An Exponential Number of Generalized Kerdock Codes

WILLIAM M. KANTOR*

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

If n-1 is an odd composite integer then there are at least $2^{(1/2)}\sqrt{n}$ pairwise inequivalent binary error-correcting codes of length 2^n , size 2^{2n} , and minimum distance $2^{n-1}-2^{(1/2)n-1}$.

1. INTRODUCTION

If a subcode of the second order Reed-Muller code of length 2^n has minimum distance $2^{n-1} - 2^{(1/2)n-1}$ then it has at most 2^{2n} words. A generalized Kerdock code is defined to be such a subcode in which this maximum is attained. Such codes were first constructed by Kerdock [7]. His codes are extended cyclic codes, in the sense that there is an automorphism of order $2^n - 1$ fixing one coordinate and cyclically permuting the remaining ones. In this note we will construct a large number of cyclic generalized Kerdock codes:

THEOREM 1. If n-1 is odd and composite, then there are more than $2^{(1/2)\sqrt{n}}$ pairwise inequivalent extended cyclic generalized Kerdock codes of length 2^n .

For the same values of *n*, we will also construct more than $2^{(1/2)\sqrt{n}}$ pairwise inequivalent generalized Kerdock codes of length 2^n which are not extended cyclic.

There is a well-known formal duality between Kerdock codes and Preparata codes: their weight-enumerators are related in the same manner as are those of a linear code and its dual [5; 8, p. 468]. However, the weight enumerators of all generalized Kerdock codes of length 2^n coincide [8, p. 668], which suggests that the aforementioned apparent relationship is merely a coincidence. It should be noted that fewer than n "generalized Preparata codes" of length 2^n are presently known [1, 6].

^{*} This research was supported in part by NSF Grant MCS 79-03130.

All generalized Kerdock codes also have design-theoretic properties in common. The codewords of each weight in such a code form a 3-design [8, pp. 162, 461].

This article can be regarded as a continuation of [4, 5]: several results found near the beginning of those articles will be used. However, in order to prove Theorem 1 only rough estimates will be required, instead of the precise discussions of equivalence found in those articles.

2. Kerdock Sets

A binary Kerdock set \mathscr{H} is a set of 2^{n-1} binary skew symmetric $n \times n$ matrices, each having zero diagonal, such that the sum of any two is nonsingular. Clearly, n must be even. We will always assume that $0 \in \mathscr{H}$.

Corresponding to each Kerdock set \mathscr{K} is a generalized Kerdock code $C(\mathscr{K})$, defined as follows. Each $M = (\mu_{ij}) \in \mathscr{K}$ determines a quadratic form $Q_M((x_i)) = \sum_{i < j} \mu_{ij} x_i x_j$, where $(x_i) \in \mathbb{Z}_2^n$. Let L denote a linear functional on \mathbb{Z}_2^n . Then $C(\mathscr{K})$ consists of all subsets of \mathbb{Z}_2^n which are the zero sets of functions of the form $Q_M(v) + L(v) + c$, where M ranges through \mathscr{K} , L is an arbitrary linear functional, and c is constant (so c = 0 or 1). A proof that this defines a generalized Kerdock code can be found in [2]. Letting M = 0, we see that $C(\mathscr{K})$ contains the first order Reed-Muller code C_0 .

LEMMA 1. (i) Aut $C(\mathscr{H})$ is contained in the group of all affine transformations of \mathbb{Z}_2^n .

- (ii) Aut $C(\mathcal{H})$ contains all translations $v \to v + b$ of \mathbb{Z}_2^n .
- (iii) Aut $C(\mathcal{H})$ is transitive on coordinates.

Proof. (i) Since C_0 consists of all words in $C(\mathcal{H})$ of weight 0, 2^n or 2^{n-1} , Aut $C(\mathcal{H}) \leq \text{Aut } C_0$.

(ii) Let $v = (x_i)$ and $M = (\mu_{ij}) \in \mathscr{H}$ with $Q_M(v) = 0$. Set $b = (b_i)$ and $(y_i) = v + b$. Then

$$0 = \sum_{i < j} \mu_{ij} x_i x_j = \sum_{i < j} \mu_{ij} (y_i + b_i) (y_j + b_j)$$

= $\sum_{i < j} \mu_{ij} y_i y_j + \sum_{i < j} \mu_{ij} b_i y_j + \sum_{i < j} \mu_{ij} b_j y_i + \sum_{i < j} \mu_{ij} b_i b_j.$

so that $(y_i) - C(\mathcal{H})$.

(iii) This is immediate in view of (ii).

