An Exponential Number of Generalized Kerdock Codes

William M. Kantor*
Department of Mathematics, University of Oregon, Eugene, Oregon 97403

If $n-1$ is an odd composite integer then there are at least $2^{(1 / 2)} \sqrt{n}$ pairwise inequivalent binary error-correcting codes of length 2^{n}, size $2^{2 n}$, and minimum distance $2^{n-1}-2^{(1 / 2) n-1}$.

1. Introduction

If a subcode of the second order Reed-Muller code of length 2^{n} has minimum distance $2^{n-1}-2^{(1 / 2) n-1}$ then it has at most $2^{2 n}$ words. A generalized Kerdock code is defined to be such a subcode in which this maximum is attained. Such codes were first constructed by Kerdock [7]. His codes are extended cyclic codes, in the sense that there is an automorphism of order $2^{n}-1$ fixing one coordinate and cyclically permuting the remaining ones. In this note we will construct a large number of cyclic generalized Kerdock codes:

Theorem 1. If $n-1$ is odd and composite, then there are more than $2^{(1 / 2) \sqrt{n}}$ pairwise inequivalent extended cyclic generalized Kerdock codes of length 2^{n}.

For the same values of n, we will also construct more than $2^{(1 / 2) \sqrt{n}}$ pairwise inequivalent generalized Kerdock codes of length 2^{n} which are not extended cyclic.

There is a well-known formal duality between Kerdock codes and Preparata codes: their weight-enumerators are related in the same manner as are those of a linear code and its dual [5; 8, p. 468]. However, the weight enumerators of all generalized Kerdock codes of length 2^{n} coincide [8, p. 668], which suggests that the aforementioned apparent relationship is merely a coincidence. It should be noted that fewer than n "generalized Preparata codes" of length 2^{n} are presently known $[1,6]$.

[^0]All generalized Kerdock codes also have design-theoretic properties in common. The codewords of each weight in such a code form a 3-design [8, pp. 162, 461].

This article can be regarded as a continuation of $[4,5]$: several results found near the beginning of those articles will be used. However, in order to prove Theorem 1 only rough estimates will be required, instead of the precise discussions of equivalence found in those articles.

2. Kerdock Sets

A binary Kerdock set \mathscr{K} is a set of 2^{n-1} binary skew symmetric $n \times n$ matrices, each having zero diagonal, such that the sum of any two is nonsingular. Clearly, n must be even. We will always assume that $0 \in \mathscr{F}$.

Corresponding to each Kerdock set \mathscr{K} is a generalized Kerdock code $C(\mathscr{K})$, defined as follows. Each $M=\left(\mu_{i j}\right) \in \mathscr{K}$ determines a quadratic form $Q_{M}\left(\left(x_{i}\right)\right)=\sum_{i<j} \mu_{i j} x_{i} x_{j}$, where $\left(x_{i}\right) \in \mathbb{Z}_{2}^{n}$. Let L denote a linear functional on \mathbb{Z}_{2}^{n}. Then $C(\mathscr{K})$ consists of all subsets of \mathbb{Z}_{2}^{n} which are the zero sets of functions of the form $Q_{M}(v)+L(v)+c$, where M ranges through \mathscr{R}, L is an arbitrary linear functional, and c is constant (so $c=0$ or 1). A proof that this defines a generalized Kerdock code can be found in [2]. Letting $M=0$, we see that $C(\mathscr{N})$ contains the first order Reed-Muller code C_{0}.

Lemma 1. (i) Aut $C\left(\mathcal{N}^{\circ}\right)$ is contained in the group of all affine transformations of \mathbb{Z}_{2}^{n}.
(ii) Aut $C(\mathscr{N})$ contains all translations $v \rightarrow v+b$ of \mathbb{Z}_{2}^{n}.
(iii) Aut $C(\mathscr{F})$ is transitive on coordinates.

