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Abstract—Refactoring aims at improving the internal structure
of a software system without changing its external behavior.
Previous studies empirically assessed, on the one hand, the
benefits of refactoring in terms of code quality and developers’
productivity, and on the other hand, the underlying reasons that
push programmers to apply refactoring. Results achieved in the
latter investigations indicate that besides personal motivation
such as the responsibility concerned with code authorship, refac-
toring is mainly performed as a consequence of changes in the
requirements rather than driven by software quality. However,
these findings have been derived by surveying developers, and
therefore no software repository study has been carried out to
corroborate the achieved findings. To bridge this gap, we provide
a quantitative investigation on the relationship between different
types of code changes (i.e., Fault Repairing Modification, Feature
Introduction Modification, and General Maintenance Modifica-
tion) and 28 different refactoring types coming from 3 open
source projects. Results showed that developers tend to apply
a higher number of refactoring operations aimed at improving
maintainability and comprehensibility of the source code when
fixing bugs. Instead, when new features are implemented, more
complex refactoring operations are performed to improve code
cohesion. Most of the times, the underlying reasons behind the
application of such refactoring operations are represented by the
presence of duplicate code or previously introduced self-admitted
technical debts.

Index Terms—Refactoring; Code Changes; Empirical Studies

I. INTRODUCTION

Refactoring is “the process of changing a software system

in such a way that it does not alter the external behavior of

the code yet improves its internal structure” [1]. The value

of refactoring has been widely demonstrated in the past, since

it improves the internal structure of the source code leading

to several positive effects, such adaptability, maintainability,

understandability [2], reusability, and testability [3], [4], but

also developers’ productivity [5]. Moreover, the higher the

number of refactoring operations performed by developers the

higher the benefits for software maintainability [6].

These empirical studies have motivated researchers in

spending effort for devising techniques able to discover areas

of source code needing refactoring [7], [8], [9], as well as

methods for the identification of refactoring opportunities [10],

[11], [12], [13]. Despite this effort, developers tend to not

refactor source code as they should, and they generally do

not use any automated tool to improve the quality of a system

[14]. With the aim of supporting developers in such an activity,

in the recent past some studies have further investigated

how programmers apply refactoring [15], and what are the

conditions pushing them to apply refactoring operations [16].

Such studies showed that in most cases refactoring is not

recognized as a behavior-preserving operation [15] and, thus,

developers perform refactoring (i) only when strictly needed to

implement new features (e.g., when the source code is poorly

readable [15]), (ii) because of the responsibility concerned

with code authorship [17], or (iii) to achieve recognitions from

others [17].

More recently, Bavota et al. [18] analyzed to what extent

refactoring operations are performed on classes having a low

metric profile or affected by code smells. They found that

refactoring operations do not target classes exhibiting low

cohesion and/or high coupling, and that only 40% of the times

refactoring operations have been performed on classes affected

by a design flaw. These results have also been confirmed by

Silva et al. [16], which surveyed the Github contributors of

124 software projects, finding that refactoring is mainly driven

by changes in the requirements rather than by the presence of

quality problems in source code (e.g., code smells).

While Silva et al. [16] explored the problem from a de-

velopers’ perspective, there are no studies that systematically

investigate software repositories to understand whether specific

types of changes drive refactoring operations. To bridge this

gap, in this paper we empirically verify the relationship

between the types of changes coming from the taxonomy

provided by Hassan [19] (i.e., Fault Repairing Modification,

Feature Introduction Modification, and General Maintenance

Modification), and the application of refactoring operations.

The study has been conducted on a dataset composed of

12,922 operations related to 28 different refactoring types

applied over the change history of three open source systems,

i.e., APACHE ANT, ARGOUML, and APACHE XERCES.

The results of the study firstly indicate that classes having

a higher rate of fault repairing modifications have higher

chance of being subject to refactoring operations aimed at

simplifying the source code (by improving its comprehensi-

bility) and improving its maintainability (e.g., through a move

field refactoring). A deeper investigation into the reasons why

developers apply such refactoring operations during bug fixing

activities revealed that in 74% of the cases the main reason for

developers to re-organize the code is the presence of duplicated

code [1]. At the same time, we observed that in 96% of the

cases the overall readability of refactored classes is improved

by 48% (as indicated by the Buse and Weimer readability



metric [20]). Furthermore, feature introduction changes have

a higher likelihood of entailing refactoring opeartions aimed

at improving code cohesion or adherence to the Object-

Oriented programming principles (e.g., through an extract

method refactoring). In this case, we observed that 46% of

the refactored classes have been affected by a self-admitted

technical debt in their previous versions. Therefore, most of

the times refactoring can be seen as a form of compensation of

pre-existing debts. Finally, general maintenance modifications

lead to improve the readability of the code (e.g., by applying a

rename method refactoring). As a result, the overall readability

of the refactored classes increase of 30%.

Structure of the Paper. Section II describes the design of our

empirical study, while Section III reports and discusses the

obtained results. Section IV analyzes and discusses the threats

that could affect the validity of our study. After a discussion

of the related literature (Section V), Section VI concludes the

paper.

II. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to analyze refactoring

operations applied by developers during the evolution history

of a software system. The purpose is understanding whether

different types of changes provide indications on which code

components are more/less likely of being refactored.

The context of the study consists of 63 releases of three

software projects with different size and scope, i.e., APACHE

ANT
1, ARGOUML2 and APACHE XERCES-J3. The character-

istics of the object systems are reported in Table I.

It is worth noting that we focus our attention on a relative

small number of software systems because, as detailed in

Section II-A, we relied on a publicly available dataset com-

posed of 12,922 operations (manually validated) related to 28

different refactoring types identified in each of the considered

releases [18]. Note that while other datasets are available [21],

to the best of our knowledge the one built by Bavota et al. is

the largest one in terms of refactoring operations (12,922 vs

7,872 reported by Kadar et al.).

A. Research Questions and Data Extraction

In the context of the study, we formulated the following

research question:

To what extent are refactoring operations performed on

classes subject to a fault repairing, feature introduction,

and general maintenance modification?

To answer our research question, we firstly needed to

identify which types of refactoring operations occur over the

history of the considered software systems. The dataset of

refactoring operations we relied on [18] reports a set of 12,922

refactoring operations applied over 63 releases of the three

1http://ant.apache.org/
2http://argouml.tigris.org
3http://xerces.apache.org/xerces-j/

TABLE I: Characteristics of the object systems.

Project Period Releases Analyzed #Releases Classes KLOC

Ant Jan 2000-Dec 2010 1.2-1.8.2 17 87-1,191 8-255
ArgoUML Oct 2002-Dec 2011 0.12-0.34 13 777-1,519 362-918
Xerces-J Nov 1999-Nov 2010 1.0.4-2.9.1 33 181-776 56-179

Overall - - 63 - -

object systems. Specifically, the dataset is composed of a set

of triples (relj , refk, C), where relj indicates the release ID,

refk the type of refactoring that occurred, and C is the set

of refactored classes. Therefore, the dataset reports all the

information needed to apply our analyses. Table II shows the

number of refactoring operations (together with the number

of different types of refactoring operations) identified on the

three systems after the manual validation process.

To extract the different types of changes involving classes

affected by refactoring operations across two consecutive

releases of the analyzed software systems, we mined the logs

of their versioning systems. Specifically, we discriminate three

different types of changes, following the taxonomy proposed

by Hassan [19]:

• Fault Repairing Modification (FR), which represents

the set of changes applied to fix a fault. Such changes are

usually specified by developers in the commit message

through the indication of the ID of the fault the commit

repairs (e.g., “Issue #42 fixed”).

• Feature Introduction Modification (FI), representing

the set of changes adding or enhancing a given feature. It

is possible to discriminate such changes looking for key-

words as “added” or “updated” in the commit message.

• General Maintenance Modification (GM), namely the

set of changes not related to the update of a specific

feature. For example, the modification of the indentation

of the source code can be considered as a GM.

We automatically classified each commit by applying the

lexical technique proposed by Mockus et al. [22], that is able

to assign a category of change based on the analysis of the

commit message.

B. Study Variables and Analysis Method

The dependent variables of our study are the different types

of refactoring operations performed over all the releases of the

software projects we considered. The independent variables

are instead the different types of changes we related to the

observed refactoring operations. For each system in our dataset

and for each type of refactoring applied to it, we built logistic

regression models4 that relate a dichotomous dependent vari-

able with independent variables characterized by the change

factors. In other words, given the set of independent variables,

we are interested in the prediction of the probability p that the

dependent variable is 1 (i.e., the refactoring occurs) rather than

0 (i.e., the refactoring does not occurs).

Logistic regression models [23] relate dichotomous depen-

dent variables with one or more independent variables as

follows:

4Using the R statistical software: http://www.r-project.org/



TABLE II: Summary of the refactoring operations analyzed.

Project #Refactorings Distinct types of refactorings

Apache Ant 1,469 31
ArgoUML 3,532 43
Xerces-J 7,921 43

Overall 12,922 52

π(X1, X2, . . . , Xn) =
eC0+C1·X1+...+Cn·Xn

1 + eC0+C1·X1+...+Cn·Xn

(1)

where Xi are the independent variables characterizing an

event, and Ci the coefficients (estimates) of the logistic re-

gression model. It is worth noting that, to avoid the definition

of unreliable logistic regression models, we choose to apply

the logistic regression model only if a particular type of

refactoring (e.g., Move Field refactoring) has been performed

on a system at least ten times. In particular, we built three

different logistic models:

1) FR Model: This model considers fault repairing modifi-

cations as independent variables, while the application of

a specific refactoring (e.g., add parameter) as dependent

variable.

2) FI Model: The second model considers feature introduc-

tion modifications as independent variables, while the

application of a specific refactoring (e.g., add parameter)

as dependent variable.

3) GM Model: The last model considers general mainte-

nance modifications as independent variables, while the

application of a specific refactoring (e.g., add parameter)

as dependent variable.

