeled it according to the annotation guide. To

make this task more efficient and less error-prone, we

developed a specialized Web tool for the annotation task.

The tool showed the name of the software application,

Table 3 Content categories of tweet messages

Category Definition

Feature shortcoming Unsatisfying aspect of an existing feature

Feature strength Satisfying aspect of an existing feature

Feature request Request for a new feature

Bug report Report of an error, flaw, failure or fault

Usage scenario A way to use the software (e.g., recommended way, workaround)

Hardware constraint Hardware needed to run the software

Software constraint Software needed to run the software

General praise General appreciation of the software focusing on the whole software system

General complaint General dissatisfaction of the software focusing on the whole software system

Advertisement Promotion of or suggestion to buy the software

Dissuasion Advise against the acquisition of the software

Question Question directly related to the software

How to Explanation to other users how to use the software

Feature information Description of a specific feature without any objective evaluation

Software price Discussion of the price of the software

Compliance issue Dispute over certain terms of agreement or regulations

Software extension Description of (planned) extensions of the software

Other product Reference to another software product

Service Comment on the service provided by the software

Social interaction Description of social/personal issues that arise from using the software (i.e., a software feature)

Content related Comment about content that was created or is available through the software

Job advertisement Advertisement of a job available in the company developing the software

Noise Tweet not written in English or containing too many illegible symbols to be understandable

Unclear Tweet written in English, but the meaning of the tweet is ambiguous or unclear

Unrelated Tweet not related to the specific software at all

Other Tweet relevant to the study, but not covered by existing categories

Requirements Eng

name of the user who wrote the tweet and the tweet itself

(including clickable links).

Annotators labeled the tweets not only by its content,

but also by the content provided via these links—as these

could give relevant context information. During the

annotation process, they determined the content categories

of the tweet, its relevance to the different stakeholders

and the sentiment polarity present in the tweet. Annota-

tors could label more than one content category for each

tweet, as tweets can belong to more than one content

category (e.g., a tweet can announce or recommend a

software and also mention some of the strengths of its

features). Similar to the content category, multiple

selections were possible when assessing the stakeholder

relevance. Sentiment polarities were assessed with a five-

level Likert scale ranging from very positive (?2) to very

negative (-2).

On average, the annotators took 10.40 h to label the 1000

tweets. This result confirms the large effort needed to con-

duct manual analysis of user-generated content [18, 26, 27].

4.1.5 Disagreement handling

As the three authors of this paper acted as annotators, all

tweets in the sample were annotated three times. To resolve

disagreements between the annotators, we used the

majority voting scheme. Regarding the analysis of the

relevance and category disagreements, the majority voting

results yielded no label in 67 cases. Two of the annotators

discussed and resolved these disagreements. We resolved

sentiment disagreements by converting the categorical

values into numerical values (in the [-2, 2] range) and

calculating the median.

4.2 Results

4.2.1 Categories

Table 4 shows examples of tweets and the content cate-

gories chosen by the annotators. On average, each tweet

was associated with 1.24 categories (SD¼ 0.46). In other

words, out of the 1000 tweets within our sample, 217 were

assigned to more than one category. However, there are

also categories for which no related tweets could be iden-

tified within our sample (software constraint, compliance

issue and service) and they are therefore not included in the

following discussion.

Most tweets (28.30%) belonged to the advertisement

category, which includes the announcement and recom-

mendation tweets. The second largest group of tweets

(25.10%) discussed content-related issues, i.e., content

managed or produced by the software. The third largest

category (15.10%) was tweets unrelated to the software

application.

Much smaller was the number of tweets within cate-

gories providing more relevant information regarding

software and requirements evolution. The category feature

shortcoming was assigned 1.50% of the tweets, bug report

0.90% and feature request 0.10%.

Although these percentages are low, the large amount of

tweets communicated every day for the applications in our

data sample suggests that the numbers of relevant tweets

are significant and should therefore be considered by

software companies planning the next update of their

software applications. Assuming that the discussed cate-

gory distribution also holds for a larger sample and looking

at the total numbers, the average software application

within our sample would receive, for example, 282 bug

reports, 470 feature requests and 31 reports on feature

shortcomings on a daily basis.

4.2.2 Relevance

Regarding the relevance of tweets to the different stake-

holder groups, 19.30% of the tweets under analysis are

relevant to technical stakeholders, 51.50% are relevant to

non-technical stakeholders, and 53.20% are relevant to the

general public. We highlight examples of tweets relevant to

the different stakeholder groups in Table 4. Furthermore,

Table 5 presents the percentage of tweets relevant to each

Table 4 Examples of manual content analysis

Tweet Categories Relevance

I’m glad @HotSchedules is offline but I kind of need to know if my shift got

approved or not???

Bug report All stakeholders

Facetune An app to make you good looking.. #Selfies #Photos #Beauty Advertisement Non-technical and

general public

2000’s hip hop radio on pandora Content related None

It makes me extremely uncomfortable when people i don’t know poke me on

facebook

Feature shortcoming and social

interactions

All stakeholders

Surface Pro, which is fine. Just a bit buggy. I’d love a real portable alternative.

Wish Adobe would sort out their Photoshop app 2/2

Feature request and hardware

constraint and other product

All stakeholders

Requirements Eng

stakeholder group for each content category. We inspected

the relevance of each category in more detail by analyzing

its relevance tendency for the different stakeholder groups.

We hold that a category has the tendency to be relevant to a

specific stakeholder group when over 80% of the tweets

belonging to the category are relevant to the group. Table 6

highlights the content categories that tended to be relevant

to the different stakeholder groups.

Ten content categories were relevant to all stake-

holder groups. Among these categories are feature

shortcoming, feature request, bug report and software

extension which discuss topics relevant to requirements

and software evolution tasks. Furthermore, categories

such as general praise, general complaint, dissuasion

and feature strength were also considered to be relevant

to all stakeholders, possibly because they give an idea on

user satisfaction. The usage scenario category was also

considered to be relevant to all stakeholder groups,

likely because it highlights how users employ the

software.

Table 5 Manual content analysis results

Category Frequency % Relevance % Sentiment

Technical Non-technical General public Score Interpretation

Feature shortcoming 1.50 100.00 93.33 93.33 �1:0 Negative

Feature strength 0.80 100.00 100.00 100.00 1.00 Positive

Feature request 0.10 100.00 100.00 100.00 1.00 Positive

Bug report 0.90 100.00 88.89 88.89 0.00 Neutral

Usage scenario 2.50 84.00 96.00 84.00 0.00 Neutral

Hardware constraint 1.10 27.27 54.55 54.55 0.00 Neutral

Software constraint 0.0 N/A N/A N/A N/A N/A

General praise 2.80 96.43 100.00 100.00 1.00 Positive

General complaint 1.10 100.00 100.00 100.00 �1:00 Negative

Advertisement 28.30 18.37 98.94 98.94 0.00 Neutral

Dissuasion 0.40 100.00 100.00 100.00 0.00 Neutral

Question 0.30 66.67 100.00 100.00 0.00 Neutral

How to 3.70 94.59 97.30 97.30 0.00 Neutral

Feature information 2.50 76.00 100.00 96.00 0.00 Neutral

Software price 8.40 7.14 100.00 100.00 0.00 Neutral

Compliance issue 0.0 N/A N/A N/A N/A N/A

Software extension 0.10 100.00 100.00 100.00 1.00 Positive

Other product 5.90 59.32 88.14 88.14 0.00 Neutral

Service 0.00 N/A N/A N/A N/A N/A

Social interactions 3.60 25.00 55.56 50.00 0.00 Neutral

Content related 25.10 8.37 27.49 37.45 0.00 Neutral

Job advertisement 0.30 0.00 100.00 100.00 0.00 Neutral

Noise 1.00 0.00 0.00 0.00 0.00 Neutral

Unclear 9.70 0.00 0.00 0.00 0.00 Neutral

Unrelated 15.10 0.00 0.00 0.00 0.00 Neutral

Other 8.10 7.41 49.38 44.44 0.00 Neutral

Table 6 Relevance tendencies

Technical, non-technical and general public Non-technical and general public None

Feature shortcoming General praise Advertisement Software price Hardware constraint Noise

Feature strength General complaint Other product Social interactions Other

Feature request Dissuasion Job advertisement Content related

Bug report How to Question Unrelated

Usage scenario Software extension Feature information Unclear

Requirements Eng

Six categories were considered to be mainly relevant to

non-technical stakeholders and the general public. Among

them are the advertisement, other product, feature infor-

mation and software price which are mostly relevant to

marketing. The other two categories that were deemed as

relevant to non-technical stakeholders and the general

public are the job advertisement and question categories.

The six remaining categories were not considered rele-

vant to any stakeholder group according to our set

threshold of 80%. These categories include social inter-

actions and content related, whose content was in general

considered to be relevant only to a small fraction of people

and not of interest for the wide general public, as well as

the unclear and noise categories which do not communi-

cate a clear message. Finally, the category unrelated was

also considered to provide no relevant information for any

stakeholder group.

4.2.3 Sentiment

Overall, the analyzed tweets tended to a neutral sentiment

with a median score of 0. Figure 4 shows the sentiment

polarity distribution in our dataset. This result also

remained unchanged when we excluded tweets from cate-

gories not related to software applications, such as noise,

unclear and unrelated. The large number of tweets with a

neutral sentiment could be caused by the proliferation of

bot-generated tweets (see Sect. 3). As Table 5 shows, the

categories feature strength, feature request, general praise

and software extension had a positive sentiment polarity

with an equal sentiment score median of 1.00. The highest

negative sentiment was found in the feature shortcoming

and general complaint categories with a sentiment score

median of �1:00.