Proof. (i) Since C_{0} consists of all words in $C(\mathscr{K})$ of weight $0,2^{n}$ or 2^{n-1}, Aut $C(\mathscr{E}) \leqslant$ Aut C_{0}.
(ii) Let $v=\left(x_{i}\right)$ and $M=\left(\mu_{i j}\right) \in \mathscr{K}$ with $Q_{M}(v)=0$. Set $b=\left(b_{i}\right)$ and $\left(y_{i}\right)=v+b$. Then

$$
\begin{aligned}
0 & =\sum_{i<j} \mu_{i j} x_{i} x_{j}=\sum_{i<j} \mu_{i j}\left(y_{i}+b_{i}\right)\left(y_{j}+b_{j}\right) \\
& =\sum_{i<j} \mu_{i j} y_{i} y_{j}+\sum_{i<j} \mu_{i j} b_{i} y_{j}+\sum_{i<j} \mu_{i j} b_{j} y_{i}+\sum_{i<j} \mu_{i j} b_{i} b_{j}
\end{aligned}
$$

so that $\left(y_{i}\right)-C(\mathscr{K})$.
(iii) This is immediate in view of (ii).

Lemma 2. Let \mathscr{K} and \mathscr{F}^{\prime} be Kerdock sets of $n \times n$ matrices. Then
$C(\mathscr{F})$ and $C\left(\mathscr{K}^{\prime \prime}\right)$ are equivalent if and only if there is a nonsingular $n \times n$ matrix A such that the transformation $M \rightarrow A M A^{t}$ sends \mathscr{K} to $\mathscr{K}^{\prime \prime}$.

Proof. Let $g: C(\mathscr{K}) \rightarrow C\left(\mathscr{R}^{\prime}\right)$ be an equivalence. Since g sends C_{0} to itself, g is induced by an affine transformation of \mathbb{Z}_{2}^{n}. By Lemma 1 (ii), we may assume that g has the form $v \rightarrow v A^{-1}$ for some nonsingular matrix A^{-1}.

Let $M=\left(\mu_{i j}\right) \in \mathscr{K}$, and write $A=\left(a_{i j}\right)$. If $\left(x_{i}\right) \in C(\mathscr{K})$ and $Q_{M}\left(\left(x_{i}\right)\right)=0$, set $\left(y_{i}\right)=\left(x_{i}\right) A^{-1}$ and compute as follows.

$$
\begin{aligned}
0 & =\sum_{i<j} \mu_{i j} x_{i} x_{j}=\sum_{i<j} \mu_{i j}\left(\sum_{k} y_{k} a_{k i}\right)\left(\sum_{l} y_{l} a_{l j}\right) \\
& =\sum_{k, l}\left(\sum_{i<j} a_{k i} \mu_{i j} a_{l j}\right) y_{k} y_{l}
\end{aligned}
$$

Let $v_{k l}=\sum_{i, j} a_{k i} \mu_{i j} a_{l j}$ and $c_{k}=\sum_{i<j} a_{k i} \mu_{i j} a_{k j}$. Then

$$
0=\sum_{k<l} v_{k l} y_{k} y_{l}+\sum_{k} c_{k} y_{k}
$$

It follows that $\left(v_{k l}\right)=A M A^{t} \in \mathscr{R}^{\prime}$, as required. The converse is obtained by reversing this argument.

Lemma 2 reduces the proof of Theorem 1 to the construction of sufficiently many Kerdock sets. The next reduction involves orthogonal geometry.

Define the quadratic form Q on $\mathbb{Z}_{2}^{2 n}$ by $Q\left(\left(x_{i}\right)\right)=\sum_{i=1}^{n} x_{i} x_{i+n}$. A vector $\left(x_{i}\right)$ is singular if $Q\left(\left(x_{i}\right)\right)=0$. Let E be the n-space in $\mathbb{Z}_{2}^{2 n}$ defined by $x_{i}=0$ for $i>n$; similarly, let F be defined by $x_{i}=0$ for $i \leqslant n$. Then $Q(E)=$ $Q(F)=0$: these are totally singular (t.s.) n-spaces.

Let \mathscr{K} be any Kerdock set of $n \times n$ matrices, and define $\mathscr{S}(\mathscr{K})$ as follows:

$$
\mathscr{P}(\mathscr{K})=\{E\} \cup\left\{\left.F\left(\begin{array}{cc}
I & 0 \\
M & I
\end{array}\right) \right\rvert\, M \in \mathscr{K}\right\}
$$

Then $\mathscr{S}(\mathscr{K})$ is an orthogonal spread: a family of $2^{n-1}+1$ t.s. n-spaces such that every nonzero singular vector is in exactly one of them [4, Sect. 5]. Conversely, each orthogonal spread containing E and F produces a Kerdock set: just reverse this construction. Moreover, if $\mathscr{S}\left(\mathscr{K}^{\prime}\right)$ and $\mathscr{S}\left(\mathscr{K}^{\prime}\right)$ are two orthogonal spreads which are inequivalent under the orthogonal group $O^{+}(2 n, 2)$, then Lemma 2 and $[4,(5.4)]$ imply that $C(\mathscr{K})$ and $C\left(\mathscr{K}^{\prime \prime}\right)$ are inequivalent codes.

