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ABSTRACT 

The recently developed exponential discontinuous spatial differencing scheme for the discrete-ordinate 

equations has been extended to x-y-z geometry with hexahedral cells. This scheme produces strictly 

positive angular fluxes given positive discrete-ordinate sources. The exponential discontinuous scheme 

has been developed and implemented into the three-dimensional, discrete-ordinate code, THREEDANT. 

Numerical results are given which show that the exponential discontinuous scheme is very accurate for 
deep-penetration transport problems with optically thick spatial meshes. 

I. INTRODUCTION 

Recently, the algebraically equivalent nonlinear characteristicl-3 (NC) and exponential characteristic4-5 

(EC) spatial differencing schemes were developed. These schemes use the method of characteristics with 

an exponential representation for the discrete-ordinate source within each spatial cell. This source 

representation is derived using information theory6. The NCEC scheme is very accurate, especially for 

deep-penetration problems with optically thick spatial cells. The NCEC scheme also produces strictly 

positive angular fluxes given positive discrete-ordinate sources. Recently we developed an exponential 

discontinuous (ED) scheme in x-y geometry based upon an exponential representation for the angular flux 

within each cell7. This representation is also derived using information theory. The motivation for the ED 

scheme is that it is much less complicated to derive and implement than the NC/EC scheme and is assumed 
to be considerably less computationally expensive in x-y-z geometry. The NCEC scheme is exact for 

pure-absorbing problems in all Cartesian geometries. The ED scheme is only exact for pure-absorbing 

problems in slab geometry. Nonetheless, the ED scheme appears to be nearly as accurate as the NCEC 
scheme for many problems and also produces strictly positive angular fluxes. The ED scheme has been 

extended to x-y-z geometry with a hexahedral mesh and has been implemented into the three-dimensional, 
discrete-ordinate code, T H R E E D A N P  8. 

The remainder of the paper will proceed as follows: in Sec. 11, we derive the ED scheme in x-y-z 
geometry and discuss the method of solution; in Sec. 111, we present some numerical results to show the 

accuracy and positivity of the ED scheme; and in Sec IV, we conclude with a discussion. 
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11. THE EXPONENTIAL DISCONTINUOUS SCHEME 

The mono-energetic, x-y-z geometry discrete-ordinate equations are given by 

Here w,(x,y,z) is the discrete ordinate angular flux and S,(x,y,z) is the discrete ordinate source 

comprised of a combination of scattering, fission or fixed sources. We use a hexahedral mesh with each 

that the material properties are constant within each mesh cell. 

spatial cell having dimensions I x I y j - 1 / 2  I y I y j + l / 2 ,  and z ~ - ~ , ~  - < <  z - z ~ + ~ / ~ .  We assume 

We begin our derivation of the ED scheme by taking the zeroth, x, y and z spatial coordinate moments of 

Eq.( 1). This is done by multiplying Eq.( 1) by 1, <(x) = 2(x  - xi)/Axi, < ( y )  = 2(y  - y j ) / A y ,  and 

& ( z )  = 2(z - z k ) / d z k ,  and integrating over the volume of the cell. 

xi = ( x j + 1 / 2  + x ; - 1 / 2 ) / 2  7 ' Y j  = Y j + 1 / 2  - Y j - 1 / 2 9  Y j  = ( Y j + l / 2  + Y j - 1 / 2 ) / 2 ,  &k = Z k + l / 2  - Z k - l / 2 '  and 

zk = ( z ~ + ~ / ~  + ~ ~ - ~ , ~ ) / 2 .  This gives the following four moment balance equations: 

Here hi = - 

- ( v n i , i + l / Z , j , k  P n i  - ~ m , i - l / 2 , j , k )  + - ( v n i , i , j + l / 2 , k  q n i  - W m , i , j - l / 2 , k  

h i  AYj 
7 

where, 



f 

and 

(7a-7c) 

The definitions for the source moments are obtained by replacing v with S in Eqs. (6)-(7). The average 

and first spatial angular fluxes moments on the outgoing faces are defined as: 

(9a-9b) 

( l la- l lb)  

(13a- 13b) 

At this point, we have four equations with thirteen unknowns. To obtain the auxiliary equations we 

assume an exponential representation for the angular flux within each cell. Using information theory6, we 

find that this representation is given by 



To find anl,l.j,k, xl,r,j,k, Xi,r,j,kand xl,i,l,k, we apply our definitions for the zeroth, x, y and z spatial 

moments of the angular flux. Inserting Eq.( 14) into Eqs.(6) - (7), we obtain 

and 

( 16a- 16c) 

Next, we use Eq.(14) to obtain our auxiliary equations. We assume that the angular fluxes are 

discontinuous at the edges of the cell. Inserting Eq.(14) into Eqs.(8) to (13) gives the following nine 

auxiliary equations: 
'IX 

' IZ 

To summarize, the ED equations are given by Eq.(2)-(5),( 16) and (18)-(23). 