For each considered model we then analyze if each inde-

pendent variable is significantly correlated with the dependent

variable (we set the significance level α = 5%), and we quan-

tify the correlation between the variables using the Odds Ratio

(OR) [24] which, for a logistic regression model, is given by

eCi . In our case, Odd Ratios indicate the increase in likelihood

of a refactoring increase/decrease as a consequence of a one-

unit increase of the independent variable. For example, if we

found that Feature Introduction Modification has an OR of

1.10 with extract method refactoring, this means that each one-

unit increase of the feature introduction modification made on

a class lead to a 10% higher chance for the class of being

involved in an extract method refactoring.

Besides the analysis made to understand the relationship

between changes and refactoring from a quantitative perspec-

tive, we performed a complementary qualitative investigation

into the source code of the classes refactored by developers,

with the aim to understand the underlying reasons behind the

application of a given refactoring. In particular, we manually

analyzed the commit messages and the source code involving

the artifacts refactored during the history of the considered

systems with the purpose of analyzing whether classes subject

to refactoring have particular characteristics making them

more prone to be re-organized by developers. More details

are reported along with the discussion of the results.

III. ANALYSIS OF THE RESULTS

Table III reports the ORs of the fault repairing modifica-

tions, feature introduction modifications, and general mainte-

nance modifications, respectively, for the 28 different types

of refactoring operations considered in the study. Statistically

significant ORs are highlighted in bold face. In the following,

we discuss the results of the study by considering each model

independently.

FR Model. As it is possible to observe from Table III, 80%

of the statistically significant ORs are higher than one. From a

practical point of view, this means that classes having a higher

rate of fault repairing modifications have a higher chance

of being refactored than classes not involved in bug fixing

activities. Likely, this is due to the fact that developers want

to simplify the structure of a class in order to make it more un-

derstandable before applying delicate corrective maintenance

operations. This claim is supported by the fact that most of the

refactoring types exhibiting high ORs deal with simplifying

the source code and improving its comprehensibility. It is

the case for add parameter, consolidate duplicate conditional

fragments, move field, remove assignment to parameters, re-

place magic number with constant, and replace nested cond

guard clauses. Note that we additionally verified whether the

number of refactoring operations having higher ORs (i.e., in

the case of fault repairing modifications, the ones mentioned

above) was statistically higher than the number of the other

refactoring operations. To this aim, we exploited the Mann-

Whitney U test [25] comparing the distributions of refactoring

operations among the three subject systems. As a result, we

observed that the refactoring types having higher ORs have

been actually applied a statistically higher number of times

with respect to the other refactoring types (α < 0.01 in all the

cases).

Particularly interesting is the case of the add parameter

refactoring which has OR=13.18 for APACHE ANT, OR=23.10

for ARGOUML, and OR=10.95 for XERCES. By analyzing

more in depth these cases, we found that often refactoring

is an absolute need for developers to effectively perform bug

fixing activities: for instance, a developer of ARGOUML, after

having refactored the source code and applied the bug fix,

committed the new version of the class reporting this commit

message:

“Fixed bug #221148. I needed to add parameters

and comments in the class, because it was totally

horrible and impossible to fix!”

This result is even more interesting when we consider the

more general relation between refactoring and bugs. Indeed,

as Bavota et al. have shown [26], refactoring operations

that are applied manually by developers could induce bug

fixing activities in the source code. In contrast, we show

that bug fixing activities make developers more prone in their

application of specific refactoring operations. So, the relation

seems to be bidirectional and our findings highlight the need



TABLE III: ORs achieved by logistic regression models built using fault repairing, feature introduction, and general maintenance

modifications (statistically significant ORs are in bold face).

Refactoring System FR Modifications FI Modifications GM Modifications

add parameter Apache Ant 13.18 8.17 4.81
add parameter Argo UML 23.10 3.15 2.91
add parameter Xerces 10.95 22.87 1.11
consolidate cond expression Apache Ant 0.53 1.11 1.74

consolidate cond expression Argo UML 0.59 1.55 1.55
consolidate cond expression Xerces 0.78 1.13 2.14

consolidate duplicate cond fragments Apache Ant 0.61 0.98 1.31
consolidate duplicate cond fragments Argo UML 0.74 0.70 0.44
consolidate duplicate cond fragments Xerces 0.63 0.79 1.57

extract method Apache Ant 1.02 5.18 0.71
extract method Argo UML 0.89 9.25 0.78
extract method Xerces 1.07 3.11 0.80
extract superclass Argo UML 5.81 0.83 0.68
form template method Argo UML 0.83 2.46 3.49
inline method Apache Ant 0.75 1.89 0.66

inline method Argo UML 0.69 1.98 0.70
inline method Xerces 1.71 1.65 0.81
inline temp Apache Ant 1.52 0.81 0.86
inline temp Argo UML 1.01 0.87 0.69
inline temp Xerces 0.79 1.76 0.82
introduce assertion Argo UML 1.01 1.12 0.99
introduce explaining variable Apache Ant 0.88 4.18 5.00
introduce explaining variable Argo UML 1.06 0.85 18.23