Lemma 3. Let $\mathscr{S}(\mathscr{K})$ be as above, and assume that there is an orthogonal transformation of order $2^{n-1}-1$ fixing E and F and cyclically
permuting the remaining members of $\mathscr{S}(\mathscr{K})$. Then $C\left(\mathscr{K ^ { \prime }}\right)$ is an extended cyclic code.

Proof. The given transformation can be viewed as a matrix $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, where A, B and 0 are $n \times n$ matrices. Since Q is preserved, $B=\left(A^{-1}\right)^{t}$. The calculation used in Lemma 2 shows that the linear transformation $M \rightarrow A M A^{t}$ acts on $C(\mathscr{C})$ as desired (compare [4, (5.4)]).

In order to prove Theorem 1, we can now ignore codes and focus on spreads. Thus, Theorem 1 is an immediate consequence of the next result (for $q=2$).

Theorem 2. If q is even and $n-1$ is odd and composite, then an $\Omega^{+}(2 n, q)$ space has more than $q^{(1 / 2) \sqrt{n}}$ pairwise inequivalent spreads each of which admits an orthogonal automorphism fixing two members and cyclically permuting the remaining ones.

Here, an $\Omega^{+}(2 n, q)$ space is (up to a change of coordinates) the vector space $G F(q)^{2 n}$ equipped with the quadratic form $Q\left(\left(x_{i}\right)\right)=\sum_{i=1}^{n} x_{i} x_{n+i}$. A vector $\left(x_{i}\right)$ or 1-space $\left\langle\left(x_{i}\right)\right\rangle$ is called singular if $Q\left(\left(x_{i}\right)\right)=0$ and nonsingular otherwise; and a subspace E is again called t.s. if $Q(E)=0$. A spread of such a space is a family of $q^{n-1}+1$ t.s. n-spaces partitioning the nonzero singular vectors. Equivalence is defined in terms of the group $\mathrm{TO}^{+}(2 n, q)$ of semilinear transformations preserving Q projectively (cf. [4, Sect. 2]); when $q=2$ this is just the orthogonal group determined by Q.

There is also a bilinear form $(u, v)=Q(u+v)+Q(u)+Q(v)$ on $G F(q)^{2 n}$, and hence a notion of perpendicularity. If S is any subset of $G F(q)^{2 n}$ then $S^{\perp}=\{v \in V \mid(v, S)=0\}$. If y is any 1 -space then $y \subset y^{\perp}$ (since $(v, v)=0$ for any vector v), and we can form the quotient space y^{\perp} / y. This inherits the form (u, v) via $(u+y, v+y)=(u, v)$, but it does not inherit Q if y is nonsingular. A subspace X of y^{\perp} / y is called totally isotropic if $(X, X)=0$.

For further background, see $[4,5]$.

3. Proof of Theorem 2

Set $n-1=m e$, where $e \geqslant m>1$.
In [3; 4, Sect. 3], a spread Σ of an $\Omega^{+}\left(2 m+2, q^{e}\right)$ space was constructed (called a desarguesian orthogonal spread). Here, Σ admits an orthogonal automorphism g of order $\left(q^{e}\right)^{m}-1$ fixing two members of Σ and cyclically permuting the others. The proof of Theorem 2 will consist of suitably modifying Σ as described in [5, Sect. 2].

The transformation g fixes $q^{e}-1$ nonsingular 1 -spaces y of the underlying
vector space. The $2 m$-dimensional space y^{\perp} / y inherits a symplectic structure. The family

$$
\Sigma(y)=\left\{\left\langle y, y^{\perp} \cap X\right\rangle / y \mid x \in \Sigma\right\}
$$

consists of $\left(q^{e}\right)^{m}+1$ totally isotropic $m-1$-spaces which partition the set of all nonzero vectors in y^{\perp} / y. Turn y^{\perp} / y into a $2 m e$-dimensional symplectic space over $G F(q)$ (by following the bilinear form on y^{\perp} / y with the trace map $\left.G F\left(q^{e}\right) \rightarrow G F(q)\right)$. Then $\Sigma(y)$ becomes a family $\Sigma(y)^{e}$ of $q^{m e}+1$ totally isotropic me-spaces which still partitions the nonzero vectors in y^{\perp} / y. Note that g induces a symplectic transformation of y^{\perp} / y preserving both $\Sigma(y)$ and $\Sigma(y)^{e}$, and permuting their members exactly as it permutes those of Σ.

