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Abstract: Here, we show that there is no integer s � 3 such that the sum of sth powers of

two consecutive Fibonacci numbers is a Fibonacci number.
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1. Introduction. Let ðFmÞm�1 be the

Fibonacci sequence given by F1 ¼ 1; F2 ¼ 1 and

Fmþ2 ¼ Fmþ1 þ Fm for all m � 1. It is well-known

that F 2
m þ F 2

mþ1 ¼ F2mþ1. Hence, Fs
m þ Fs

mþ1 is a

Fibonacci number for all m � 1 when s 2 f1; 2g. In

the paper [4], the following result was proved:

Theorem A. If s � 1 is an integer such that

Fs
m þ Fs

mþ1 is a Fibonacci number for all sufficiently

large m, then s 2 f1; 2g.
Note that this doesn’t say much about the

Diophantine equation

Fs
m þ Fs

mþ1 ¼ Fnð1Þ

in integers m � 1, n � 1, s � 3. It merely says that

if s � 3 is fixed, then there are infinitely many

positive integers m for which Fs
m þ Fs

mþ1 is not a

Fibonacci number. Thus, the main result from [4]

cannot answer to the question of whether the

Diophantine equation (1) has finitely or infinitely

many integer solutions ðm;nÞ, even for fixed s � 3.

Let us briefly describe the proof of this result

from [4]. Put � :¼ ð1þ
ffiffiffi
5
p
Þ=2, � :¼ ð1�

ffiffiffi
5
p
Þ=2.

Then it is known that

Fm ¼
�m � �mffiffiffi

5
p holds for all m � 1:ð2Þ

Hence, for fixed s we have that

Fs
m ¼

�m � �mffiffiffi
5
p

� �s
¼
�ms

5s=2
þOs �mðs�2Þ

� �
:

The constant implied by the above O depends on s.

Applying the above estimate with m and mþ 1 and

adding them up we get

Fs
m þ Fs

mþ1 ¼
�ms þ �ðmþ1Þs

5s=2
þOsð�mðs�2ÞÞ

¼
�msð1þ �sÞ

5s=2
þOsð�mðs�2ÞÞ:

Comparing the above estimate with Fn given by (2)

we get right away that

�ms�nð1þ �sÞ
5ðs�1Þ=2

� 1 ¼ Osð�mðs�2Þ�n þ ��2nÞ;

and the right–hand side above is of smaller order of

magnitude than �ms�n for large m and n. Hence, the

left hand side must be zero for largem, so we must have

n ¼ msþ t, where t is some fixed integer such that

1þ �s ¼ 5ðs�1Þ=2�t:ð3Þ

From here, the authors of [4] proceed to prove that the

above equation (3) has no integer solutions ðs; tÞ with

s � 3 by using linear forms in logarithms and calcu-

lations. We note in passing that there is no need for

linear forms in logarithms in order to solve (3). Indeed,

conjugating it and multiplying the two relations we get

ð1þ �sÞð1þ �sÞ ¼ ð�1Þs�15s�1ð��Þt ¼ ð�1Þs�1�t5s�1:

The left–hand side is positive and smaller than

2ð1þ �sÞ < 2ð1þ 2sÞ. Hence, we get

2ð1þ 2sÞ > 5s�1;

which has no solution for any s � 3 anyway.

Our main result is the following.

Theorem 1. Equation (1) has no solutions

ðm;n; sÞ with m � 2 and s � 3.

2. The proof of Theorem 1.

2.1. The plan of attack. Our method is

roughly as follows. We use linear forms in loga-
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rithms together with the observation that Fs
m is

smaller by an exponential factor in s than Fs
mþ1 to

deduce some inequality for s versus m and n. When

m is small, say m � 150, we use continued fractions

to lower the bounds and then brute force to cover

the range of the potential solutions. When m > 150,

our bound on s versus m and n says that Fs
m can

be sufficiently well approximated by �ms=5s=2 and

similarly Fs
mþ1 can be sufficiently well approximat-

ed by �ðmþ1Þs=5s=2. A further application of the

linear forms in logarithms together with some

computations finish the job.

Now let’s get to work.

2.2. An inequality for s in terms ofm and n.

Observe that when m ¼ 1 we have Fs
m þ Fs

mþ1 ¼
2 ¼ F3 for all s � 1, which is why we imposed that

m � 2.

When m ¼ 2, we get that Fn ¼ 1þ Fs
3 ¼ 1þ 2s

which has no integer solutions ðn; sÞ with s � 3

(see [2] for a list of all solutions to the Diophantine

equation Fn ¼ 1þ xs in positive integers ðn; s; xÞ
with s � 2).