introduce explaining variable Xerces 1.02 1.01 2.68

introduce null object Argo UML 0.99 0.74 0.89
introduce parameter object Xerces 2.76 1.16 0.86
move field Apache Ant 7.98 1.08 3.41
move field Argo UML 5.14 1.19 2.87

move field Xerces 8.34 1.76 2.04
move method Apache Ant 5.86 1.17 1.02
move method Argo UML 3.91 1.12 4.41

move method Xerces 2.76 0.99 2.15
pull up field Xerces 0.91 0.88 0.52
pull up method Xerces 1.07 0.90 0.78
push down field Xerces 1.86 1.24 0.92
push down method Xerces 0.80 2.98 0.55

remove assignment to parameters Apache Ant 2.12 0.69 1.11
remove assignment to parameters Argo UML 1.23 0.96 2.71
remove assignment to parameters Xerces 0.88 0.78 0.70
remove control flag Apache Ant 2.13 0.98 0.61
remove control flag Argo UML 4.13 0.91 0.82
remove control flag Xerces 1.19 0.71 0.33
remove parameter Apache Ant 1.02 0.86 1.22

remove parameter Argo UML 0.66 0.88 2.88
remove parameter Xerces 0.87 0.91 3.61
rename method Apache Ant 1.21 0.93 14.11
rename method Argo UML 1.12 4.87 1.58

rename method Xerces 1.75 1.07 3.73
replace data with object Argo UML 1.39 2.98 3.81
replace data with object Xerces 0.91 8.16 2.04
replace exception with test Xerces 0.80 0.92 1.09
replace magic number with constant Apache Ant 1.18 0.78 1.02

replace magic number with constant Argo UML 13.72 0.97 0.59
replace magic number with constant Xerces 0.66 1.01 2.75
replace method with method object Apache Ant 0.94 4.09 5.79
replace method with method object Argo UML 1.32 1.98 1.35
replace method with method object Xerces 1.53 2.71 12.81
replace nested cond guard clauses Apache Ant 0.71 0.88 0.16
replace nested cond guard clauses Argo UML 1.09 1.56 0.45
replace nested cond guard clauses Xerces 0.76 0.99 0.22
separate query from modifier Xerces 0.83 0.80 1.55

to further investigate the interaction between refactoring and

bugs.

For this reason, we have performed a deep analysis of

the change history of the subject systems by manually in-

specting the commit messages and the source code related

to commits having as goal the fixing of bugs (as indicated

by the commits’ classification automatically done using the

approach by Mockus [22]). From this additional analysis, we

learned that in 74% of the cases the commits involved in

refactoring operations contain source code affected by dupli-

cated code [1]. Developers refactored these affected parts by

applying operations aimed at improving the comprehensibility

and/or the maintainability of the source code before fixing a

bug. This finding is quite unexpected if we consider that all the

refactoring operations having higher ORs are not specifically

targeted at removing code clones [1]. However, most of the

operations performed by developers (e.g., consolidate dupli-

cate conditional fragments) tend to re-unify the source code



Fig. 1: Method maybeConfigure of the APACHE ANT

project before and after the refactoring operations applied to

fix a bug.

Before

After

by removing redundant code. A clear example is represented

by the class RuntimeConfigurable of the APACHE ANT

system, where the maybeConfigure method is in charge of

configuring the proper build properties for a new Java project.

The upper part of Fig. 1 depicts a snippet of code (from line

#385 to line #413 of the class) referring to the investigated

method. The code snippet shows that the method can call itself

(red lines in Figure 1) in two different if statements (lines

#394 and #413). In version 1.6.1 of the system, the method

was affected by a known bug causing a double configuration of

the project if the input file contains sub-tasks.5 When solving

this bug, the developers first applied a consolidate duplicate

conditional fragments refactoring aimed at condensing the two

conditional statements leading to two different calls of the

maybeConfigure method into a single one (see the lower

part of Fig. 1). At the same time, the bug was fixed by applying

an add parameter refactoring in order to pass the method

a boolean variable named configureChildren able to

control whether the input project needs or does not need the

configuration of its sub-projects.

When refactoring is not applied to remove redundant code,

developers perform modifications on fields and local variables

aimed at improving their location or their names. So, all

in all, we observed that developers performing bug fixing

activities apply refactoring operations for two possible reasons:

(i) improving the general maintainability of the system, or

(ii) improving the comprehensibility of source code before

fixing a fault. This result is in line with previous findings by

5https://bz.apache.org/bugzilla/show bug.cgi?id=9900

Du Bois et al., who have originally shown that “refactoring

to understand” is one of the main activities performed by

developers when conducting maintenance operations [27].

To further corroborate the latter statement, we also verified

whether the source code refactored during bug fixing showed

an improvement in its overall readability. To this aim, we

exploited the metric proposed by Buse and Weimer [20].