The ED equations are solved somewhat differently than existing linear differencing schemes since it is 

inherently nonlinear. As with most discrete-ordinates schemes, we use source-iteration (SI) to iteratively 
solve for the scattering source. However, for within cell calculations, the ED equations are solved using 

Newton-Raphson iterations for the cell average scalar fluxes and moments and the scalar fluxes and 



moments on the outgoing faces. All within cell Newton-Raphson iterations are initialized with 

Ax, A,,, Az = 0, which from practical experience appears to be the most robust. Current studies are ongoing 

to obtain a diffusion accelerated solution method for the ED scheme. Ths  has been done in slab geometry 

but has not been extended to multidimensional geometries. 

Having coded the ED scheme and solution method, we encountered difficulties with problems with 

anisotropic scattering, when the truncated Legendre expansion of the discrete-ordinate source leads to 

negative sources. In order for a solution to be possible, the ED scheme requires that the solution be 

positive everywhere or negative everywhere. This results from information theory (maximum entropy). 

Therefore, it appears that solutions to the ED scheme can only be obtained if the scattering source is 
positive everywhere in the problem. Current investigations are ongoing to obtain positive discrete-ordinate 

sources regardless of the Legendre expansion of the scattering source. 

111. Numerical Results 

In this section we provide results for one test problem We compare the ED scheme with the linear 

discontinuous (LD), constant-linear nodal with negative flux fix-up (CLN/F) and adaptive weighted 

diamond difference (AWDD) schemes. The LD scheme does not use any negative flux fixup method. 

We cannot compare with the NC/EC scheme since it has not been developed and implemented in x-y-z 

geometry with hexahedral me shes. 

The physical problem is a 120-cm cube of an iron alloy, in which is centered a 119-cm cube of an aqueous 

solution, in which is centered a 40-cm cube of the iron alloy, in which is centered a 10-cm cube of the 
aqueous solution that contains the source. Symmetry allows us to consider only one octant (a 60-cm cube) 

with reflecting boundaries on the bottom, left and front sides and vacuum boundaries on the top, right and 

back sides. The source emits 73.9 % of its neutrons in the first of three energy groups, with the remaining 
26.1 % in the second energy group. We use an S4 quadrature set and isotropic scattering cross sections. 

The cross sections for the aqueous solution are given in Table 1 and the cross section for the iron alloy are 

given in Table 2. All calculations are converged to a relative error of 10-3. 

In Figures 1 to 3 we present some results for the this test problem. Here, for each energy group, the 

scalar flux is given, for various mesh sizes, at a detector located at 59.5 cm5xS60 .0  cm, 

59.5 cm 5 y 560.0 cm, and 59.5 cm 5 z 560.0 cm. The coarsest mesh is 5 x 5 x 5 (5 cells along each 

spatial axis) and the finest mesh is 57 x 57 x 57. If a data point representing the solution for a given 

scheme at a given mesh does not appear on the graph, then it lies outside the domain of the graph or was a 
negative value. Negative solutions only appeared for the LD scheme. We observe that the ED scheme is 

far more accurate than the other schemes especially at the coarse meshes. Obtaining accurate fluxes at such 

localized locations is much more difficult that an integral quantity, such as the total leakage, especially in a 
deep-penetration problem such as this. We note that the ED scheme did not generate any negative fluxes. 
We also note that the error in the ED solution was never more than a factor of two for the coarsest meshes; 

all other scheme were off by several orders of magnitude at the coarsest meshes. Also, the AWDD scheme 

is not monotonically converging at the refined meshes. 

For this problem the ED scheme took, on average, 4 times longer than the CLNiF scheme and 10 times 

longer than the AWDD on a per cell, per angle basis. Timing comparisons were not made with the LD 

scheme, since the implementation is not optimized for accurate comparisons. 



IV. DISCUSSION 

We have extended the ED scheme to x-y-z geometry with hexahedral meshes and implemented it into the 

THREEDANTTM code. One of the main advantages of the ED scheme is that it produces strictly positive 
angular fluxes. We have tested the scheme on a variety of problems, including the one in this paper, and 

have found that it is very accurate for deep-penetration problems with optically thick spatial meshes. 

We are in the process of extending the ED scheme to x-y-z geometry with unstructured tetrahedral meshes. 
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Table 1 : Cross Section Data for Aqueous Solution 

I Group Number I or, g 

(g> 
1 0.2656 0.1600 0.0000 

2 1.1745 0.8220 0.1052 

3 3.2759 2.2980 0.0730 2 

Table 2: Cross Section Data for Iron Alloy 

(8) 
1 I 0.2 163 1 0.1760 0.0000 

I 2 I 0.3255 I 0.2500 I 0.0399 I 
I 3 I 1.1228 1 0.7982 1 0.0001 1 
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Figure 1 : Group 1 Scalar Fluxes at the Detector Location 
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Figure 2: Group 2 Scalar Fluxes at the Detector Location 
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Figure 3: Group 3 Scalar Fluxes at the Detector Location 