From now on, we assume that m � 3. Since

s � 3, we get that Fn � F 3
3 þ F 3

4 , so that n � 10.

Using formula (2), we rewrite equation (1) as

�nffiffiffi
5
p � Fs

mþ1 ¼ Fs
m þ

�nffiffiffi
5
p :ð4Þ

The right–hand side above is a number in the

interval ½Fs
m � 1; F s

m þ 1�. In particular, it is posi-

tive. Dividing both sides of equation (4) by Fs
mþ1,

we get

�n5�1=2F�smþ1 � 1
�� �� < 2

Fm

Fmþ1

� �s
<

2

1:5s
;ð5Þ

where we used the fact that Fm=Fmþ1 � 2=3 for all

m � 2. This last inequality is equivalent to the

inequality 2Fmþ1 � 3Fm. Replacing the number

Fmþ1 by Fm þ Fm�1, the last inequality above is

seen to be equivalent to 2Fm�1 � Fm ¼ Fm�1 þ
Fm�2, which is equivalent to Fm�1 � Fm�2, which

is true for all m � 2.

We shall use several times a result of Matveev

(see [5] or Theorem 9.4 in [1]), which asserts that

if �1; �2; . . . ; �k are positive real algebraic numbers

in an algebraic number field K of degree D, b1;

b2; . . . ; bk are rational integers, and

� :¼ �b1

1 �
b2

2 � � ��
bk
k � 1

is not zero, then

j�j > exp �Ck;Dð1þ logBÞA1 � � �Ak

� 	
ð6Þ
where

Ck;D :¼ 1:4� 30kþ3 � k4:5 �D2ð1þ logDÞ;
B � maxfjb1j; jb2j; . . . ; jbkjg;

and

Ai � maxfDhð�iÞ; j log�ij; 0:16g; i ¼ 1; 2; . . . ; k:

Here, for an algebraic number � we write hð�Þ for its

logarithmic height whose formula is

hð�Þ :¼
1

d
log a0 þ

Xd
i¼1

log maxfj�ðiÞj; 1g
� � !

;

with d being the degree of � over Q and

fðXÞ :¼ a0

Yd
i¼1

ðX � �ðiÞÞ 2 Z½X�

being the minimal primitive polynomial over the

integers having positive leading coefficient and � as

a root.

In a first application of Matveev’s theorem, we

take k :¼ 3, �1 :¼ �, �2 :¼
ffiffiffi
5
p

, �3 :¼ Fmþ1. We also

take b1 :¼ n, b2 :¼ �1, b3 :¼ �s. We thus take

�1 :¼ �n5�1=2F�smþ1 � 1:ð7Þ

The absolute value of �1 appears in the left–hand

side of inequality (5). To see that �1 6¼ 0, observe

that imposing that �1 ¼ 0 yields �n ¼
ffiffiffi
5
p

Fs
mþ1,

so �2n 2 Z, which is false for positive n. Thus,

�1 6¼ 0.

The algebraic number field containing

�1; �2; �3 is K :¼ Qð
ffiffiffi
5
p
Þ which is quadratic, so

we can take the degree D :¼ 2. Since the height of

�1 satisfies hð�1Þ ¼ ðlog�Þ=2 ¼ 0:240606 . . . , it

follows that we can take A1 :¼ 0:5 > 2hð�1Þ. Since

the height of �2 satisfies hð�2Þ ¼ ðlog 5Þ=2 ¼
0:804719 . . . , it follows that we can take A2 :¼
1:61. Since the inequality F‘ < �‘�1 holds for all

integers ‘ � 1, it follows that hð�3Þ ¼ logFmþ1 <

m log�, therefore we can take A3 :¼ 2m log�.

Finally, observe that

�n�1 > Fn ¼ Fs
m þ Fs

mþ1 � Fs
mþ1 > ð�m�1Þs;

�n�2 < Fn ¼ Fs
m þ Fs

mþ1 < ðFm þ Fmþ1Þs ¼ Fs
mþ2

< �ðmþ1Þs:

In particular, n � ðm� 1Þs � 2s, so we can take

B :¼ n. It is also the case that

B ¼ n � ðmþ 1Þsþ 1 < ðmþ 2Þs:
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Applying inequality (6) to get a lower bound for

j�1j and comparing this with inequality (5), we get

exp �C3;2ð1þ lognÞ � 0:5� 1:61� 2m log�
� 	

<
2

1:5s
;

where

C3;2 ¼ 1:4� 306 � 34:5 � 22 � ð1þ log 2Þ < 1012:

Hence, we get

s <
log 2

log 1:5
þ 1012 � 0:5� 1:61� ð2 log�Þ

� ðlog 1:5Þ�1mð1þ lognÞ
< 2� 1012mð1þ lognÞ < 3� 1012m logn;

where we also used the fact that logn � log 10 > 2.