This metric combines a set of low-level code features (e.g.,

identifier length, number of loops, etc.) and has been shown

to be 80% effective in predicting developers’ readability

judgments. We used the original implementation provided

by the authors of the metric.6 In particular, given a code

file, the readability metric takes values between 0 (lowest

readability) and 1 (maximum readability). From this analysis,

we obtained that in 96% of the cases the refactored classes

obtained an average improvement of 48% of the readability

score. Thus, we can confirm that the refactoring operations

made during bug fixing activities have a beneficial effect on

program comprehensibility, other than the maintainability of

a software system. On the other hand, we observed that code

clones (i.e., one of the most popular code smells [1]) represent

the main reason why refactoring is applied during bug fixing

activities. Our qualitative findings confirm the results reported

by Silva et al. [16], where the authors found that the presence

of code clones represent a notable motivation for refactoring

the code.

Observation 1. During bug fixing activities, developers im-

proves comprehensibility and maintainability of the source

code. The main reason pushing developers to refactor

source code is the presence of duplicated code. At the same

time, we also found that in 96% of the cases the readability

of the source code refactored during bug fixing operations

showed an improvement of 48%.

FI Model. The results for the model involving the feature

introduction modifications are reported in Table III. Also in

this case, a large part of statistically significant ORs are higher

than one (i.e., 78% of the cases). Moreover, for add param-

eter, extract method, replace data with object, and replace

method with method object refactoring operations, such ORs

are consistently higher than one, indicating that all of them

are closely related to the introduction of new features in a

software system. Indeed, the number of times these refactoring

operations have been applied is statistically higher than the one

of all the other refactoring operations. The result is somehow

expected, since developers implementing new features need to

re-organize specific parts of the system in order to place the

new requirements in the right classes. Therefore, refactoring

operations as extract method or replace data with object are

perfectly inline with our conjecture. A clear example occurred

in the APACHE ANT project, where a developer implementing

the option -noclasspath7 had to modify the source code

6Available at http://tinyurl.com/kzw43n6
7The option used to run ant without using the classpath of a project.



of the class org.apache.tools.ant.Task. To this aim,

she applied an extract method refactoring in order to extract

from the method handleInput (i.e., the method in charge

of analyzing the input of the project) the part related to

the management of the default input provided by the user.

The extracted part has then been placed in a new method

named defaultInput. As a direct consequence, the overall

cohesion of the class was improved (i.e., the LCOM—Lack of

Cohesion of Methods [28]—decreases from 6 to 2). Interest-

ingly, before the refactoring, the method handleInput was

associated with the following comment:

/* It can produce errors in

older versions. Need fix (sooner

or later). */

It seems that in an older version of the system the developers

consciously left a possible issue into the system with the aim

of speeding up the release process. Thus, they introduced a

self-admitted technical debt [29], that was subsequently payed

off during the implementation of a new feature involving the

method handleInput, during which the possible bug was

fixed (indeed, the comment was removed after the refactor-

ing). On the basis of the case discussed above, we further

investigated to what extent the classes refactored during the

implementation of new features contain a self-admitted tech-

nical debt. To this aim, we adopted the following procedure:

• Given a class Ci refactored in a release relj , we mined

all the commits c1, c2, ..., cn between relj−1 and relj and

we extracted the source code of Ci in each commit ci;

• For each version of Ci, we exploited srcML [30] to

extract the comments from the Java code file.

• The set of retrieved comments was then analyzed to

identify those reporting a self-admitted technical debt.

To identify them, we exploited regular expressions to

match inside comments the 62 self-admitted technical

debt patterns defined by Potdar and Shihab [31].

From our analysis, we observed that 46% of the refactored

classes contained a self-admitted technical debt in its previ-

ous versions. Interestingly, in 67% of the commits where a

refactoring was performed the mention to the technical debt

disappeared. Thus, we can affirm that in a good percentage

of the cases developers apply refactoring during the imple-

mentation of new features in order to remove a technical

debt previously left in the code. However, such refactoring

operations do not tend to improve the overall readability of

the source code. Indeed, we have observed that just 13% of

classes refactored when implementing new features show an

overall 30% improvement in terms of readability (as measured

using the Buse and Weimer tool [20]).

A second relevant example is represented by the class

DiagramMemberFilePersister, belonging to the pack-

age org.argouml.persistence of the ARGOUML

project. Here, in version 0.32 the comment associated to the

method save highlighted a requirement debt [29], [31]:

// TODO: We need the project

specific diagram settings here

In the subsequent version of the system (i.e., version 0.34),

during the implementation of a new methodology to save

the UML diagrams, developers re-organized the source code

by applying an extract method refactoring, paying off the

debt by solving the settings issue previously raised during

the implementation of the new feature. Also in this case,

the cohesion of the class increases after the refactoring (i.e.,

the LCOM decreases from 7 to 4). Even more evident is

the case of the class xerces.dom.AttributeMap of the

APACHE XERCES system, where in version 1.4.1 the method

reconcileDefaults was commented as follow:

/** COMMENTED OUT!!!!!!!

******** Doing this dynamically

is a killer, since editing the

DTD isn’t even supported this is

commented out at least for now.