In general, we consider these sentiment polarities to

reflect the nature of the concerned categories: Categories

highlighting user satisfaction have a positive sentiment,

whereas categories focusing on user dissatisfaction have a

negative sentiment. Exceptions are the categories feature

request and software extension with a positive sentiment

score median of 1.00. However, only 0.20% (1 tweet per

category) of the tweets in our sample were assigned to

these categories; hence, we cannot generalize their

sentiment.

5 Automation potential: relevance

In this section, we describe an experiment that uses

supervised machine learning for classifying tweets

according to their relevance to the different stakeholder

groups identified in our content study (see Sect. 4): tech-

nical stakeholders and non-technical stakeholders within

the company, as well as the general public. In the following

sections, we describe the experiment procedure and its

main results.

5.1 Procedure

A tweet can be relevant to different stakeholder groups. For

example, as Table 4 shows, the tweet ‘‘it makes me

extremely uncomfortable when people i don’t know poke

me on facebook’’ was considered relevant to all different

stakeholder groups, whereas the tweet ‘‘Facetune An app to

make you good looking.. #Selfies #Photos #Beauty’’ was

regarded as relevant to non-technical stakeholders and the

general public.

Multi-label classification refers to the automatic classi-

fication of documents, tweets in our case, into one or more

labels, relevance categories in this experiment. In our

experiment, we used a popular multi-labeling solution, the

binary relevance method [70]. In this method, a binary

classifier is trained for each label and the union operator is

applied on the predictions from these independent classi-

fiers, forming the final classification result. We chose this

method for our experiment because it is the most simple

method for handling multi-label classification and because

it is often used as a baseline when solving multi-labeling

problems [39].

We trained a classifier for each label using the results of

the content analysis reported in Sect. 4.

We compared the performance of five classifiers: Naive

Bayes, multinomial Naive Bayes, J48, support vector

machines (SVMs) and random forest. The classifier choice

was motivated by their good performance when catego-

rizing text [11, 51, 72]. For training and validating the

classifiers, we used the manually annotated sample

described in Sect. 4.

Our experiment setup consisted of the following three

steps:

Fig. 4 Sentiment polarity distribution in our dataset (including noise,

unclear and unrelated categories)

Requirements Eng

5.1.1 Preprocessing

We converted the tweet text to tokens and removed stop-

words, i.e., common words that have no specific meaning

(e.g., ‘‘this’’, ‘‘it’’, ‘‘that’’). Additionally, we removed

numerical characters and two characters commonly present

in tweets: ‘‘#’’ and ‘‘@’’, since we considered that they

convey little information about tweet relevance. Lastly, we

replaced URLs with a unique marker (i.e., ‘‘_Link_’’)

identifying its presence in the tweet text.

5.1.2 Feature weight conversion

We made tweet text understandable to the different clas-

sifiers, by converting the text into a vector space model

using TF-IDF [44] as a weighting scheme.

5.1.3 Training and evaluation

We trained and evaluated the different classifiers using the

results from the content analysis reported in Sect. 4. For

this purpose, we exclusively used the text of each tweet, as

we considered the tweet text to be the most relevant feature

for determining the tweet relevance. The distribution of

different relevance categories among the analyzed tweets is

shown in Fig. 5.

We performed a tenfold cross-validation for training and

evaluating the classifiers.11 Moreover, we used three met-

rics traditionally employed in supervised machine learning:

precision, recall and F b-measure for measuring their per-

formance. Their computation is as follows:

Precisioni ¼
TPi

TPi þ FPi

Recalli ¼
TPi

TPi þ FNi

ð1Þ

TPi is the number of tweets correctly classified as being

relevant to the stakeholder group i, FPi is the number of

tweets incorrectly classified as relevant to stakeholder

group i, and FNi is the number of tweets incorrectly clas-

sified as not being relevant to group i. The F b-measure is

defined as follows:

Fb ¼ ð1þ b2Þ
Precision � Recall

ðb2 � PrecisionÞ þ Recall
: ð2Þ

In our previous work [22], we used a b value of 1,

giving equal importance to precision and recall. However,

there is controversy in the requirements engineering com-

munity about this manner and some researchers have called

for the use of a b value that favors recall over precision

when evaluating approaches that automatize requirements

engineering tasks by extracting potentially relevant infor-

mation [8]. In this manuscript, we report on our results

from two perspectives and, therefore, consider two b val-

ues, F1 which gives equal importance to precision and

recall, as well as Fb which gives recall b times more

importance than precision. We followed Berry’s recom-

mendation [8] and chose the value of our b empirically, so

that:

b ¼
tTPi

tTPi;FPi

; ð3Þ

where i designates the technical stakeholders and tTPi
is the

average time it takes to determine if a tweet is relevant to

technical stakeholders and tTPi;FPi
is the average time it

takes to determine if a single tweet is irrelevant or relevant

to any of the groups of stakeholders. We used the time we

spent in the creation of the training and testing set, 10.40 h

or 624 min (see Sect. 4.1.4) for this computation. Given

that 1000 tweets were labeled, tTPi;FPi
¼ 624

1000
¼ 0:624. We

compute tTPi
by calculating the ratio of the total time spent

on the task to the number of tweets that were found rele-

vant to technical stakeholders, 193 in our case (see

Sect. 4.2.2). So, tTPi
¼ 624

193
¼ 3:23. We conclude that

b ¼ 3:23
0:624

¼ 5:18. We rounded the computed b value to 5

when reporting our results.

We used Meka,12 a tool specialized in multi-label

classification, for the training and evaluation of the rele-

vance classifiers.

5.2 Results

Table 7 presents an overview of the results. Results were

comparable when classifying tweets relevant to non-tech-

nical stakeholders and the general public. The Naive Bayes

classifier had the highest precision, 0.82, whereas multi-

nomial Naive Bayes had the highest recall, 0.82. The

random forest classifier had the best F1-measure, 0.76 for

the non-technical classification and 0.77 for the general

public classification. Finally, the multinomial Naive Bayes

had the best F5-measure, 0.81. For the classification of

tweets relevant to technical stakeholders, the random forest

P
e

rc
e

n
t

o
f

T
w

e
e

ts

19.30%

51.40%
53.20%

Technical Non-technical General public

Fig. 5 Relevance distribution among analyzed tweets

11 We performed stratification during our tenfold cross-validation.

12 http://meka.sourceforge.net, default configuration. Details in

‘‘Appendix’’.

Requirements Eng

http://meka.sourceforge.net

classifier had the highest precision, 0.73, and the multi-

nomial Naive Bayes had the highest recall, 0.84. The Naive

Bayes classifier had the highest F1-measure, 0.52, and the

multinomial Naive Bayes had the highest F5-measure,

0.75.

The precision and recall values for the classification of

tweets relevant to non-technical stakeholders and the gen-

eral public are encouraging as they could be identified with

a reasonable precision and recall. The performance simi-

larity for both stakeholder groups could be explained by the

fact that a large number of tweets that are relevant to the

non-technical stakeholders are also relevant to the general

public (see Sect. 4.2.2).

Nevertheless, the results were not as promising for the

classification of tweets relevant to technical stakeholders.

There was not a single classifier that had reasonable pre-

cision and reasonable recall results. Therefore, the appli-

cation of such classifiers could result in either a

considerable loss of relevant information or in the profu-

sion of a large amount of irrelevant information. These

results could be a reflection of the lower amount of data

that are relevant to the technical stakeholders that were

input when training the classifiers (see Fig. 5).

Note that we consider precision and recall values above

(or close to) 0.75 to be encouraging. We believe that

Twitter can complement other existing requirements elic-

itation approaches, but not replace them. Because it is not

foreseen that companies will use Twitter as their only

source of information, recall values do not need to be

extremely high. Finally, because it is relatively fast to

discard irrelevant information (0.624 min per tweet, see

Sect. 5.1.3) we consider that a precision above 0.75 is

encouraging. While the classifier will still retrieve noise, it

would be fairly fast to discard it and thus, hopefully not

discourage stakeholders from using the automated

approach.

The choice of which classifier to use in practice is highly

dependent on the specific needs of the company and could

change based on the context and the received information.

For example, software companies receiving a high number

of tweets about their application could choose a classifier

with a high precision (e.g., random forest) in order to

monitor the general mood or potential problems with the

application automatically. The random forest classifier has

the advantage of more accurately filtering out the noise,

and therefore, little additional (potentially manual) filtering

would be required, albeit at the cost of loosing a consid-

erable amount of relevant information. Whenever a specific

problem becomes apparent requirements engineers and

other stakeholders could then use a classifier with a high

recall (e.g., Naive Bayes or multinomial Naive Bayes) to

obtain most relevant tweets in a given time frame, albeit at

the cost of also obtaining some noisy information, which

could then be filtered manually or through an additional

finer-grained classifier that categorizes into the content

categories presented in this work or into a subset of them

(see Table 3).

Finally, the binary relevance method has the disadvan-

tage of assuming the independence of each relevance cat-

egory. Encouraged by the apparent interrelationship

between the tweet relevance of non-technical stakeholders

and the general public, we compared the binary relevance

method against the label powerset method [70], a multi-

label classification method that considers each relevance

category combination as a single class. The results, how-

ever, were comparable to the ones obtained with the binary

relevance method.

6 Automation potential: human or bot

This section describes an experiment that uses supervised

machine learning to detect if a specific tweet is written by

a human or a bot account. Section 3 hypothesized that

bots could be a possible reason for the proliferation of

duplicate tweets and the large number of different clients.

The automatic filtering of tweets associated with bots can

help stakeholders within the company to concentrate on

tweets generated by humans, in which (contrary to those

generated by bots) clarifications, solution strategies and

notifications about addressed issues are sometimes

needed.