Together with the fact that n < ðmþ 2Þs, we get

that

s < 3� 1012m logððmþ 2ÞsÞ:ð8Þ

2.3. The case of small m. We next treat the

cases when m 2 ½3; 150�. In this case,

s < 3� 1012m logððmþ 2ÞsÞ � 4:5� 1014 logð152sÞ;

giving s < 1:92� 1016. Thus,

n < ðmþ 2Þs � 152s < 3� 1018:

We next take another look at �1 given by

expression (7). Put

�1 :¼ n log�� log
ffiffiffi
5
p
� s logFmþ1:

Thus, �1 ¼ e�1 � 1.

Observe that �1 is positive since �1 is positive

because the right–hand side of equation (4) is

positive. Thus,

0 < �1 < e�1 � 1 ¼ �1 <
2

1:5s
;

so

0 < n
log�

logFmþ1

� �
� s�

log
ffiffiffi
5
p

logFmþ1

 !

<
2

1:5s logðFmþ1Þ
<

2

1:5s
<

2

ð1:5
1

152Þn
:ð9Þ

We now apply the following result due to

Dujella and Peth}oo [3].

Lemma 2. Let M be a positive integer, let

p=q be a convergent of the continued fraction of the

irrational � such that q > 6M, and let � be some real

number. Let " :¼ k�qk �Mk�qk. If " > 0, then there

is no solution to the inequality

0 < n� � sþ � < AB�n

in positive integers n and s with

logðAq="Þ
logB

� n �M:

For us, inequality (9) is

0 < n� � sþ � < AB�n;

where

� :¼
log�

logFmþ1
; � :¼ �

log
ffiffiffi
5
p

logFmþ1
;

A :¼ 2; B :¼ 1:0026 < 1:5
1

152 :

We take M :¼ 3� 1018. For each of our numbers m,

we take q :¼ q99 to be the denominator of the 99th

convergent to �. Note that q depends on m. The

minimal value of q for m 2 ½3; 150� exceeds the

number 1045 > 6M. Thus, we may apply Lemma 2

for each such q, � and �. The maximal value of

Mkq�k computed is smaller than 10�28, whereas

the minimal value of kq�k is > 1:1� 10�17. Thus,

we can take " :¼ kq�k �Mkq�k > 10�17. Also, the

maximal value of q is < 2� 1062. Hence, by

Lemma 2, all solutions ðn; sÞ of inequality (9)

have

n <
logðAq="Þ

logB
<

logð2� ð2� 1062Þ � 1017Þ
logð1:0026Þ

< 71000:

Next, since ðm� 1Þs � n, we have

s � n=ðm� 1Þ < 71000=ðm� 1Þ:

A computer search with Mathematica revealed

in less than one hour that there are no solu-

tions to the equation (1) in the range m 2
½3; 150�, n 2 ½10; 71000� and s 2 ½3; 71000=ðm� 1Þ�.
This completes the analysis in the case m 2
½3; 150�.

2.4. An upper bound on s in terms of m.

From now on, we assume that m � 151. Recall that,

by (8), we have

s < 3� 1012m logððmþ 2ÞsÞ:ð10Þ

Next we give an upper bound on s depending only

on m. If

s � mþ 2;ð11Þ

then we are through. Otherwise, that is if mþ
2 < s, we then have
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s < 3� 1012m logðs2Þ ¼ 6� 1012m log s;

which can be rewritten as

s

log s
< 6� 1012m:ð12Þ

Since the function x 7! x= logx is increasing for all

x > e, it is easy to check that the inequality

x

logx
< A yields x < 2A logA;

whenever A � 3. Indeed, for if not, then we would

have that x > 2A logA > e, therefore

x

logx
>

2A logA

logð2A logAÞ
> A;

where the last inequality follows because 2 logA <

A holds for all A � 3. This is a contradiction.

Taking A :¼ 6� 1012m in the above argument, we

get that inequality (12) implies that

s < 2ð6� 1012mÞ logð6� 1012mÞ
¼ 12� 1012mðlogð6� 1012Þ þ logmÞ
< 12� 1012mð30þ logmÞ
< 12� 1012m� ð7 logmÞ
< 1014m logm:ð13Þ

In the above inequalities, we used the fact that

logm � log 151 > 5. From (11) and (13), we con-

clude that the inequality

s < 1014m logmð14Þ

holds for all m � 151.