In the long run it seems better

to update the document on user’s

demand after the DTD has been

changed rather than doing this

anyway.*/

In the subsequent version (i.e., version 1.4.2), the method

was fixed when an update of the class needed to implement a

new way to map the attributes of an XML file given as input

to the system. Specifically, the developers applied a replace

method with method object refactoring, giving to the method

a specific responsibility and, thus, improving the adherence to

the object-oriented programming principles.

In conclusion, we have strong indications that refactoring is

related to feature introduction modification because developers

adapt the source code before implementing new features, by

applying refactoring types mainly concerned with the improve-

ment of code cohesion and the adherence to the object-oriented

programming principles. Moreover, several times refactoring

is applied to remove previous technical debt introduced by

developers to speed up the release process. Also in this case,

our findings revealed that technical debt actually represents a

strong motivation for refactoring the source code.

Observation 2. During the implementation of new fea-

tures, developers tend to re-organize the source code

through refactoring operations aimed at improving code

cohesion and the adherence to the object-oriented program-

ming principles. A deeper analysis revealed that one of the

main reasons pushing developers to refactor source code

is given by the presence of technical debt, which is payed

off before introducing new code.

GM Model. The results for this model are shown in Table III.

Although 75% of the statistically significant ORs are higher

than one, it is worth noting that (i) often such values are just

slightly higher than one (e.g., the OR for the move method

refactoring is 1.02 on APACHE ANT), and (ii) the trends are not

always consistent among the three projects considered. Thus,

in general we can observe that refactoring operations involving



TABLE IV: Summary of the results achieved.

Change Type Top Refactoring Operations Underlying Reasons

Fault Repairing Modifications

add parameter

Improving comprehensibility and maintainability of source code before fixing a bug.

consolidate duplicate conditional fragments
move field

remove assignment to parameters
replace magic number with constant

and replace nested cond guard clauses

Feature Introduction Modifications

add parameter

Removing technical debts previously left in the source code.
extract method

replace data with object
replace method with method object

General Maintenance Operations
introduce explaining variable

Improving source code readability and documentation.
rename method

Fig. 2: Method synchronizeData of the APACHE XERCES

project before and after the refactoring operation applied.

Before

After

the modification of the system structure (e.g., pull up/down

field refactoring) are not performed by developers when ap-

plying general maintenance modifications to the source code.

On the other hand, there are two interesting cases regarding the

introduce explaining variable and rename method refactoring

operations that are worth discussing. In these cases, the ORs

are high over all the systems indicating that classes involved in

a large number of general modifications have a higher chance

of being subject of refactoring operations aimed at improving

their documentation as well as the quality of identifiers.

The Mann-Whitney U test also revealed that the number of

refactoring operations of these types applied during general

modifications is statistically higher than other types of refac-

toring operations. For instance, between versions 1.4.1 and

1.4.2, the class xerces.dom.DeferredAttrNSImpl of

the APACHE XERCES project was constantly refactored with

the aim of improving its understandability. Indeed, developers

applied a number of introduce explaining variable refactoring

operations to make the roles of internal variables explicit. It is

worth remarking that this refactoring is concerned with putting

a result of an expression in a temporary variable with a name

that explains the purpose [1].

An example is reported in Fig. 2, where a snippet of the code

belonging to the method synchronizeData is depicted.

In version 1.4.1 (upper side of Fig. 2), the if statements in

lines #159 and #160 call the method name.substring(0,

index) to extract the prefix of the qualified name of an

XML file. In the subsequent version (lower side of figure 2),

the developers introduced the variable prefix to capture the

prefix of the qualified name before using it in the subsequent

statements.

To further verify our conjecture about the goals of refactor-

ing operations made by developers during general maintenance

activities (i.e., improvement of source code documentation),

also in this case we conducted an additional analysis to

understand whether such refactoring operations actually im-

proved the readability of the source code. As previously done,

we exploited the Buse and Weimer readability tool [20],

observing that in 87% of the cases the classes refactored

experienced an improvement in terms of readability, with an

average improvement of 30%. These findings strengthen our

hypotheses and allow use to conclude that the main reason

pushing developers to refactor the source code while applying

general modifications is improving the comprehensibility of

classes.

Observation 3. When involved in general maintenance

modifications, developers try to improve the comprehensi-

bility of the source code by applying refactoring operations

such as the introduce explaining variable and rename

method. Furthermore, we observed the beneficial effects

of refactoring on the overall readability of the refactored

classes.

To summarize the results of our study, Table IV reports the

achieved findings, indicating for each change type taken into

account in our study (i) the top refactoring operations found

through the quantitative analysis, and (ii) the main reasons

why developers applied that refactoring operations, as pointed

out by our qualitative investigation.

IV. THREATS TO VALIDITY

This section discusses the threats that could affect the

validity of our study.

Construct Validity. One threat in this category regards the

accuracy of the technique used to classify the types of changes

analyzed. Indeed, we relied on the lexical approach pro-

posed by Mockus et al. [22] which shows good performance.