Table 7 Relevance classification results

Technical Non-technical General public

Precision Recall F1 F5 Precision Recall F1 F5 Precision Recall F1 F5

Naive Bayes 0.38 0.80 0.52 0.77 0.82 0.67 0.74 0.67 0.82 0.68 0.74 0.68

Multinomial NB 0.30 0.84 0.44 0.79 0.69 0.82 0.75 0.81 0.69 0.82 0.75 0.81

SVM 0.54 0.44 0.48 0.44 0.74 0.77 0.75 0.77 0.74 0.76 0.75 0.76

J48 0.50 0.30 0.38 0.30 0.77 0.73 0.75 0.73 0.78 0.74 0.76 0.74

Random forest 0.73 0.24 0.36 0.25 0.79 0.74 0.76 0.74 0.80 0.74 0.77 0.74

Requirements Eng

6.1 Procedure

We created a truth set to train and evaluate the different

classifiers. In the following sections, we describe its cre-

ation process and main characteristics. Additionally, we

detail the tweet text preprocessing steps and the training

and evaluation of the classifiers.

We evaluated the performance of the same five classi-

fiers described in Sect. 5. However, in this case we per-

formed a single-label classification, as a single tweet can

only be generated by a human or a bot, and not by both.

6.1.1 Truth set creation

We created the truth set using Neuendorf’s content analysis

method [45], previously used in Sect. 4. During the anal-

ysis, annotators systematically assessed the content of a

tweet sample according to an annotation guide. This

analysis was conducted by two authors of this manuscript.

For each analyzed tweet, the annotators independently

assessed if the user associated with the tweet was a human

or a bot. To select additional features, besides the tweet

text, to include in the classifier, we analyzed the main

characteristics of the bots’ tweets by using descriptive

statistics. We detail the manual analysis procedure and

describe the main characteristics of the generated truth set

as follows.

Annotation guide design To systematize our manual

analysis, we created an annotation guide which provided

descriptions for human, bot and undefined user accounts.

The human and bot characterizations were based on

existing work [13]. We included the category undefined for

cases in which a decision between human or bot was not

possible. This was true when the account of the Twitter

user was private or most of the tweets were not in English.

A delicate issue is cyborgs—accounts that combine

machine- and human-generated content. We decided to

consider cyborgs accounts in the human category. We

argue that all accounts involving human activity, whether

they contain machine-generated messages or not, have a

‘‘real’’ end-user or potential user behind the account and

thus, should be treated with a higher priority than bots, in

which no end-user is involved.

To avoid strong disagreements, we conducted two

annotation trials of 20 tweets each. After each trial, the

definitions were slightly refined.

Tweet sampling To assure that our training set would be

balanced and have enough data points from human and bot

accounts, we used stratified random sampling. Our sample

had two strata: one with tweets generated from clients

whose name contains the word ‘‘bot’’ and the other with

tweets generated from clients without the word in their

name. Each stratum was equally represented in our sample.

In total, we sampled 1000 tweets from the 22 software

applications analyzed in Sect. 3. Note that this sample is

different from the one described in Sect. 4.

Tweet sample annotation The annotators independently

labeled each of the 1000 tweets in the sample. The anno-

tation was done through an adapted version of the spe-

cialized Web tool used in the content study described in

Sect. 4. The tool displayed the name of the software

application, name of the user who wrote the tweet (clicking

on it redirected to the Twitter profile of the concerned

user), the tweet text (including clickable links) and the

number of duplicates concerning the tweet in the whole

dataset.

During the process, the annotators read the tweet text

and went to the account of the concerned user. Annotators

were instructed to go through at least 20 tweets and read

the user profile description before making their decision of

whether the tweet was authored by a human or a bot.

Annotators reported 8 h to complete the task.

Truth set characteristics Our human–bot truth set con-

sists of 877 tweets that were marked as human or bot by

both annotators, i.e., of the original 1000 annotated tweets,

123 resulted in a disagreement. Figure 6 shows the distri-

bution of tweets generated by the different user categories

in our dataset. From the 877 tweets conforming to our truth

set, 311 (35%) were unanimously identified as tweeted by

bots.

When setting up their Twitter profile, users are required

to provide a user name.13 We found that 10.89% of the

users manually identified as bots had the word ‘‘bot’’ in

their user name. Another potential source for identifying

bots is the software clients used to post the tweet. In our

sample, users identified as bots employed 83 distinct soft-

ware clients (111 distinct clients were used in the whole

sample), 42.17% of these clients include the word ‘‘bot’’ in

their names, e.g., twittbot.net and Botize. However, these

criteria cannot be used exclusively to distinguish bots as

P
e

rc
e

n
t

o
f

T
w

e
e

ts

48.57%

35.46%

15.96%

Human Bot Undefined

Fig. 6 The distribution of tweets generated by human, bots or

undefined users among the analyzed tweets

13 The name that uniquely identifies the user in Twitter; it appears

after @ sign (e.g., @twitterapi).

Requirements Eng

there are software clients used by legitimate users that also

include the word in their names, e.g., Tweetbot for Mac.14

To analyze how bots communicate with other Twitter

users when tweeting about software applications, we

inspected their communication patterns. Only 2.57% of the

total of tweets identified as being generated by bots were a

reply to other users. Moreover, 6.43% of bot tweets were

liked by other users with an average of 0.14 likes per

tweets. Similarly, a small percentage, 4.50%, of bot tweets

were re-tweeted by other users with an average of 0.13 per

tweet. These numbers are considerably lower than those

found in general tweets about software applications (see

Sect. 3.2). A possible interpretation of this observation is

that most tweets generated by bots lack intelligent or

original content that might attract the attention of other

twitter users [13].

A large percent of tweets posted by bots contain links,

77.81%, confirming Chu et al.’s [13] observation that bots

usually use links within their tweets to allure users and

redirect them to spam or malicious sites.

Furthermore, bot accounts on Twitter tend to include a

large number of hashtags in their tweets to reach a wider

audience [7]. We found that 40% of the bot-generated

tweets in our sample contain hashtags with an average of

0.64 hashtags per tweet (median¼ 0, SD¼ 1.25).

Previous research found that posting duplicate tweets is a

common behavior in bots [13]. The results of our manual

analysis confirm this finding—23.47% of the bot-generated

tweets have duplicateswith an average of 48.63 duplicates per

tweet (median¼ 18, SD¼ 85.74 for tweets with at least one

duplicate). When considering duplicate tweets with the same

tweet text but possibly different enclosed URLs, the per-

centage of bot-generated tweets having duplicates increased

to 67.52%. The average number of duplicates per tweet is

682.58 duplicates (median¼ 32, SD¼ 2,008.42 for tweets

with at least one duplicate). Likewise, removing hashtagswith

URLs in calculating duplicates increased the percent of

duplicates bot-generated tweets to 72.03%with an average of

644.75 duplicates (median¼ 35.5, SD ¼ 1,943.13).

Both annotators noted that most of the manually iden-

tified bots had either a commercial purpose or were for

spreading news or providing entertainment (e.g., quotes,

jokes). Furthermore, they noted that many accounts clas-

sified as human also contained machine-generated

messages.

Overall, we can say that the tweets identified as gener-

ated by bots from our truth set are strongly characterized by

the presence of the word ‘‘bot’’ in their client or user name,

by the number of duplicates of the concerned tweets, the

presence of links and its low approval and interaction with

other users.

6.1.2 Preprocessing

We preprocessed the tweet text by following the same

preprocessing procedure described in Sect. 5. First, we

converted the tweet text to tokens and removed stopwords.

Second, we removed numerical characters and tweet-

specific characters. Finally, we replaced URLs with unique

markers.

6.1.3 Feature weight conversion

We made tweet text understandable to the different clas-

sifiers by converting the text into a vector space model

using TF-IDF [44] as a weighting scheme.

6.1.4 Training and evaluation

We trained and evaluated our classifiers using the truth set

described in Sect. 6.1.1. Besides the tweet text, we input to

the classifier two additional features indicating: (1) if the

tweet has duplicates in the dataset and (2) if the word ‘‘bot’’

is present in the user or client name. We did not add a

feature for the presence of links, as this information is

already contained in the tweet text. Other than the user

name, we did not add information related to the user

account (e.g., number of followers, followees,15 tweeting

time patterns and user profile information) as we were

primarily interested in evaluating how the classifier per-

formed when using features directly associated with the

tweet and not the user or its account. We performed a

tenfold cross-validation for training the classifiers and

evaluating our results.16 For evaluating the accuracy of the

classifiers, we used the same metrics from the previous

classification experiment.

We used the same method for determining the b of the

Fb-measure as in the relevance classification experiment

(see Eq. 3). However, in this case the i refers to the tweets

authored by humans, tTPi
is the average time it takes to

determine if a tweet is authored by humans, and tTPi;FPi
is

the average time it took to annotate each tweet. Given that

it took 8 h or 480 min to annotate the whole sample (see

Sect. 6.1.1) and that 1000 tweets were annotated,

tTPi;FPi
¼ 480

1000
¼ 0:48. We compute tTPi

by calculating the

ratio of the total time spent on the annotation task to the

number of tweets that were found to be authored by

humans, 566 in our case (see Sect. 6.1.1). Thus, tTPi
¼

480
566

¼ 0:84 and b ¼ 0:84
0:48

¼ 1:75. We round this result and,

therefore, report on an F b-measure with b ¼ 2.

14 http://tapbots.com/tweetbot/mac/.

15 Referred as friends by Twitter.
16 We performed stratification during our tenfold cross-validation.

Requirements Eng

http://tapbots.com/tweetbot/mac/

The training and evaluation of the classifiers was per-

formed using Weka.17

6.2 Results

Table 8 shows an overview of the results. Overall, the results

for the human–bot classification are very promising. All

classifiers were able to detect humans with a precision and

recall above 0.80, with random forest and SVM having the

best F1-measure, 0.88, and random forest having the highest

F2-measure, 0.91. For detecting bots all classifiers had a pre-

cision and recall above 0.75, with SVMhaving the highestF1-

measure and F2-measure, 0.84 and 0.85, respectively.