2.5. An absolute upper bound on s. Let us

look at the element

x :¼ s

�2m
:

From the above inequality (14), it follows that

x <
1014m logm

�2m
<

1

�m
;ð15Þ

where the last inequality holds for all m � 80. In

particular, x < ��151 < 10�31. We now write

Fs
m ¼

�ms

5s=2

�
1�
ð�1Þm

�2m

�s
;

F s
mþ1 ¼

�ðmþ1Þs

5s=2

�
1�
ð�1Þmþ1

�2ðmþ1Þ

�s
:

If m is odd, then

1 < 1�
ð�1Þm

�2m

� �s
¼ 1þ

1

�2m

� �s
< ex

< 1þ 2x

because x < 10�31 is very small, while if m is even,

then

1 > 1�
ð�1Þm

�2m

� �s
¼ exp log 1�

1

�2m

� �
s

� �
> e�2x

> 1� 2x;

again because x < 10�31 is very small. The same

inequalities are true if we replace m by mþ 1. Thus,

we have that

max Fs
m �

�ms

5s=2

����
����; F s

mþ1 �
�ðmþ1Þs

5s=2

����
����

( )
<

2x�ðmþ1Þs

5s=2
:ð16Þ

We now return to our equation (1) and rewrite it as

�n � �n

51=2
¼ Fn ¼ Fs

m þ Fs
mþ1 ¼

�ms

5s=2
þ
�ðmþ1Þs

5s=2

þ Fs
m �

�ms

5s=2

� �
þ Fs

mþ1 �
�ðmþ1Þs

5s=2

 !
;

or

�n

51=2
�
�ms

5s=2
ð1þ �sÞ

����
����

¼
�n

51=2
þ Fs

m �
�ms

5s=2

� �
þ Fs

mþ1 �
�ðmþ1Þs

5s=2

 !�����
�����

<
1

�n
þ Fs

m �
�ms

5s=2

����
����þ Fs

mþ1 �
�ðmþ1Þs

5s=2

����
����

<
1

�n
þ 2x

�msð1þ �sÞ
5s=2

� �
:

Thus, dividing both sides by �ðmþ1Þs=5s=2, we

conclude that

�n�ðmþ1Þs5ðs�1Þ=2
�� � ð1þ ��sÞjð17Þ

<
5s=2

�nþðmþ1Þs þ 2xð1þ ��sÞ <
1

2�m
þ

5x

2

<
3

�m
;

where we used the fact that

5s=2

�ðmþ1Þs �
ffiffiffi
5
p

�152

 !s

<
1

2
; n � ðm� 1Þs > m;

and �s � �3 > 4, as well as inequality (15). Hence,

we conclude that

�n�ðmþ1Þs5ðs�1Þ=2 � 1
�� �� < 1

�s
þ

3

�m
�

4

�‘
;ð18Þ
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where we put ‘ :¼ minfm; sg. We now set

�2 :¼ �n�ðmþ1Þs5ðs�1Þ=2 � 1:ð19Þ

and observe that �2 6¼ 0. Indeed, for if �2 ¼ 0, then

�2ððmþ1Þs�nÞ ¼ 5s�1 2 Z, which is possible only when

ðmþ 1Þs ¼ n. But if this were so, then we would get

0 ¼ �2 ¼ 5ðs�1Þ=2 � 1, which leads to the conclusion

that s ¼ 1, which is not possible. Hence, �2 6¼ 0. Next,

let us notice that since s � 3 andm � 151, we have that

j�2j �
1

�3
þ

1

�151
<

1

2
;ð20Þ

so that �n�ðmþ1Þs5ðs�1Þ=2 2 ½1=2; 2�. In particular,

ðmþ 1Þs� n <
1

log�

ðs� 1Þ log 5

2
þ log 2

� �

< s
log 5

2 log�

� �
< 1:7s;

ðmþ 1Þs� n >
1

log�

ðs� 1Þ log 5

2
� log 2

� �
> 1:6s� 4:ð21Þ

It follows from (21) that ðmþ 1Þs� n > 1:6s� 4 > 0

because s � 3. We lower bound the left–hand side of

inequality (18) using again Matveev’s theorem. We take

k :¼ 2; �1 :¼ �; �2 :¼
ffiffiffi
5
p

: We also take the exponents

b1 :¼ n� ðmþ 1Þs and b2 :¼ s� 1. As in the previous

application of Matveev’s result, we can take D :¼ 2;
A1 :¼ 0:5; A2 :¼ 1:61. Also, we can take B :¼ 1:7s >

maxfjb1j; jb2jg by inequality (21). We thus get that

expð�C2;2ð1þ logð1:7sÞÞ � 0:5� 1:61Þ <
4

�‘
;

where

C2;2 ¼ 1:4� 305 � 24:5 � 22 � ð1þ log 2Þ < 5:3� 109:

This leads to

‘ <
log 4

log�
þ 5:3� 109 � 0:5� 1:61� ðlog�Þ�1

� ð1þ logð1:7sÞÞ
< 9� 109ð1:6þ log sÞ < 9� 2:6� 109 log s

< 3� 1010 log s:

Here, we used the fact that 1þ logð1:7Þ < 1:6.