However, we cannot exclude errors in the classification. A

similar issue regards the tool employed to detect self-admitted

technical debt [31]: as recently reported by Maldonado et al.

[32], the lexical patters used by the tool suffer low recall

rates: as a consequence, the results on the relationship between

feature introduction changes and self-admitted technical debt

are likely to be an under-estimation. Still in this category,

it is worth mentioning possible issues due to the quality of

the dataset exploited. As reported by Bavota et al. [18], the

refactoring operations have been manually validated after a

first detection performed using a refactoring detector named

REFFINDER [33]. Despite this, it is known that REFFINDER

(i) cannot deal with multiple refactoring operations performed

within one commit [34], and (ii) is not able to identify some

refactoring types (e.g., Extract Class refactoring) [33]. Thus,

our study is limited to the refactoring operations actually

detectable by using REFFINDER and for which a manual vali-

dation aimed at reducing possible imprecisions was previously

conducted by Bavota et al. [18]. As a consequence, we believe

that our study is conducted upon a dataset having a good

degree of data quality. Finally, the refactoring operations in

the exploited dataset have been detected at release-level, while

the different change types have been identified at commit-

level. While the different granularity could have influenced

our observations, it is important to note that all the systems

analyzed tend to frequently issue releases (as the reader can see

from the number of considered releases): thus, the analysis at

release level is not necessarily coarse-grained. Moreover, we

mitigated this threat by conducting qualitative analyses aimed

at illustrating the reasons why specific refactoring operations

helped during the development of a given change type.

Conclusion Validity. To assess the relationships between

different types of changes and refactoring operations, we

exploited logistic regression models, being sure to avoid

unreliable results by just considering the refactoring operations

applied more than ten times over the change history of the

systems considered. Moreover, other than highlighting cases of

significant correlations, we reported and discussed OR values.

Internal Validity. There are factors that might have influenced

our observations. Indeed, we evaluated different types of

changes without considering the development type adopted

by the projects in our study, as well as their life cycle or

their development activity. However, this is an exploratory

study on the relationships between changes and refactoring.

Future effort will be devoted to the analysis of the co-factors

mentioned above.

External Validity. While the study is limited when con-

sidering the number of projects (3), it is worth noting that

we evaluated 12,922 refactoring operations spread across 63

releases (for a total of 30 years of development). Moreover,

we considered open source systems for our analysis, since the

source code of commercial ones is not available. Future inves-

tigations aimed at corroborating our findings are desirable.

V. RELATED WORK

In the recent past, the research community spent a lot of

effort in devising tools for suggesting refactoring operations

as well as to understand under which circumstances developers

refactor and which are the relationships between quality and

refactoring (e.g., [35]). Due to the empirical nature of this

paper, in the following we summarize the previous work

aimed at empirically characterizing the refactoring activities

performed by developers. A complete report of the automatic

techniques able to suggest refactoring operations is available

in [36].

Wang et al. [17] reported the results of a survey carried

out with 10 industrial programmers where the goal was to

identify the major factors pushing developers in performing

refactoring. They identified 12 main factors, classifying them

in intrinsic and external motivators. Specifically, the former

category is composed of the factors related to external rewards

(e.g.,, the Responsibility with Code Authorship represents an

intrinsic motivator, since developers want to program high

quality code). As for external motivators, a clear example is

represented by the Recognitions from Others, i.e., gain recog-

nitions from others. Our study is complementary to the one by

Wang et al., since it shows which are the typical refactoring

operations applied during different types of changes.

Murphy-Hill et al. [14] studied how developers perform

refactoring, analyzing eight large scale software systems. Key

findings of this study are that (i) 41% of programming ac-

tivities contain refactoring traces, (ii) developers generally do

not configure refactoring tools, (iii) commit messages cannot

predict refactoring activities over the history of a software

system because developers tend to not explicit refactoring

activities when writing commit messages, (iv) most of the

refactoring is floss, i.e.,, applied within other development

activities, and (v) almost all the refactoring operations are done

manually by developers without the help of any tool.

Complementary to the work by Murphy-Hill et al. is the

paper by Kim et al. [37], who performed a survey with 328

software engineers of Microsoft in order to investigate (i) when

and how they do refactoring, (ii) whether automated tools are

used to support refactoring operations, and (iii) the developers’

opinion on the benefits, risks, and challenges of refactoring

[37]. In the first place, the important result achieved was about

the perception of refactoring as a non behavior-preserving

activity: indeed, almost 50% of developers fear that refactoring

can introduce side-effects such as the bugs. Moreover, the main

motivation that push developers in applying refactoring is the

poor readability of the source code, while at least 51% of the

participants declared that he/she usually perform refactoring

manually.