Previous work, e.g., [5, 13], achieved very positive

results—in the range between 0.80 and 0.95 for both

precision and recall for detecting bot accounts. However,

a direct comparison with their results is not feasible. Bot

account detection takes into account a considerable

amount of tweets, opposed to the single tweet consider-

ation we make in this work. Further, bot account detec-

tion considers additional characteristics of user accounts

over longer time periods, such as tweeting time patterns

and following and unfollowing behavior. We were moti-

vated to look into the problem of detecting bots using a

more lightweight approach that would not require the

software providers to collect a massive amount of infor-

mation about their (potential) users that is unrelated to the

software. Our results show that a reasonable accuracy can

be achieved without collecting information that is unre-

lated to the concerned software application, a fact that

could be very appreciated by users with privacy concerns.

Future work could focus on the improvement of our

results by considering additional attributes that are con-

tained in the text, such as number of hashtags and URLs,

length and time of the day it was posted, as done in

previous research performing spam detection on single

tweets [7, 42]. A direct comparison with existing work in

this direction is also unfeasible as the problems have

distinct goals. Bot detection focuses on finding messages

that are generated automatically, by accounts that are not

maintained by humans, whereas spam detection is inter-

ested in identifying all messages (or accounts) that have

malicious intentions. In our definition, a bot is not nec-

essarily malicious but fully automated.

Human–bot classifiers could help requirements engi-

neers and other stakeholders within the company to iden-

tify tweets that might need a response. Additionally, they

could be used as a pre-filtering step before classifying

tweets into the relevance or content categories presented in

this work.

7 Automation potential: sentiment

Sentiment information can be an important measure of user

satisfaction and can help prioritize user feedback. In this

section, we describe an experiment that uses lexical sen-

timent analysis to extract the sentiment polarity present in

individual tweets.

7.1 Procedure

We use a lexical sentiment analysis tool specialized in

short, informal text—SentiStrength [66]—for assigning a

numerical score to the sentiment polarity in each tweet.

Then, we compare the scores against the content analysis

results reported in Sect. 4.

Previous work has shown that SentiStrength has a good

performance on Twitter data [65]. It has been used in the

software engineering domain for analyzing the sentiment

present in user reviews [23, 27], as well as other software

engineering artifacts, such as wikis and e-mails [25], commit

messages [24, 47] and StackOverflow18 comments [46].

In the following sections, we describe how Sen-

tiStrength works and how we evaluated its results. Note

that we did not use machine learning techniques due to the

sparsity of positive and negative tweets in the results of our

manual content analysis (see Fig. 4), which would not

allow for the training of an accurate classifier.

Table 8 Human–bot classification results

Human Bot

Precision Recall F5 F2 Precision Recall F5 F2

Naive Bayes 0.85 0.86 0.85 0.86 0.81 0.80 0.80 0.80

Multinomial NB 0.88 0.80 0.84 0.81 0.75 0.85 0.80 0.83

SVM 0.89 0.87 0.88 0.87 0.83 0.85 0.84 0.85

J48 0.87 0.88 0.87 0.88 0.83 0.82 0.82 0.82

Random forest 0.85 0.92 0.88 0.91 0.88 0.77 0.82 0.79

17 http://www.cs.waikato.ac.nz/ml/weka, default configuration.

Details in ‘‘Appendix’’. 18 http://stackoverflow.com/

Requirements Eng

http://www.cs.waikato.ac.nz/ml/weka
http://stackoverflow.com/

7.1.1 Automated lexical sentiment analysis

In SentiStrength, each text snippet (single tweets in our

case) is assigned a positive and a negative score. Positive

scores are in the [1, 5] range, where 5 denotes an extremely

positive sentiment polarity and 1 denotes the absence of

positive sentiment polarity. Similarly, negative sentiments

range from [-1, -5], where �5 denotes an extremely

negative sentiment polarity and �1 indicates the absence of

any negative sentiment polarity.

SentiStrength assigns fixed scores to words present in a

dictionary where common emoticons are also included. For

example, ‘‘love’’ is assigned a score of h3;�1i and ‘‘hate’’

a h1;�4i score. Only words present in the dictionary are

attributed with a score. Modifier words (e.g., ‘‘absolutely,’’

‘‘very’’) and symbols (e.g., ‘‘!’’, ‘‘!!!’’, ‘‘???’’) can alter the

score. For example, ‘‘absolutely love’’ is assigned a score

of h4;�1i. The same score is given to ‘‘looove’’ and

‘‘love!!!’’ The sentiment polarity score of a whole tweet is

computed by taking the maximum and minimum scores

among all the words in the tweet.

We input the text of all analyzed tweets into Sen-

tiStrength without any further processing.

7.1.2 Evaluation

We compared the results of SentiStrength to the results from

our content study (see Sect. 4). For this purpose, we added

the positive and negative scores computed by the tool,

obtaining a single sentiment polarity score for each tweet.

Following previous work [27, 33], we considered all tweets

with a SentiStrength score in the (2, 5] range to be very

positive, those in the (1, 2] range as positive and those in the

[-1, 1] range as neutral. Tweets with a sentiment polarity

score in the [-2, -1) range were considered negative and

those with a [-5, -2) range as very negative. We then

converted these categorical values into numerical values in

the [-2, 2] range, where -2 denotes a very negative senti-

ment polarity and 2 a very positive sentiment polarity.

We use Spearman’s rho correlation for comparing the

accuracy of the lexical sentiment analysis tool against the

manual sentiment analysis reported in Sect. 4. We employ

correlations as they have been previously used to measure

the performance of lexical sentiment analysis [15, 27, 65].

7.2 Results

The Spearman’s rho correlation coefficient between the

automatic sentiment analysis results and the manual anno-

tation is 0.34, indicating a weak positive correlation. Upon

further inspection, we learned that lexical sentiment analysis

tends to have poor results when analyzing automatically

generated tweets, i.e., tweets that are machine generated and

can be associated with humans or bots (see entry ‘‘Auto-

matic’’ in column ‘‘Generation type’’ in Table 10). There-

fore, we removed the tweets that were associated with bots

by our SVM classifier (see Sect. 6) from the truth set as they

might be a major source of automatically generated tweets.

This modification leads to a weak positive correlation of

0.36. Nevertheless, the sample still contained a large number

of automatically generated messages. A possible explanation

for this is that many of the users identified as humans are

cyborgs and can make heavy use of automatically generated

messages. Thus, we filtered out messages that contained

URLs, as a manual inspection revealed that most of the

automatically generated messages contained them. This

modification lead to a moderate positive correlation of 0.47

when considering tweets associated with bots in the evalu-

ation, and of 0.60—a strong positive correlation—when

removing messages with links and tweets that were pre-

dicted as associated with bots by our classifier. Table 9

summarizes the results, and Table 10 shows examples of

human and automatically generated tweets, together with the

sentiment polarities assigned in the manual and automated

lexical sentiment analysis.

It is important to mention that the lexical sentiment

analysis misclassifications also occurred in some tweets

written by humans (see Table 9). In these cases, the mis-

classifications were mostly due to limitations in the lexical

sentiment analysis: words not being present in the dic-

tionary, inability to detect context and sarcasm. Part of

these limitations could be overcome with machine learning

techniques; however, for this purpose a training set that is

balanced in terms of the different sentiment polarities is

needed.

We conclude that lexical sentiment analysis results are

promising on human-generated tweets about software

applications. However, it performs poorly on automatically

generated tweets about software, and for filtering this

Table 9 Sentiment analysis results

Truth set sample Corr. Interpretation

All 0.34 Weak

Tweets predicted as not associated with bots 0.36 Weak

Tweets with no URLs 0.47 Moderate

Tweets with no URLs and predicted as not associated with bots 0.60 Strong

Requirements Eng

content, bot classifiers—as the one presented in Sect. 6—

are beneficial.

8 Discussion, threats to validity and future work

8.1 Discussion

The key findings of our work are as follows: (1) Tweets

include relevant information for requirements engineering

and software evolution, (2) automated processing is needed

to use this content for informing requirements engineering

and software evolution tasks, and (3) automated processing

of tweets about software applications to extract information

about their relevance, author and sentiment is possible with

a reasonable accuracy for some of the studied cases.

We discuss these findings in more detail by revisiting

our research questions (see Sect. 2):

Usage Tweets are generated frequently, are short in length

and have high popularity. Moreover, there is a considerable

number of duplicates among the tweets, possibly due to

bots. Additionally, we observed that most of the analyzed

companies actively engage in communicating via Twitter

about their software applications.

Content Tweets on software applications cover a broad

range of categories (see Table 3).

We found that most users employ Twitter to (1)

announce or recommend software applications (advertise-

ment tweets) and (2) discuss the content available through

the applications (content-related tweets).

However, we also identified several categories of tweets

which are linked to topics relevant to requirements

engineering and software evolution, such as feature

shortcomings, feature requests, bug reports, how-tos and

software extensions. Although their proportion in the

stream of tweets is relatively low, their overall number is

significant. These tweets should not be overlooked by

software companies and are in particular relevant to tech-

nical stakeholders (e.g., requirements engineers). However,

such tweets also contain information relevant to non-

technical stakeholders within companies as well as the

general public.

Overall, the sentiment polarity of tweets about software

applications was neutral. However, as expected, we iden-

tified positive sentiment polarities for tweets expressing

satisfaction (i.e., associated with the feature strength and

general praise categories) and negative sentiment polari-

ties for tweets expressing dissatisfaction (i.e., associated

with the feature shortcoming and general complaint

categories).

