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An Exponential Number of
Generalized Kerdock Codes

WILLIAM M. KANTOR*

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

If n—1 is an odd composite integer then there are at least 2”/2’\/; pairwise
inequivalent binary error-correcting codes of length 2", size 2", and minimum
distance 27! — 2/ =1

1. INTRODUCTION

If a subcode of the second order Reed—Muller code of length 2" has
minimum distance 277! —2@/2"~1 then it has at most 2?” words. A
generalized Kerdock code is defined to be such a subcode in which this
maximum is attained. Such codes were first constructed by Kerdock [7]. His
codes are extended cyclic codes, in the sense that there is an automorphism
of order 2" — 1 fixing one coordinate and cyclically permuting the remaining
ones. In this note we will construct a large number of cyclic generalized
Kerdock codes:

THEOREM 1. If n—1 is odd and composite, then there are more than
2DV pairwise inequivalent extended cyclic generalized Kerdock codes of
length 2".

For the same values of n, we will also construct more than 2(/2Vn
pairwise inequivalent generalized Kerdock codes of length 2" which are not
extended cyclic.

There is a well-known formal duality between Kerdock codes and
Preparata codes: their weight-enumerators are related in the same manner as
are those of a linear code and its dual [5; 8, p. 468). However, the weight
enumerators of all generalized Kerdock codes of length 2" coincide [8,
p. 668], which suggests that the aforementioned apparent relationship is
merely a coincidence. It should be noted that fewer than n “generalized
Preparata codes” of length 2" are presently known [1, 6].
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All generalized Kerdock codes also have design-theoretic properties in
commorn. The codewords of each weight in such a code form a 3-design [8,
pp. 162, 461].

This article can be regarded as a continuation of [4, 5]: several results
found near the beginning of those articles will be used. However, in order to
prove Theorem 1 only rough estimates will be required, instead of the precise
discussions of equivalence found in those articles.

2. KERDOCK SETS

A binary Kerdock set % is a set of 2"~! binary skew symmetric # X #
matrices, each having zero diagonal, such that the sum of any two is
nonsingular. Clearly, n must be even. We will always assume that 0 € %",

Corresponding to each Kerdock set % is a generalized Kerdock code
C(7"), defined as follows. Each M = (u;;) € % determines a quadratic form
Ou(x)) = 20 %, x;, where (x;) € 7. Let L denote a linear functional on
75. Then C(Z) consists of all subsets of Z% which are the zero sets of
functions of the form Q,,(v) + L(v) + ¢, where M ranges through %, L is an
arbitrary linear functional, and c¢ is constant (so ¢=0 or 1). A proof that
this defines a generalized Kerdock code can be found in [2]. Letting M =0,
we see that C(.7") contains the first order Reed—Muller code C,.

Lemma 1. (i) Aut C(%") is contained in the group of all affine
transformations of 1.

(ii) Aut C(%¥") contains all translations v—v + b of 77,
(iil) Aut C(7") is transitive on coordinates.
Proof. (i) Since C, consists of all words in C(.%#") of weight 0, 2" or
2771, Aut C(7) < Aut C,.

(ii) Let v=(x;) and M = (u;) € %" with Q,,(v) =0. Set b= (b;) and
(y;)=v -+ b. Then

0= 2 uyxix;= > (v + b)) + by)

i<y i<j

=D Myt X Hbiy X byt X uybiby,

i<j i<j i<j i<j
so that (y,) — C(.%).
(iii) This is immediate in view of (ii).

LemMma 2. Let %" and %' be Kerdock sets of n X n matrices. Then
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C(%¥") and C(F"") are equivalent if and only if there is a nonsingular n X n
matrix A such that the transformation M - AMA" sends %" to %".

Proof. let g1 C(7")> C(Z") be an equivalence. Since g sends C, to
itself, g is induced by an affine transformation of Z35. By Lemma 1(ii), we
may assume that g has the form v — v4 ~' for some nonsingular matrix 4 .

Let M = (u,;) €%, and write 4 = (a;). If (x;) € C(%") and Q,((x;)) =0,
set (y;) = (x;)4 " and compute as follows.