If ‘ ¼ s, we then get that s < 3� 1010 log s, so

s < 1012:

If ‘ ¼ m, then using also (14), we get that

m < 3� 1010 log s < 3� 1010 log 1014m logm
� 	

:

The last inequality above leads to m < 2� 1012, so,

by (14) once again, we get that

s < 1014 � ð2� 1012Þ logð2� 1012Þ < 6� 1027:

So, at any rate, we have that

s < 6� 1027:ð22Þ

2.6. A better upper bound on s. Next, we

take �2 :¼ ðs� 1Þ log
ffiffiffi
5
p
� ððmþ 1Þs� nÞ log�. Ob-

serve that �2 ¼ e�2 � 1, where �2 is given by (19).

Since j�2j < 1=2 (see inequality (20)), we have that

ej�2j < 2. Hence,

j�2j � ej�2jje�2 � 1j < 2j�2j <
2

�s
þ

6

�m
:

This leads to

log
ffiffiffi
5
p

log�
�
ðmþ 1Þs� n

s� 1

�����
����� < 1

ðs� 1Þ log�

2

�s
þ

6

�m

� �
:ð23Þ

Note first that �m � �151 > 3� 1031 > 103s by esti-

mate (22).

Assume next that s > 100. Then �s > 1000s.
Hence, we get that

1

ðs� 1Þ log�

2

�s
þ

6

�m

� �
<

8

sðs� 1Þ1000 log�

<
1

60ðs� 1Þ2
:ð24Þ

Estimates (23) and (24) lead to

log
ffiffiffi
5
p

log�
� ðmþ 1Þs� n

s� 1

�����
����� < 1

60ðs� 1Þ2
:ð25Þ

By a criterion of Legendre, inequality (25) implies

that the rational number ððmþ 1Þs� nÞ=ðs� 1Þ is a

convergent to � :¼ ðlog
ffiffiffi
5
p
Þ=ðlog�Þ. Let ½a0; a1; a2;

a3; a4; . . .� ¼ ½1; 1; 2; 19; 2; 9; . . .� be the continued

fraction of �, and let pk=qk be its kth convergent.

Assume that ððmþ 1Þs� nÞ=ðs� 1Þ ¼ pt=qt for some

t. Then s� 1 ¼ dqt for some positive integer d, which

in fact is the greatest common divisor of ðmþ 1Þs�
n and s� 1. We have the inequality q54 > 1:4�
1028 > s� 1. Thus, t 2 f0; . . . ; 53g. Furthermore,

ak � 29 for all k ¼ 0; 1; . . . ; 53. From the known

properties of continued fractions, we have that

� � ðmþ 1Þs� n
s� 1

����
���� ¼ � � pt

qt

����
���� > 1

ðat þ 2Þq2
t

�
d2

31ðs� 1Þ2
�

1

31ðs� 1Þ2
;

which contradicts inequality (25). Hence, s � 100.
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2.7. The final step. To finish, we go back to

inequality (17) and rewrite it as

�n�ðmþ1Þs5ðs�1Þ=2ð1þ ��sÞ�1 � 1
�� �� < 3

�mð1þ ��sÞ

<
3

�m
:

Recall that s 2 ½3; 100� and

1:6s� 4 < ðmþ 1Þs� n < 1:7s:

Put t :¼ ðmþ 1Þs� n. We computed all the num-

bers j��t5ðs�1Þ=2ð1þ ��sÞ�1 � 1j for all s 2 ½3; 100�
and all t 2 ½b1:6s� 4c; b1:7sc�. None of them ended

up being zero, since if it were we would get the

Diophantine equation �s þ 1 ¼ 5ðs�1Þ=2�s�t, which

has no integer solution ðs; tÞ with s � 3 by the

arguments from the beginning. The smallest of

these numbers is > 3=103. Thus, 3=103 < 3=�m, or

�m < 103, so m < 15, which is false.

The theorem is therefore proved.
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