Our usage and content study shows that Twitter has

already established itself as a communication channel

between users and stakeholders within software companies

where they communicate information relevant to require-

ments engineering and software evolution. In comparison

with other communication channels, such as certain app

stores, Twitter has the advantage of allowing bidirectional

communication.19 Bidirectional communication not only

enables users to report issues, but also allows stakeholders

within the company to ask clarification questions, to inform

users about solution strategies and notify them when issues

have been addressed. These direct interactions between

Table 10 Sentiment analysis result examples1

Tweet text Tweet-user

classification

Generation

type

Manual

senti.

Automatic

senti.

tink tink Hey Ultimate Guitar, bass tabs bloody matter. BASSISTS BLOODY

MATTER!!!

Human Manual -1 -1

I JUST EDITED OUT A WATER SPOT USING FACETUNE LOL Human Manual 0 1

My Facebook year in review is blank Human Manual 0 0

I hate how Facebook tells when your active how I’m gone lurk at these hours Human Manual -2 -2

Has anyone else notices Spotify is killing their battery lately? Used to be fine but now

I’m leaking?? all over the place

Human Manual -1 -1

I liked a @YouTube video from @androidheadline _link_ Leo Privacy Guard v3 App

Review

Human Automatic 0 1

Facetune An app to make you good looking.. #Selfies #Photos #Beauty _link_ _link_ Bot Automatic 0 1

Akinator the Genie - Elokence _link_ _link_ Bot Automatic 0 0

#TeamFollowBack 113 Million Indians Lost Rs 16,000 on Average to Cyber Crime:

Norton #FollowBack

Bot Automatic 0 -1

How to use #Microsoft #Office365 to safeguard your business - _link_ _link_ Human Automatic 0 1

1 For readability we replaced URLs with a marker

19 The Android and Windows stores allow for bidirectional commu-

nication. However, the Apple and Blackberry stores do not.

Requirements Eng

users and stakeholders within software companies could

motivate users to continuously provide high-quality feed-

back, enabling the evolution of software applications

according to user needs.

Automation potential Manually analyzing tweets to

identify relevant information for requirements engineering

and software evolution can be done in small settings as we

did in the present study. However, for the continuous

analysis of large quantities of tweets, it is an unsuit-

able approach. The large number of daily received tweets,

the high presence of bot-generated tweets and of tweets

that are not relevant to any specific stakeholders (almost

50%) calls for the use of automated analysis techniques.

Our automation potential experiment results are

encouraging when classifying tweets that are relevant to

non-technical stakeholders and the general public, achiev-

ing a F1-measure of 0.76 and 0.77, respectively. Never-

theless, the results are less encouraging for classifying

tweets relevant to technical stakeholders. In this case, the

best performing classifier obtained a F1-measure of 0.52,

product of relatively high recall, 0.80—albeit a very low

precision, 0.38. None of the analyzed classifiers produced

reasonable results for both precision and recall. Therefore,

the application of such classifiers could result in a sub-

stantial loss of relevant information or in the abundance of

large amount of noise. Nevertheless, the classifiers with the

highest precision could be used to automatically monitor

the general mood or potential issues with the software, at

the cost of loosing a considerable amount of relevant

information. When these overview classifiers detect

potential issues, the classifiers with the highest recall could

be used to obtain most relevant tweets at a given time

frame, albeit while also retrieving a significant amount of

noise. The results from the high-recall classifiers could be

used as a pre-filtering step before using finer-grained

classifiers (or manual analysis) for the additional removal

of noisy data.

Additionally, we could classify a tweet as being asso-

ciated with a human or bot with a F1-measure of 0.88 and

0.84, respectively. The accurate identification of human

and bot users is important in software engineering as it can

help identify the users that might need a response to their

feedback (i.e., human) from those that do not (i.e., bot).

Finally, our sentiment analysis results show that lexical

sentiment analysis is a valuable tool when identifying the

sentiment polarity of human-generated content. However,

the results are less encouraging when classifying the

machine-generated content authored by bots that is also

common in some human accounts. Automatic sentiment

extraction can help identify pressing issues, causing end-

user dissatisfaction, which are more likely to be associated

with a negative sentiment polarity.

8.2 Threats to validity

We discuss the main threats to validity of this work

subsequently.

Threats to construct validity For the conducted manual

analysis studying tweet content, we rely on error-prone

human judgement. During this analysis, it was up to each

annotator to decide on the content category and stakeholder

group assignment for each tweet under analysis. To miti-

gate the risk of subjective assignments, we involved three

annotators in the manual analysis task. Additionally, we

created an annotation guide to ensure that all annotators

had a shared understanding of the underlying category and

stakeholder definitions. To resolve the disagreements, we

applied a majority voting scheme. For those tweets in

which the majority voting results yielded no label, two

annotators discussed and resolved the disagreements.

Threats to internal validity The list of categories used for

analyzing tweet content was based on content categories

found in a previous study on app reviews [49] and updated

using information gained from the manual content analysis

of 450 tweets. Nevertheless, considering the vast amount of

tweets on software applications, this list could still be

incomplete. This represents a threat to internal validity.

Another threat to internal validity is the selection of

annotators for conducting the manual tweet analysis.

Instead of actual stakeholders representing the identified

groups, the authors of this paper conducted the analysis.

However, we consider their knowledge regarding require-

ments and software engineering as sufficient to allow for a

meaningful classification. As relevance is highly subjec-

tive, we can also expect to see some disagreement even

among stakeholders from companies. Regarding the per-

formed analysis, we alleviated this threat by involving

requirements and software engineering experts to discuss

possible relevance criteria for each stakeholder group.

Threats to external validity We mitigated threats to exter-

nal validity by selecting software applications from 14

different domains, including mobile and desktop platforms

and paid and free apps. Hence, we could obtain insights

into the content of tweets on very different software

applications. However, we based the selection of our

applications on popularity lists from three platforms, and

the results might vary for applications available on differ-

ent platforms or that are less popular. Hence, further

studies should be performed to investigate if the results

reported in this work hold for applications that are not

popular or that are popular in other distribution platforms.

Additionally, we did not consider special events occurring

in the lifecycle of a software application such as a new

release. Such events could potentially have an effect on the

Requirements Eng

tweets’ content and should be investigated in further

studies.

We relied on manual content analysis to study the

tweets’ content, its relevance for different stakeholder

groups and the automation potential. A manual analysis on

our whole dataset is unfeasible, and for this reason, we

used a sample of 1000 tweets. To mitigate generalizability

threats, we applied a stratified random sampling strategy,

which ensured that tweets about the different software

applications—with their category and size diversity—were

all analyzed in the same degree. Nevertheless, we only

considered a sample of 1000 tweets and further studies

with larger samples need to be conducted to conclude if the

results reported in this manuscript hold.

Finally, the Twitter API gives access to only a small

percent of the publicly posted tweets [1]. To mitigate the

threat of dataset incompleteness in our work, we collected

a significant sample of tweets (10,986,494 tweets) that

were gathered over a period of 2 months.

8.3 Future work

Our exploratory study is a first step toward investigating

the use of Twitter to communicate about software

applications.

In future work, we will consider additional information

about tweets (e.g., length, attached media, number of re-

tweets) to improve the classifiers precision when catego-

rizing by relevance or authorship. Furthermore, the clas-

sification results could be improved with the use of

ensemble methods [17] that leverage the strengths of dif-

ferent machine learning classifiers.

Another option is to focus on the automated analysis of

tweets regarding their content categories (see Table 5). A

larger manually annotated dataset could allow for the

training of a finer-grained category classifier. Furthermore,

a software application-specific classifier could be provided;

it could learn about the specific software context and

therefore provide higher performance.

Moreover, the approach used in this work for bot

detection could be improved by considering additional

attributes that are contained in the tweet text, such as

number of hashtags and URLs, length and time of the day it

was posted, as done in previous research performing spam

detection on single tweets [7, 42].

Additionally, the application of machine learning tech-

niques for the sentiment extraction is an interesting direc-

tion. Instead of re-inventing the wheel, we recommend an

investigation into existing analysis techniques applied on

general tweets (see Sect. 9.3) and used in other feedback

communication channels, such as app stores, and investi-

gating to what extent they can be applied for analyzing

tweets about software applications.

In addition, future research needs to investigate to which

degree previous work on mining app reviews (see

Sect. 9.1) can be applied on tweets about software

applications.

Another interesting line of future work will be to focus

on a fine-grained analysis of software applications in cer-

tain domains and also certain types of software applications

(e.g., mobile vs. desktop applications). Such research might

reveal that Twitter is not being used in the same way for all

software applications. It can help to understand how certain

characteristics of software applications influence their

users’ communication on Twitter also with respect to the

quantity and relevance of these tweets.

During the manual content analysis, we observed that

several software companies provide support accounts and

that most of the tweets directed to this accounts were

highly relevant to technical stakeholders. Therefore, a

further investigation of the content addressed to these

accounts is an interesting direction.

In general, we consider it to be highly interesting to

explore the characteristics of users and their communica-

tion within Twitter regarding software applications in more

detail (e.g., with the help of social network analysis).

Additionally, investigating the use of Twitter while also

considering other feedback channels provided by the soft-

ware companies could help to better understand why and

what users communicate about software applications on

Twitter.

9 Related work

We discuss three different areas of related work: feedback

gathering and analysis, Twitter in the software engineering

domain and existing research on Twitter in other disciplines.

9.1 Feedback gathering and analysis

Previous work has highlighted the importance of user

feedback to identify ideas for improving the functionality

of a software system and its quality [48].

Researchers have started to explore user involvement in

requirements and software engineering [32] and have also

coined the term crowd-based requirements engineering [20]

for describing the idea of letting users contribute to different

requirements engineering activities. Work in this field is

driven by the rise of social media and mobile applications.