0= Z HijXiXy = Z Mij (; ykaki) (Z[ y,d,,-)

i<j i<j

ZZ <Z akiﬂijalj)ykyl'

kI \i<j

Let vy =" ; aptty;a, and ¢, = 3 ; @yt;;0,. Then

0= Z Vi VeI t Z Cr Vi
k<t X
It follows that (v,;) = AMA' € %", as required. The converse is obtained by
reversing this argument.

Lemma 2 reduces the proof of Theorem 1 to the construction of
sufficiently many Kerdock sets. The next reduction involves orthogonal
geometry. .

Define the quadratic form Q on 73" by Q((x;)) =7, X;X;.,. A vector
(x;) is singular if Q((x;)) =0. Let E be the n-space in 73" defined by x; =0
for i> n; similarly, let F be defined by x,=0 for i n Then Q(E)=
Q(F) = 0: these are totally singular (t.s.) n-spaces.

Let % be any Kerdock set of n X n matrices, and define (%) as
follows:

S E F I Mexw
-l ) e

Then .%7(.%") is an orthogonal spread: a family of 2" ' + 1 t.s. n-spaces such
that every nonzero singular vector is in exactly one of them [4, Sect. 5].
Conversely, each orthogonal spread containing E and F produces a Kerdock
set: just reverse this construction. Moreover, if .¥(#") and (%) are two
orthogonal spreads which are inequivalent under the orthogonal group
O*(2n,2), then Lemma 2 and [4, (5.4)] imply that C(#") and C(%"') are
inequivalent codes.

LemMMma 3. Let (%) be as above, and assume thalt there is an
orthogonal transformation of order 2"~' — 1 fixing E and F and cyclically
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permuting the remaining members of & (%"). Then C(%") is an extended
cyclic code.

Proof. The given transformation can be viewed as a matrix (§ ), where
A, B and O are n X n matrices. Since Q is preserved, B= (4 ')". The
calculation used in Lemma 2 shows that the linear transformation
M — AMA' acts on C(.%") as desired (compare [4, (5.4)]).

In order to prove Theorem 1, we can now ignore codes and focus on
spreads. Thus, Theorem 1 is an immediate consequence of the next result
(for g =2). ’

THEOREM 2. [If g is even and n— 1 is odd and composite, then an
Q+(2n, q) space has more than ¢"/?V" pairwise inequivalent spreads each of
which admits an orthogonal automorphism fixing two members and cyclically
permuting the remaining ones.

Here, an 2% (2n, g) space is (up to a change of coordinates) the vector
space GF(g)*" equipped with the quadratic form Q((x,))=>""_, XX, - A
vector (x;) or 1-space ((x,)) is called singular if Q((x,)) = 0 and nonsingular
otherwise; and a subspace F is again called ¢.s. if Q(E) = 0. A spread of such
a space is a family of ¢"~' + 1 t.s. n-spaces partitioning the nonzero singular
vectors. Equivalence is defined in terms of the group I'O*(2n,q) of
semilinear transformations preserving Q projectively (cf. [4, Sect. 2]); when
g = 2 this is just the orthogonal group determined by Q.

There is also a bilinear form (u, v) = Q(u + v) + Q(u) + Q(v) on GF(g)*",
and hence a notion of perpendicularity. If S is any subset of GF(g)*" then
St={v€V|(v,S)=0}. If y is any l-space then y — p* (since (v, v) =0 for
any vector v), and we can form the quotient space y'/y. This inherits the
form (u,v) via (u+ y,v+ y)=(u,v), but it does not inherit Q if y is
nonsingular. A subspace X of y*/y is called torally isotropic if (X, X)=0.

For further background, see [4, 5].

3., PROOF OoF THEOREM 2

Set n — 1 = me, where e >m > 1.

In [3; 4, Sect. 3|, a spread X of an QF (2m + 2, ¢°) space was constructed
(called a desarguesian orthogonal spread). Here, X~ admits an orthogonal
automorphism g of order (g€)™ — 1 fixing two members of X and cyclically
permuting the others. The proof of Theorem 2 will consist of suitably
modifying X as described in [5, Sect. 2].