Kim et al. [37] also conducted an analysis on the change

history of the Windows 7 system, reporting that classes subject

of refactoring activities experienced a notable reduction in

terms of number of inter-module dependencies and post-

release defects with respect to other modules. Similar results

have been obtained by Kataoka et al. [38] and Gatrell and



Counsell [39]. In the first study, the authors analyzed the

history of an industrial software system comparing the classes

subject to the application of refactoring operations with the

classes never refactored. They observed a decrease of coupling

metrics. Regarding the work by Gatrell and Counsell, they

conducted an empirical study aimed at quantifying the effect

of refactoring on change- and fault-proneness of classes. The

authors monitored a commercial C# system for twelve months

identifying the refactoring operations applied during the first

four months. They examined the same classes for the second

four months in order to determine whether the refactoring

results in a decrease of change- and fault-proneness. They

also compared such classes with the classes of the system

that, during the same time period, have not been refactored.

Results revealed that classes subject to refactoring have a lower

change- and fault-proneness, both considering the time period

in which the same classes were not refactored and classes in

which no refactoring operations were applied.

Finally, it is worth discussing the studies that focused

on the relationship between refactoring and software quality.

In particular, Bavota et al. [26] investigated the extent to

which refactoring activities may induce faults. They show that

specific types of refactorings that involve hierarchies (e.g.,

pull down method) can often induce faults. On the other

hand, refactoring having as goal the re-location of source

code (e.g., move method) are likely to be harmless. Bavota

et al. [18] also conducted a study aimed at understanding

the relationships between code quality and refactoring. In

particular, they studied the evolution of 63 releases of 3 open

source systems in order to investigate the characteristics of

code components increasing/decreasing their chances of being

object of refactoring operations. Results indicate that often

refactoring is not performed on classes having a low metric

profile, while almost 40% of the times refactoring operations

have been performed on classes affected by smells. However,

just 7% of them actually removed the smell. While we share

with this work the dataset of refactoring operations used to run

our study, we also demonstrated that different types of changes

better explain refactoring operations performed by developers.

Silva et al. [16] monitored a large set of Java projects

in order to identify the refactoring operations applied by

developers, and then they asked the developers to explain

the reasons behind their decision to refactor the code. They

found that refactoring is mainly driven by changes in the

requirements rather than the presence of code smells. On the

one hand, our findings qualitatively confirm the results by Silva

et al., however they also show that in a good percentage of

the cases technical debts and duplicate code can be the causes

of the activities performed by developers to re-organize the

source code.

Stroggylos and Spinellis [40] studied the impact of refac-

toring operations on the values of eight object-oriented quality

metrics. Their results show the possible negative effects that

refactoring can have on some quality metrics (e.g., increased

value of the LCOM metric). On the same line, Stroullia and

Kapoor [41], analyzed the evolution of one system observing

a decrease of LOC and NOM (Number of Method) metrics on

the classes in which a refactoring has been applied. Szoke et al.

[6] performed a study on five software systems to investigate

the relationship between refactoring and code quality. They

show that small refactoring operations performed in isolation

rarely impact software quality. On the other side, a high

number of refactoring operations performed in block helps in

substantially improving code quality. Alshayeb [4] investigated

the impact of refactoring operations under five different per-

spectives, i.e., adaptability, maintainability, understandability,

reusability, and testability. Their main findings showed that

refactoring provides benefits on some classes, but at the

same time such benefits are counterbalanced by a decrease

of code quality in other classes. Moser et al. [5] investigate

the impact of refactoring on agile developers’ productivity

in industry. They found that on the one hand refactoring

increases software quality, and on the other hand provides

benefits in term of productivity. In the context of this study,

we somehow confirmed the ability of refactoring in improving

non-functional attributes of the source code (e.g., by increasing

the readability of refactored classes).

VI. CONCLUSION

Refactoring is widely recognized as an activity able to

improve software quality [17] and providing other beneficial

effects, such as developers’ productivity [5]. Previous em-

pirical studies that have assessed the motivations behind the

application of refactoring based on developers’ opinion [15],

[16], found that refactoring is mainly driven by changes in

the requirements rather than by software quality. While such

studies are based on the developers’ opinions, no investigations

based on the analysis of software repositories have confirmed

such findings. To this aim, we verified whether and to what

extent refactoring is driven by different types of changes, i.e.,

Fault Repairing Modification, General Maintenance Modifica-

tion, and Feature Introduction Modification, applied over the

change history of three software systems.

The results of the study indicate that classes experiencing

a higher number of bug fixing activities are more subject

to operations that improve their maintainability and compre-

hensibility, while classes where the number of new features

implemented is higher are more prone to be refactored with

regard to code cohesion and adherence to the object-oriented

programming principles. The underlying reasons behind the

application of such refactoring operations fall into the presence

of duplicate code or of previously self-admitted technical

debts. Thus, in most cases changes are associated with the

payment of an existing accumulated debt. Finally, general

maintenance modifications lead to refactoring aimed at im-

proving comprehensibility and identifier quality, leading to an

overall improvement of the readability of the source code.

Other than corroborating our results on a larger number

of systems, our future research agenda includes (i) a deeper

investigation into the benefits provided by refactoring oper-

ations applied by developers in different situations, and (ii)

the definition of predictive models able to suggest developers



about which type of refactoring should be applied in a given

situation.
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