For example, previous work has proposed a social network-

based approach to identify stakeholders relevant to system

development [38], as well as elicit and prioritize require-

ments [36, 37]. Highly relevant to our work is research on

approaches which focus on the elicitation and negotiation of

user needs and feedback. In their work onWinBook,Kukreja

Requirements Eng

and Boehm [34] explore social network functionalities to

realize a toolset which supports non-technical stakeholders

in gathering and negotiating requirements. Instead of

building novel social networks for requirements engineer-

ing, Seyff et al. [56] suggested to use existing social network

sites and explored the use of Facebook for requirements

elicitation, prioritization and negotiation.

In addition to social networks, researchers have also

investigated mobile applications to engage users in feed-

back gathering. For example, Wehrmaker et al. [73] and

Seyff et al. [55] provide mobile approaches to continuously

elicit user feedback in situ.

Another important stream of research has focused on

feedback given by app users via different mobile applica-

tion distribution platforms. Conducting exploratory studies,

Pagano and Maalej [49] and Hoon [29] analyzed the

amount, content and rating characteristics of user feedback

from mobile application distribution platforms. Again, in

line with our findings, the automated processing of feed-

back is considered to be important. Martin et al. [41] pre-

sented a survey in which they investigate the automatic

analysis of user feedback present in mobile distribution

platforms. In their research, Galvis et al. [18] used a topic

modeling algorithm to automatically extract common

themes in user feedback that could be useful for require-

ments engineering and software evolution. Iacob and

Harrison [30] extracted feature requests from app store

reviews by means of linguistic rules and used a topic

modeling algorithm to group the feature requests. Addi-

tionally, Gu et al. [21] and Guzman and Maalej [27] pre-

sented approaches to extracting features and sentiments

from user feedback and Guzman et al. [23] described an

approach to retrieving a diverse set of reviews in terms of

the software features mentioned in the reviews and the

sentiment polarity associated with them. Furthermore,

several researchers [26, 40, 51] used machine learning

techniques to support the classification of user feedback

into categories relevant to software evolution. The auto-

matic analysis of Twitter messages could benefit from the

growing work in this area. Moreover, Chen et al. [11],

Villarroel et al. [72] and Di Sorbo et al. [16] proposed

frameworks for classifying, grouping and ranking user

feedback. Palomba et al. [50] presented a framework for

linking user reviews to source code changes. We believe

that the mining of tweets about software applications could

benefit from the results of existing work in the area of app

review mining.

9.2 Twitter in software engineering

In our ongoing research, we have started to investigate

Twitter as a source of information relevant to requirements

engineering and software evolution [22]. The focus of most

studies investigating Twitter in the software engineering

domain is on developers’ use.

Singer et al. [59] conducted a survey and interviews

with developers to investigate their use of Twitter. Results

report on the difficulty to obtain relevant content due to the

information overload caused by the high-frequency gen-

eration of tweets; they see the need for automated

approaches to analyze tweets. These results are well

reflected by our work.

As with our work, content analysis and descriptive

statistics were applied in previous studies to describe tweet

content on software development. For example, Bougie

et al. [10] manually analyzed and grouped the tweets of

software developers into different categories. Tian et al.

[68] also manually analyzed tweet content focusing on

tweets mentioning specific programming languages,

libraries and systems and methodologies within their

analysis. In a follow-up study, the same dataset was used to

investigate the frequency, general characteristics and user

interaction among Twitter users [69]. Sharma et al. [58]

analyzed a set of tweets containing programming language

keywords. In their analysis, they automatically detected

popular tweet topics and applied content analysis tech-

niques to further investigate popular topics. Overall, the

techniques applied in this previous research are comparable

to the work described in this manuscript. However, in our

work, we have a different focus and analyze information on

software applications from a broader perspective which

also includes user requirements and experiences.

Several existing work describes the automated analysis

of tweet information. For example, Prasetyo et al. [54]

applied machine learning techniques in order to identify

tweets mentioning programming languages and containing

relevant information for software development. Further-

more, Achananuparp et al. [2] visualized trends within

tweets based on aggregated tweet content related to pro-

gramming language. They use common topics and key-

words as a basis for their content analysis. Sharma et al.

[57] presented an approach that detects tweets concerning

technical issues regarding software development using an

unsupervised keyword-based analysis. The automatic pro-

cessing of tweets about software applications could benefit

from the aggregation techniques and classification methods

discussed in this section.

9.3 Twitter in other disciplines

The exponential growth of Twitter use has drawn the

attention of researchers in different domains. We focus our

discussion on related work that investigated the automation

potential of different techniques for content classification,

bot detection and sentiment analysis on Twitter data with a

focus other than software engineering.

Requirements Eng

The wealth of information shared daily on Twitter

makes it a fertile ground for content classification studies.

Some of these studies rely only on the tweet content for

their classification approaches. For example, Cheng et al.

[12] proposed a probabilistic framework for estimating

Twitter users’ geographical location based purely on the

content of their tweets. Yang et al. [75] classified Twitter

users according to their interests by applying machine

learning techniques on time series generated from their

tweets. Other studies leveraged other available information

in addition to the tweet content. Sriram et al. [61] used

features extracted from user’s profile and tweet text to

classify tweets into a pre-defined set of categories: News,

Events, Opinions, Deals and Private Messages. Hong et al.

[28] predicted the popularity of a tweet (using re-tweets as

a popularity measure) using a wide spectrum of features

based on both user and tweet content information.

The growing popularity of Twitter and its exposed

developers APIs have attracted a significant number of

automated programs, i.e., bots. In a recent report, Twitter

announced that approximately 23 millions of its active

users are automated.20 Many researchers have investigated

the detection of bots in Twitter. Chu et al. [13] proposed a

classification system to categorize Twitter users as human,

bot or cyborg (i.e., bot-assisted humans or human-assisted

bots). Davis et al. [14] presented a publicly available

service, BotOrNot, for computing a bot-likelihood score for

individual Twitter accounts. Both classification systems are

based on machine learning techniques that use a combi-

nation of features about Twitter users including tweeting

behavior, tweet content and account properties for detect-

ing bots among Twitter users.

Another stream of research has focused on detecting

spam (malicious bots) on Twitter. For example, consider-

able research has analyzed spam accounts to understand

their behavioral characteristics on Twitter [3, 4, 19, 67].

McCord and Chuah [43] and Singh et al. [60] applied

machine learning techniques for detecting spammers on

Twitter using users’ account information and their recent

tweets. In our work, we trained machine learning classifiers

to distinguish between tweets generated by bots and those

generated by human, based on the tweet text, number of

duplicates and the presence of word ‘‘bot’’ in the client

name. Future work could investigate if some of the tech-

niques used for spam detection are useful for detecting

tweets generated by bots.

Stieglitz and Dang-Xuan [62] found that tweet senti-

ment is one of the main factors that drive information

diffusion in Twitter. A number of researchers investigated

how the sentiment expressed in tweets can be used to

predict various events. For example, Bollen et al. [9]

applied a combination of two lexicon-based tools, Opin-

ionFinder [74] and GPOMS (Google-Profile of Mood

States), to analyze tweets sentiment polarity and used it for

predicting changes in the stock market. Tumasjan et al.

[71] extracted sentiments embedded in political tweets to

predict election results, using a lexicon-based analysis tool,

LIWC (Linguistic Inquiry and Word Count) [52]. Asur and

Huberman [6] applied machine learning techniques to

classify sentiment polarity in tweets as positive, negative or

neutral and utilized the extracted polarity to improve

forecasting of movies revenues. Similar to our work,

Thelwall et al. [64] applied SentiStrength to analyze the

sentiment polarities associated with popular events in

Twitter. Also, Pfitzner et al. [53] analyzed how the sen-

timent polarity influences the re-tweeting probability of a

tweet and used SentiStrength for detecting the sentiment

polarity.

We believe that the automatic analysis techniques used

on Twitter data from other domains could benefit the early-

stage research on Twitter data about software applications.

10 Conclusion

We report on an exploratory study that investigated Twitter

usage while communicating about software applications,

the content of tweets about software applications and the

automation potential of tweet analysis for requirements

engineering and software evolution. We found that Twitter

is used as a communication channel between users and

stakeholders within software companies. Nevertheless,

only a small proportion of tweets contains relevant infor-

mation for technical stakeholders, such as requirements

engineers. This finding highlights the need for automated

tweet analysis to extract relevant information out of the

vast amounts of tweets. Our experiments for classifying

tweets according to their relevance to different stakehold-

ers and author types show promising results for some cases.

Automated relevance filtering is possible with a F1-mea-

sure ranging from 0.77 to 0.52, while the identification of

tweets authored by bots obtained a promising F1-measure

of 0.84. Additionally, the results of an experiment using

lexical sentiment analysis for automatically extracting

sentiment present in tweets strongly correlate to human

judgment when analyzing tweets about software applica-

tions authored by humans. We foresee that introducing

more sophisticated automated analysis mechanisms will

allow software companies to continuously use information

stemming from tweets to inform requirements engineering

and software evolution.

Acknowledgements We thank Martin Glinz, Dustin Wüest, Melanie

Stade, Bernd Brügge, Eya Ben Charrada, Kim Lauenroth, Marjo20 http://bit.ly/2kZtPzl.

Requirements Eng

http://bit.ly/2kZtPzl

Kauppinen and Fabiano Dalpiaz for their feedback and discussions.

This work was partially supported by the European Commission

within the SUPERSEDE project (ID 644018) and a PhD scholarship

provided by King Saud University for the second author.

Appendix

Weka configurations

In our work, we applied the default configurations of the

classification algorithms as set by Weka.21

Naive Bayes

weka.classifiers.bayes.NaiveBayes Class for a Naive Bayes

classifier using estimator classes.

• NumDecimalPlaces ¼ 2. The number of decimal places

to be used for the output of numbers in the model.

• DoNotCheckCapabilities ¼ False. If set, the classifier

capabilities are not checked before the classifier is built.