The transformation g fixes ¢° — 1 nonsingular 1-spaces vy of the underlying
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vector space. The 2m-dimensional space y*/y inherits a symplectic structure.
The family

Z(y)={rny nX)/y|xex)

consists of (g°)” + 1 totally isotropic m — l-spaces which partition the set of
all nonzero vectors in y*/y. Turn y*/y into a 2me-dimensional symplectic
space over GF(q) (by following the bilinear form on y*/y with the trace map
GF(g°) > GF(q)). Then X(y) becomes a family X(y)¢ of g™ + 1 totally
isotropic me-spaces which still partitions the nonzero vectors in y'/y. Note
that g induces a symplectic transformation of y*/y preserving both X(y) and
Z(y)¢, and permuting their members exactly as it permutes those of X.

Let ¥ be an 2% (2me + 2, q) space. Fix a nonsingular 1-space z of V, and
identify z'/z with yp*/y. Then the family X(y)° determines an essentially
unique orthogonal spread X (called S(X(y)¢) in [5, Sect. 2]) such that
2¥(z) = X(y)°. Moreover, g extends to an orthogonal transformation g* of
fixing z, preserving X and permuting ¥ as required in Theorem 2.

We will show that, as y ranges over the original set of g° — 1 nonsingular
l-spaces in the 2%(2m+ 2,¢°) space we started with, ¥ ranges over
sufficiently many pairwise inequivalent 2+ (2me + 2, g) spreads.

Consider the symplectic spreads Z{p)°. If N is the number of pairwise
inequivalent symplectic spreads of this sort, then N > (¢° — 2)/(2 log, ¢°) (by
[4, (4.2) or (3.5)]). These produce N orthogonal spreads X”. Since
N/(g + 1) > ¢""/»V", Theorem 2 is a consequence of the following lemma.

LEMMA 4. There do not exist g+ 2 choices y(1),..., y(g + 2) for y such
that the symplectic spreads X(y(i)) are pairwise inequivalent while the
orthogonal spreads X*\" are pairwise equivalent.

Proof. Fix y, and let V, z and g* be as above. There is a prime
r|q™ — 1 such that r}y2' — 1 whenever 1 < 2° < g°" [9]. Let (k) be a Sylow
r-subgroup of (g*). Then <(h) is also a Sylow r-subgroup of
T'O*(2me + 2, q). Since & induces the identity on both z and V/z", there is a
2-space Z in V on which h induces the identity. Then A acts on
Z*/(Z N Z*); using the order of A, we find that ZM Z* =0 and Z consists
of all vectors fixed by % Let G consist of all elements of I'O*(2me + 2, q)
preserving X7,

Now consider two further choices y’ and y” such that Z(»)*, £(y')° and
Z(y")¢ are pairwise inequivalent but such that 2¥ is equivalent to both X7 '
and Z". Define V', z', k', Z', G' and V", z", Z" in the obvious manner. We
may assume that V'=V' = V",

Let ¢, w € TO* (2me + 2, q), where (£¥)° = £¥ and (V)¢ = 27,

Clearly, G’ =G and {(#') is a Sylow r-subgroup of G. Thus, we may
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assume that A’®=~h. Then Z'°=Z. Similarly, we may assume that
anl =Z.
The points z, z'® and z’? are all different. For example, if z'® = z”¢ then
ow ! sends Z¥'(z') to Z¥"(z"), whereas X(y')¢ and Z(y")¢ are inequivalent.
Thus, if we leave y fixed and vary y’, there are at most g possibilities for
z'?. This proves the lemma, and completes the proof of Theorems 1 and 2.

4, CONCLUDING REMARKS

1. Replacing ()" — 1 by (g°)™ + 1 throughout Section 3, we obtain
the following result.

THEOREM 3. If g is even and n—1 is odd and composite, then an
Q*(2n, q) space has more than ¢q"/*V" pairwise inequivalent spreads, each
of which admits an orthogonal automorphism cyclically permuting its

n—1

q + 1 members.

Moreover, no orthogonal spread arising in Theorem 3 can be equivalent to
any appearing in Theorem 2 (by [5, (3.3)]). Similarly, no generalized
Kerdock code arising from Theorem 3 (with ¢ = 2) can be extended cyclic.

2. In Section 3, Z has only g — 1 nonsingular 1-spaces. The estimates
leading to g/?V™ are very crude.

3. The Kerdock sets implicitly constructed in Section 3 are given
explicitly in [5, (9.2)]. However, it is not clear how to choose more than
20/2VF of them which produce pairwise inequivalent codes.

It seems likely that £ and £* are inequivalent whenever Z(y) and X(y’)
are.
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