LEMMA 2. Let \mathscr{K} and \mathscr{K}' be Kerdock sets of $n \times n$ matrices. Then

 $C(\mathcal{H})$ and $C(\mathcal{H}')$ are equivalent if and only if there is a nonsingular $n \times n$ matrix A such that the transformation $M \to AMA^t$ sends \mathcal{H} to \mathcal{H}' .

Proof. Let $g: C(\mathscr{H}) \to C(\mathscr{H}')$ be an equivalence. Since g sends C_0 to itself, g is induced by an affine transformation of \mathbb{Z}_2^n . By Lemma 1(ii), we may assume that g has the form $v \to vA^{-1}$ for some nonsingular matrix A^{-1} .

Let $M = (\mu_{ij}) \in \mathscr{H}$, and write $A = (a_{ij})$. If $(x_i) \in C(\mathscr{H})$ and $Q_M((x_i)) = 0$, set $(y_i) = (x_i) A^{-1}$ and compute as follows.

$$0 = \sum_{i < j} \mu_{ij} x_i x_j = \sum_{i < j} \mu_{ij} \left(\sum_k y_k a_{ki} \right) \left(\sum_l y_l a_{lj} \right)$$
$$= \sum_{k,l} \left(\sum_{i < j} a_{ki} \mu_{ij} a_{lj} \right) y_k y_l.$$

Let $v_{kl} = \sum_{i,j} a_{ki} \mu_{ij} a_{lj}$ and $c_k = \sum_{i < j} a_{ki} \mu_{ij} a_{kj}$. Then

$$0 = \sum_{k < l} v_{kl} y_k y_l + \sum_k c_k y_k.$$

It follows that $(v_{kl}) = AMA^t \in \mathcal{K}'$, as required. The converse is obtained by reversing this argument.

Lemma 2 reduces the proof of Theorem 1 to the construction of sufficiently many Kerdock sets. The next reduction involves orthogonal geometry.

Define the quadratic form Q on \mathbb{Z}_{2}^{2n} by $Q((x_i)) = \sum_{i=1}^{n} x_i x_{i+n}$. A vector (x_i) is singular if $Q((x_i)) = 0$. Let E be the *n*-space in \mathbb{Z}_{2}^{2n} defined by $x_i = 0$ for i > n; similarly, let F be defined by $x_i = 0$ for $i \le n$. Then Q(E) = Q(F) = 0: these are totally singular (t.s.) *n*-spaces.

Let \mathscr{K} be any Kerdock set of $n \times n$ matrices, and define $\mathscr{S}(\mathscr{K})$ as follows:

$$\mathscr{S}(\mathscr{H}) = \{E\} \cup \left\{ F \begin{pmatrix} I & 0 \\ M & I \end{pmatrix} \mid M \in \mathscr{H} \right\}.$$

Then $\mathscr{S}(\mathscr{K})$ is an orthogonal spread: a family of $2^{n-1} + 1$ t.s. *n*-spaces such that every nonzero singular vector is in exactly one of them [4, Sect. 5]. Conversely, each orthogonal spread containing E and F produces a Kerdock set: just reverse this construction. Moreover, if $\mathscr{S}(\mathscr{K})$ and $\mathscr{S}(\mathscr{K}')$ are two orthogonal spreads which are inequivalent under the orthogonal group $O^+(2n, 2)$, then Lemma 2 and [4, (5.4)] imply that $C(\mathscr{K})$ and $C(\mathscr{K}')$ are inequivalent codes.

LEMMA 3. Let $\mathscr{S}(\mathscr{K})$ be as above, and assume that there is an orthogonal transformation of order $2^{n-1} - 1$ fixing E and F and cyclically

permuting the remaining members of $\mathcal{S}(\mathcal{K})$. Then $C(\mathcal{K})$ is an extended cyclic code.

Proof. The given transformation can be viewed as a matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A, B and 0 are $n \times n$ matrices. Since Q is preserved, $B = (A^{-1})^t$. The calculation used in Lemma 2 shows that the linear transformation $M \to AMA^t$ acts on $C(\mathscr{K})$ as desired (compare [4, (5.4)]).

In order to prove Theorem 1, we can now ignore codes and focus on spreads. Thus, Theorem 1 is an immediate consequence of the next result (for q = 2).

THEOREM 2. If q is even and n-1 is odd and composite, then an $\Omega^+(2n,q)$ space has more than $q^{(1/2)\sqrt{n}}$ pairwise inequivalent spreads each of which admits an orthogonal automorphism fixing two members and cyclically permuting the remaining ones.