• UsekernelEstimator ¼ False. If set, kernel density

estimator is used rather than normal distribution for

numeric attributes.

• UseSupervisedDiscretization ¼ False. If set, supervised

discretization is to be used to convert numeric attributes

to nominal ones.

Multinomial Naive Bayes

weka.classifiers.bayes.NaiveBayesMultinomial: Class for

building and using a multinomial Naive Bayes classifier.

• NumDecimalPlaces ¼ 2. The number of decimal places

to be used for the output of numbers in the model.

• DoNotCheckCapabilities ¼ False. If set, the classifier

capabilities are not checked before the classifier is built.

SVM

weka.classifiers.functions.SMO: Class that implements

John Platt’s sequential minimal optimization algorithm for

training a support vector classifier.

• BuildCalibrationModels ¼ False. This option is used

to fit calibration models to the outputs of the support

vector machine.

• C ¼ 1. The complexity constant.

• Epsilon ¼ 1:0e� 12. The epsilon for round-off error.

• FilterType ¼ Normalize training data.

• Kernel ¼The kernel to use. weka.classifiers.functions.

supportVector.PolyKernel. The polynomial kernel:

K(x, y) = hx; yip or Kðx; yÞ = ðhx; yi þ 1Þp with expo-

nent¼ 1.

• RandomSeed ¼ 1. The random number seed for the

cross-validation.

• toleranceParameter ¼ 0.001. The tolerance parameter.

• NumDecimalPlaces ¼ 2. The number of decimal places

to be used for the output of numbers in the model.

• DoNotCheckCapabilities ¼ False. If set, the classifier

capabilities are not checked before the classifier is built.

J48

weka.classifiers.functions.J48: Class for generating a

pruned or unpruned C4.5 decision tree.

• Binarysplits ¼ False. If set, binary splits are used on

nominal attributes when building the trees.

• CollapseTree ¼True. If set, parts are removed that do

not reduce training error.

• ConfidenceFactor ¼ 0.25. The confidence threshold for

pruning.

• DoNotMakeSplitPointActualValue ¼ False. If set, the

true point is not relocated to an actual data value.

• minNumObj ¼ 2. The minimum number of instances

per leaf.

• NumDecimalPlaces ¼ 2. The number of decimal places

to be used for the output of numbers in the model.

• NumFolds ¼ 3. The number of folds for reduced error

pruning. One fold is used as pruning set.

• reducedErrorPruning ¼ False. If set, reduced error

pruning is used instead of C.

• SubtreeRaising ¼ True. If set, subtree raising is used

when pruning.

• Unpruned ¼ False. If set, pruning is performed.

• UseLaplace ¼ False. If set, Laplace smoothing is used

for predicted probabilities.

• UseMDLcorrection ¼True. If set, MDL correction is

used when finding splits on numeric attributes.

Random forest

weka.classifiers.trees.RandomForest: Class for construct-

ing a forest of random trees.

• BagSizePercent ¼ 100. Size of each bag, as a percent-

age of the training set size.

• BreakTiesRandomly ¼ False. If set, break ties ran-

domly when several attributes look equally good.

• CalcOutOfBag ¼ False. Whether to calculate the out-

of-bag error.
21 http://weka.sourceforge.net/doc.dev/overview-summary.html.

Requirements Eng

http://weka.sourceforge.net/doc.dev/overview-summary.html

• MaxDepth ¼ 0. The maximum depth of the tree, 0 for

unlimited.

• NumDecimalPlaces ¼ 2. The number of decimal places

to be used for the output of numbers in the model.

• NumExecutionSlots ¼ 1. Number of execution slots.

• NumFeatures ¼ 0. The number of features used in

random selection.

• NumIterations ¼ 100. The number of iterations to be

performed.

• Seed ¼ 1. The random number seed to be used.

Meka configurations

In our work, we applied the default configurations of the

multi-label classification methods as set by Meka.22 For the

base classifiers, we applied the same setting as in Weka.

Binary relevance method

meka.classifiers.multilabel.BR: Class for implementing

binary relevance method.

Label powerset method

meka.classifiers.multilabel.LP: Class for implementing

label powerset (LP) method.

References

1. Twitter API Rate Limits. https://dev.twitter.com/rest/public/rate-

limiting. Accessed 04 April 2017

2. Achananuparp P, Lubis IN, Tian Y, Lo D, Lim EP (2012)

Observatory of Trends in Software Related Microblogs. In:

Proceedings of the 27th IEEE/ACM international conference on

automated software engineering, ASE’12, pp 334–337

3. Almaatouq A, Alabdulkareem A, Nouh M, Shmueli E, Alsaleh

M, Singh VK, Alarifi A, Alfaris A, Pentland AS (2014) Twitter:

Who Gets Caught? Observed trends in social micro-blogging

Spam. In: Proceedings of the 2014 ACM conference on Web

Science, WebSci’14, pp 33–41

4. Almaatouq A, Shmueli E, Nouh M, Alabdulkareem A, Singh VK,

Alsaleh M, Alarifi A, Alfaris A, Pentland AS (2016) If it looks

like a spammer and behaves like a spammer, it must be a

spammer: analysis and detection of microblogging spam

accounts. Int J Inf Secur 15(5):475–491

5. Alsaleh M, Alarifi A, Al-Salman AM, Alfayez M, Almuhaysin A

(2014) TSD: detecting sybil accounts in Twitter. In: Proceedings

of the 13th international conference on machine learning and

applications, pp 463–469

6. Asur S, Huberman BA (2010) Predicting the future with social

media. Proc IEEE/WIC/ACM Int Conf Web Intell Intell Agent

Technol 1:492–499

7. Benevenuto F, Magno G, Rodrigues T, Almeida V (2010)

Detecting spammers on Twitter. In: Proceedings of

collaboration, electronic messaging, anti-abuse and spam con-

ference, CEAS’10

8. Berry DM (2017) Evaluation of tools for hairy requirements

engineering and software engineering tasks. In: Technical report,

University of Waterloo

9. Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock

market. J Comput Sci 2(1):1–8

10. Bougie G, Starke J, Storey MA, German DM (2011) Towards

understanding Twitter use in software engineering: preliminary

findings, ongoing challenges and future questions. In: Proceed-

ings of the 2nd international workshop on Web 2.0 for software

engineering, Web2SE’11. ACM, pp 31–36

11. Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) AR-miner:

mining informative reviews for developers from mobile app

marketplace. In: Proceedings of the 36th international conference

on software engineering, ICSE’14, pp 767–778

12. Cheng Z, Caverlee J, Lee K (2010) You are where you Tweet: a

content-based approach to geo-locating Twitter users. In: Pro-

ceedings of the 19th ACM international conference on informa-

tion and knowledge management, CIKM’10, pp 759–768

13. Chu Z, Gianvecchio S, Wang H, Jajodia S (2012) Detecting

automation of Twitter accounts: Are you a human, bot, or

cyborg? IEEE Trans Dependable Secure Comput 9(6):811–824

14. Davis CA, Varol O, Ferrara E, Flammini A, Menczer F (2016)

BotOrNot: a system to evaluate social bots. In: Proceedings of the

25th international conference companion on world wide web,

WWW’16 Companion, pp 273–274

15. De Choudhury M, Counts S (2013) Understanding affect in the

workplace via social media. In: Proceedings of the 2013 con-

ference on computer supported cooperative work, CSCW’13,

pp 303–316

16. Di Sorbo A, Panichella S, Alexandru CV, Shimagaki J, Visaggio

CA, Canfora G, Gall HC (2016) What would users change in my

app? Summarizing app reviews for recommending software

changes. In: Proceedings of the international symposium on

foundations of software engineering, pp 499–510

17. Dietterich IG (2000) Ensemble methods in machine learning. In:

Proceedings of the international workshop on multiple classifier

systems, pp 1–15

18. Galvis Carreño LV, Winbladh K (2013) Analysis of user com-

ments: an approach for software requirements evolution. In:

Proceedings of the 2013 international conference on software

engineering, ICSE’13, pp 582–591

19. Grier C, Thomas K, Paxson V, Zhang M (2010) @Spam: the

underground on 140 characters or less. In: Proceedings of the

17th ACM conference on computer and communications secu-

rity, CCS’10, pp 27–37

20. Groen EC, Doerr J, Adam S (2015) Towards crowd-based

requirements engineering a research preview. In: Requirements

engineering: foundation for software quality. Springer,

pp 247–253.

21. Gu X, Kim S (2015) ‘‘What Parts of Your Apps are Loved by

Users?’’ (T). In: Proceedings of the 2015 30th IEEE/ACM

international conference on automated software engineering,

ASE’15, pp 760–770

22. Guzman E, Alkadhi R, Seyff N (2016) A needle in a haystack:

What do Twitter users say about software? In: Proceedings of the

international conference on requirements engineering, RE’16

23. Guzman E, Aly O, Bruegge B (2015) Retrieving diverse opinions

from app reviews. In: Proceedings of the 2015 ACM/IEEE

international symposium on empirical software engineering and

measurement, ESEM’15, pp 1–10

24. Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit

comments in GitHub: an empirical study. In: Proceedings of the

11th working conference on mining software repositories,

MSR’14, pp 352–355. ACM, 201422 http://meka.sourceforge.net/api-1.7/index.html.

Requirements Eng

https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting
http://meka.sourceforge.net/api-1.7/index.html

25. Guzman E, Bruegge B (2013) Towards emotional awareness in

software development teams. In: Proceedings of the 2013 9th

joint meeting on foundations of software engineering, ESEC/

FSE’13, pp 671–674

26. Guzman E, El-Haliby M, Bruegge B (2015) Ensemble methods

for app review classification: an approach for software evolution

(N). In: Proceedings of the 2015 30th IEEE/ACM international

conference on automated software engineering, ASE’15,

pp 771–776

27. Guzman E, Maalej W (2014) How do users like this feature? A

fine grained sentiment analysis of app reviews. In: Proceedings of

the 2014 IEEE 22nd international requirements engineering

conference, RE’14, pp 153–162

28. Hong L, Dan O, Davison BD (2011) Predicting popular messages

in Twitter. In: Proceedings of the 20th international conference

companion on world wide web, WWW ’11, pp 57–58

29. Hoon L, Vasa R, Schneider JG, Grundy J et al (2013) An analysis

of the mobile app review landscape: trends and implications.