Here, an $\Omega^+(2n,q)$ space is (up to a change of coordinates) the vector space $GF(q)^{2n}$ equipped with the quadratic form $Q((x_i)) = \sum_{i=1}^{n} x_i x_{n+i}$. A vector (x_i) or 1-space $\langle (x_i) \rangle$ is called *singular* if $Q((x_i)) = 0$ and *nonsingular* otherwise; and a subspace E is again called t.s. if Q(E) = 0. A spread of such a space is a family of $q^{n-1} + 1$ t.s. *n*-spaces partitioning the nonzero singular vectors. Equivalence is defined in terms of the group $\Gamma O^+(2n,q)$ of semilinear transformations preserving Q projectively (cf. [4, Sect. 2]); when q = 2 this is just the orthogonal group determined by Q.

There is also a bilinear form (u, v) = Q(u + v) + Q(u) + Q(v) on $GF(q)^{2n}$, and hence a notion of perpendicularity. If S is any subset of $GF(q)^{2n}$ then $S^{\perp} = \{v \in V \mid (v, S) = 0\}$. If y is any 1-space then $y \subset y^{\perp}$ (since (v, v) = 0 for any vector v), and we can form the quotient space y^{\perp}/y . This inherits the form (u, v) via (u + y, v + y) = (u, v), but it does not inherit Q if y is nonsingular. A subspace X of y^{\perp}/y is called *totally isotropic* if (X, X) = 0.

For further background, see [4, 5].

3. PROOF OF THEOREM 2

Set n - 1 = me, where $e \ge m > 1$.

In [3; 4, Sect. 3], a spread Σ of an $\Omega^+(2m+2, q^e)$ space was constructed (called a desarguesian orthogonal spread). Here, Σ admits an orthogonal automorphism g of order $(q^e)^m - 1$ fixing two members of Σ and cyclically permuting the others. The proof of Theorem 2 will consist of suitably modifying Σ as described in [5, Sect. 2].

The transformation g fixes $q^e - 1$ nonsingular 1-spaces y of the underlying

vector space. The 2*m*-dimensional space y^{\perp}/y inherits a symplectic structure. The family

$$\Sigma(y) = \{ \langle y, y^{\perp} \cap X \rangle / y \mid x \in \Sigma \}$$

consists of $(q^e)^m + 1$ totally isotropic m - 1-spaces which partition the set of all nonzero vectors in y^{\perp}/y . Turn y^{\perp}/y into a 2me-dimensional symplectic space over GF(q) (by following the bilinear form on y^{\perp}/y with the trace map $GF(q^e) \rightarrow GF(q)$). Then $\Sigma(y)$ becomes a family $\Sigma(y)^e$ of $q^{me} + 1$ totally isotropic me-spaces which still partitions the nonzero vectors in y^{\perp}/y . Note that g induces a symplectic transformation of y^{\perp}/y preserving both $\Sigma(y)$ and $\Sigma(y)^e$, and permuting their members exactly as it permutes those of Σ .

Let V be an $\Omega^+(2me+2, q)$ space. Fix a nonsingular 1-space z of V, and identify z^{\perp}/z with y^{\perp}/y . Then the family $\Sigma(y)^e$ determines an essentially unique orthogonal spread Σ^y (called $\mathbf{S}(\Sigma(y)^e)$ in [5, Sect. 2]) such that $\Sigma^y(z) = \Sigma(y)^e$. Moreover, g extends to an orthogonal transformation g^* of V fixing z, preserving Σ^y and permuting Σ^y as required in Theorem 2.

We will show that, as y ranges over the original set of $q^e - 1$ nonsingular 1-spaces in the $\Omega^+(2m+2, q^e)$ space we started with, Σ^y ranges over sufficiently many pairwise inequivalent $\Omega^+(2me+2, q)$ spreads.

Consider the symplectic spreads $\Sigma(y)^e$. If N is the number of pairwise inequivalent symplectic spreads of this sort, then $N \ge (q^e - 2)/(2 \log_2 q^e)$ (by [4, (4.2) or (3.5)]). These produce N orthogonal spreads Σ^y . Since $N/(q+1) > q^{(1/2)\sqrt{n}}$, Theorem 2 is a consequence of the following lemma.

LEMMA 4. There do not exist q + 2 choices y(1),..., y(q + 2) for y such that the symplectic spreads $\Sigma(y(i))$ are pairwise inequivalent while the orthogonal spreads $\Sigma^{y(i)}$ are pairwise equivalent.

Proof. Fix y, and let V, z and g^* be as above. There is a prime $r | q^{me} - 1$ such that $r \nmid 2^i - 1$ whenever $1 < 2^i < q^{em}$ [9]. Let $\langle h \rangle$ be a Sylow r-subgroup of $\langle g^* \rangle$. Then $\langle h \rangle$ is also a Sylow r-subgroup of $\Gamma O^+(2me+2,q)$. Since h induces the identity on both z and V/z^{\perp} , there is a 2-space Z in V on which h induces the identity. Then h acts on $Z^{\perp}/(Z \cap Z^{\perp})$; using the order of h, we find that $Z \cap Z^{\perp} = 0$ and Z consists of all vectors fixed by h. Let G consist of all elements of $\Gamma O^+(2me+2,q)$ preserving Σ^y .

Now consider two further choices y' and y'' such that $\Sigma(y)^e$, $\Sigma(y')^e$ and $\Sigma(y'')^e$ are pairwise inequivalent but such that Σ^y is equivalent to both $\Sigma^{y'}$ and $\Sigma^{y''}$. Define V', z', h', Z', G' and V'', z'', Z'' in the obvious manner. We may assume that V = V' = V''.

Let $\varphi, \psi \in \Gamma O^+(2me+2, q)$, where $(\Sigma^{y'})^{\varphi} = \Sigma^y$ and $(\Sigma^{y''})^{\psi} = \Sigma^y$.

Clearly, $G'^{\circ} = G$ and $\langle h' \rangle$ is a Sylow r-subgroup of G. Thus, we may

assume that $h'^{\phi} = h$. Then $Z'^{\phi} = Z$. Similarly, we may assume that $Z''^{\phi} = Z$.

The points z, z'^{φ} and z'^{ψ} are all different. For example, if $z'^{\varphi} = z''^{\psi}$ then $\varphi \psi^{-1}$ sends $\Sigma''(z')$ to $\Sigma'''(z'')$, whereas $\Sigma(y')^e$ and $\Sigma(y'')^e$ are inequivalent.

Thus, if we leave y fixed and vary y', there are at most q possibilities for z'^{φ} . This proves the lemma, and completes the proof of Theorems 1 and 2.

4. CONCLUDING REMARKS

1. Replacing $(q^e)^m - 1$ by $(q^e)^m + 1$ throughout Section 3, we obtain the following result.

THEOREM 3. If q is even and n-1 is odd and composite, then an $\Omega^+(2n,q)$ space has more than $q^{(1/2)\sqrt{n}}$ pairwise inequivalent spreads, each of which admits an orthogonal automorphism cyclically permuting its $q^{n-1} + 1$ members.

Moreover, no orthogonal spread arising in Theorem 3 can be equivalent to any appearing in Theorem 2 (by [5, (3.3)]). Similarly, no generalized Kerdock code arising from Theorem 3 (with q = 2) can be extended cyclic.

2. In Section 3, Z has only q-1 nonsingular 1-spaces. The estimates leading to $q^{(1/2)\sqrt{n}}$ are very crude.

3. The Kerdock sets implicitly constructed in Section 3 are given explicitly in [5, (9.2)]. However, it is not clear how to choose more than $2^{(1/2)\sqrt{n}}$ of them which produce pairwise inequivalent codes.

It seems likely that Σ^{y} and $\Sigma^{y'}$ are inequivalent whenever $\Sigma(y)$ and $\Sigma(y')$ are.

References

- 1. BAKER, R. D., AND WILSON, R. M., unpublished.
- 2. CAMERON, P. J., AND SEIDEL, J. J., Quadratic forms over GF(2), Nederl. Akad. Wetensch. Proc. Ser. A 76 (1973), 1–8.
- 3. Dye, R. H., Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Pura Appl. (4) 114 (1977), 173-194.
- KANTOR, W. M., Spreads, translation planes and Kerdock sets, I, SIAM J. Disc. Alg. Methods 3 (1982), 151-165.
- 5. KANTOR, W. M., Spreads, translation planes and Kerdock sets, II, SIAM J. Disc. Alg. Methods 3 (1982), 308-318.

WILLIAM M. KANTOR

- 6. KANTOR, W. M., On the inequivalence of generalized Preparata codes, *IEEE Trans. Inform. Theory*, in press.
- 7. KERDOCK, A. M., A class of low-rate non-linear binary codes, Inform. and Control 20 (1972), 182-187.
- 8. MACWILLIAMS, F. J., AND SLOANE, N. J. A., "The Theory of Error-Correcting Codes," North-Holland, Amsterdam, 1977.
- 9. ZSIGMONDY, K., Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.