Faculty of information and communication technologies, Swin-

burne University of Technology, Technical report

30. Iacob C, Harrison R (2013) Retrieving and analyzing mobile apps

feature requests from online reviews. In: Proceedings of the

working conference on mining software repositories, MSR’13,

pp 41–44

31. Jansen BJ, Zhang M, Sobel K, Chowdury A (2009) Twitter

power: Tweets as electronic word of mouth. J Am Soc Inf Sci

Technol 60(11):2169–2188

32. Johann T, Maalej W (2015) Democratic mass participation of

users in requirements engineering? In: Proceedings of the 2015

IEEE 23rd international requirements engineering conference,

RE’15, pp 256–261

33. Kucuktunc O, Cambazoglu BB, Weber I, Ferhatosmanoglu H

(2012) A large-scale sentiment analysis for Yahoo! answers. In:

Proceedings of the 5th ACM international conference on web

search and data mining, WSDM ’12, pp 633–642

34. Kukreja N, Boehm B (2012) Process implications of social net-

working-based requirements negotiation tools. In: Proceedings of

the international conference on software and system process,

ICSSP’12, pp 68–72

35. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social

network or a news media? In: Proceedings of the 19th interna-

tional conference on world wide web, WWW’10, pp 591–600

36. Lim SL, Damian D, Finkelstein A (2011) StakeSource2. 0: using

social networks of stakeholders to identify and prioritise

requirements. In: Proceedings of the 33rd international confer-

ence on software engineering, ICSE’11, pp 1022–1024

37. Lim SL, Finkelstein A (2012) StakeRare: using social networks

and collaborative filtering for large-scale requirements elicitation.

IEEE Trans Softw Eng 38(3):707–735

38. Lim SL, Quercia D, Finkelstein A (2010) StakeNet: using social

networks to analyse the stakeholders of large-scale software

projects. In: Proceedings of the 32Nd ACM/IEEE international

conference on software engineering, ICSE’10, pp 295–304

39. Luaces O, Dı́ez J, Barranquero J, del Coz JJ, Bahamonde A

(2012) Binary relevance efficacy for multilabel classification.

Prog Artif Intell 1(4):303–313

40. Maalej W, Nabil H (2015) Bug report, feature request, or simply

praise? On automatically classifying app reviews. In: Proceedings

of the IEEE 23rd international requirements engineering confer-

ence, RE’15, pp 116–125

41. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2016) A survey

of app store analysis for software engineering. In: IEEE trans-

actions on software engineering

42. Martinez-Romo J, Araujo L (2013) Detecting malicious Tweets

in trending topics using a statistical analysis of language. Expert

Syst Appl 40(8):2992–3000

43. McCord M, Chuah M (2011) Spam detection on Twitter using

traditional classifiers. In: Proceedings of the 8th international

conference on autonomic and trusted computing, ATC’11,

pp 175–186

44. Mitchell TM (1997) Machine Learning, volume 4 of McGraw-

Hill Series in Computer Science. McGraw-Hill, New York

45. Neuendorf K (2002) The content analysis guidebook. Sage

Publications, Thousand Oaks

46. Novielli N, Calefato F, Lanubile F (2014) Towards discovering

the role of emotions in stack overflow. In: Proceedings of the 6th

international workshop on social software engineering, SSE’14,

pp 33–36

47. Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli

R (2015) Are bullies more productive? Empirical study of

affectiveness vs. issue fixing time. In: Proceedings of the 12th

working conference on mining software repositories, MSR’15,

pp 303–313

48. Pagano D, Bruegge B (2013) User involvement in software

evolution practice : a case study. In: Proceedings of the interna-

tional conference on software engineering, ICSE ’13, 2013

49. Pagano D, Maalej W (2013) User feedback in the appstore: an

empirical study. In: Proceedings of the 21st IEEE international

requirements engineering conference, RE’13, pp 125–134

50. Palomba F, Linares-Vásquez M, Bavota G, Oliveto R, Di Penta

M, Poshyvanyk D, De Lucia A (2015) User reviews matter!

tracking crowdsourced reviews to support evolution of successful

apps. In: Proceedings of the IEEE international conference on

software maintenance and evolution, ICSME’15, pp 291–300

51. Panichella S, Di Sorbo A, Guzman E, Visaggio C, Canfora G,

Gall H (2015) How can i improve my app? Classifying user

reviews for software maintenance and evolution. In: Proceedings

of the 31st international conference on software maintenance and

evolution, ICSME’15, pp 281–290

52. Pennebaker J, Chung C, Ireland M (2007) The development and

psychological properties of LIWC2007

53. Pfitzner R, Garas A, Schweitzer E (2012) Emotional divergence

influences information spreading in Twitter. In: Proceedings of

the 6th international AAAI conference on weblogs and social

media, ICWSM’12

54. Prasetyo PK, Lo D, Achananuparp P, Tian Y, Lim EP (2012)

Automatic classification of software related microblogs. In:

Proceedings of the 28th IEEE international conference on soft-

ware maintenance, ICSM’12, pp 596–599

55. Seyff N, Ollmann G, Bortenschlager M (2014) AppEcho: a user-

driven, in situ feedback approach for mobile platforms and

applications. In: Proceedings of the 1st international conference

on mobile software engineering and systems, MOBILESoft’14,

pp 99–108

56. Seyff N, Todoran I, Caluser K, Singer L, Glinz M (2015) Using

popular social network sites to support requirements elicitation,

prioritization and negotiation. J Internet Serv Appl 6(1):1–16

57. Sharma A, Tian Y, Lo D (2015) NIRMAL: automatic identifi-

cation of software relevant Tweets leveraging language model.

In: Proceedings of the IEEE 22nd international conference on

software analysis, evolution and reengineering, SANER’15,

pp 449–458

58. Sharma A, Tian Y, Lo D (2015) What’s hot in software engi-

neering Twitter space? In: Proceedings of the IEEE international

conference on software maintenance and evolution, ICSME’15.

IEEE, pp 541–545

59. Singer L, Figueira Filho F, Storey MA (2014) Software engi-

neering at the speed of light: how developers stay current using

Twitter. In: Proceedings of the 36th international conference on

software engineering, ICSE’14, pp 211–221

60. Singh M, Bansal D, Sofat S (2014) Detecting malicious users in

Twitter using classifiers. In: Proceedings of the 7th international

Requirements Eng

conference on security of information and networks, SIN’14,

pp 247–253

61. Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M

(2010) Short text classification in Twitter to improve information

filtering. In: Proceedings of the 33rd international ACM SIGIR

conference on research and development in information retrieval,

SIGIR’10, pp 841–842

62. Stieglitz S, Dang-Xuan L (2013) Emotions and information dif-

fusion in social media—sentiment of microblogs and sharing

behavior. J Manag Inf Syst 29(4):217–248

63. Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted?

Large scale analytics on factors impacting retweet in Twitter

network. In: Proceedings of the IEEE 2nd international confer-

ence on social computing, SocialCom’10, pp 177–184

64. Thelwall M, Buckley K, Paltoglou G (2011) Sentiment in Twitter

events. J Am Soc Inf Sci Technol 62(2):406–418

65. Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength

detection for the social web. J Am Soc Inf Sci Technol

63(1):163–173

66. Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A (2010)

Sentiment strength detection in short informal text. J Am Soc Inf

Sci Technol 61(12):2544–2558

67. Thomas K, Grier C, Song D, Paxson V (2011) Suspended

accounts in retrospect: an analysis of Twitter spam. In: Pro-

ceedings of the 2011 ACM SIGCOMM conference on internet

measurement conference, IMC’11, pp 243–258

68. Tian Y, Achananuparp P, Lubis IN, Lo D, Lim EP (2012) What

does software engineering community microblog about? In:

Proceedings of the 9th IEEE working conference on mining

software repositories, MSR’12, pp 247–250

69. Tian Y, Lo D (2014) An exploratory study on software

microblogger behaviors. In: Proceedings of the IEEE 4th work-

shop on mining unstructured data, MUD’14. IEEE, pp 1–5

70. Tsoumakas G, Katakis I (2007) Multi-label classification: an

overview. Int J Data Warehous Min 3:1–13

71. Tumasjan A, Sprenger T, Sandner P, Welpe I (2010) Predicting

elections with Twitter: What 140 characters reveal about political

sentiment. In: Proceedings of the 4th international AAAI con-

ference on weblogs and social media, ICWSM’10, pp 178–185

72. Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M (2016)

Release planning of mobile apps based on user reviews. In:

Proceedings of the 38th international conference on software

engineering, ICSE’16, pp 14–24

73. Wehrmaker T, Gärtner S, Schneider K (2012) Contexter feedback

system. In: Proceedings of the 34th international conference on

software engineering, ICSE’12, pp 1459–1460

74. Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J,

Choi Y, Cardie C, Riloff E, Patwardhan S (2005) OpinionFinder:

a system for subjectivity analysis. In: Proceedings of HLT/

EMNLP on interactive demonstrations, HLT-Demo’05, pp 34–35

75. Yang T, Lee D, Yan S (2013) Steeler Nation, 12th man, and boo

birds: classifying Twitter user interests using time series. In:

Proceedings of the 2013 IEEE/ACM international conference on

advances in social networks analysis and mining, ASONAM’13,

pp 684–691

Requirements Eng