Let V be an $\Omega^{+}(2 m e+2, q)$ space. Fix a nonsingular 1 -space z of V, and identify z^{\perp} / z with y^{\perp} / y. Then the family $\Sigma(y)^{e}$ determines an essentially unique orthogonal spread Σ^{y} (called $\mathbf{S}\left(\Sigma(y)^{e}\right)$ in [5, Sect. 2]) such that $\Sigma^{y}(z)=\Sigma(y)^{e}$. Moreover, g extends to an orthogonal transformation g^{*} of V fixing z, preserving Σ^{y} and permuting Σ^{y} as required in Theorem 2.

We will show that, as y ranges over the original set of $q^{e}-1$ nonsingular 1-spaces in the $\Omega^{+}\left(2 m+2, q^{e}\right)$ space we started with, Σ^{y} ranges over sufficiently many pairwise inequivalent $\Omega^{+}(2 m e+2, q)$ spreads.

Consider the symplectic spreads $\Sigma(y)^{e}$. If N is the number of pairwise inequivalent symplectic spreads of this sort, then $N \geqslant\left(q^{e}-2\right) /\left(2 \log _{2} q^{e}\right)$ (by [4, (4.2) or (3.5)]). These produce N orthogonal spreads Σ^{y}. Since $N /(q+1)>q^{(1 / 2) \sqrt{n}}$, Theorem 2 is a consequence of the following lemma.

Lemma 4. There do not exist $q+2$ choices $y(1), \ldots, y(q+2)$ for y such that the symplectic spreads $\Sigma(y(i))$ are pairwise inequivalent while the orthogonal spreads $\Sigma^{y(i)}$ are pairwise equivalent.

Proof. Fix y, and let V, z and g^{*} be as above. There is a prime $r \mid q^{m e}-1$ such that $r \nmid 2^{i}-1$ whenever $1<2^{i}<q^{e m}$ [9]. Let $\langle h\rangle$ be a Sylow r-subgroup of $\left\langle g^{*}\right\rangle$. Then $\langle h\rangle$ is also a Sylow r-subgroup of $\Gamma O^{+}(2 m e+2, q)$. Since h induces the identity on both z and V / z^{\perp}, there is a 2-space Z in V on which h induces the identity. Then h acts on $Z^{\perp} /\left(Z \cap Z^{\perp}\right)$; using the order of h, we find that $Z \cap Z^{\perp}=0$ and Z consists of all vectors fixed by h. Let G consist of all elements of $\Gamma O^{+}(2 m e+2, q)$ preserving Σ^{y}.

Now consider two further choices y^{\prime} and $y^{\prime \prime}$ such that $\Sigma(y)^{e}, \Sigma\left(y^{\prime}\right)^{e}$ and $\Sigma\left(y^{\prime \prime}\right)^{e}$ are pairwise inequivalent but such that Σ^{y} is equivalent to both $\Sigma^{y^{\prime}}$ and $\Sigma^{y^{\prime \prime}}$. Define $V^{\prime}, z^{\prime}, h^{\prime}, Z^{\prime}, G^{\prime}$ and $V^{\prime \prime}, z^{\prime \prime}, Z^{\prime \prime}$ in the obvious manner. We may assume that $V=V^{\prime}=V^{\prime \prime}$.

Let $\varphi, \psi \in \Gamma O^{+}(2 m e+2, q)$, where $\left(\Sigma^{y^{\prime}}\right)^{\varphi}=\Sigma^{y}$ and $\left(\Sigma^{y^{\prime \prime}}\right)^{\dot{u}}=\Sigma^{y}$.
Clearly, $G^{\prime \varphi}=G$ and $\left\langle h^{\prime}\right\rangle$ is a Sylow r-subgroup of G. Thus, we may
assume that $h^{\prime \varphi}=h$. Then $Z^{\prime \varphi}=Z$. Similarly, we may assume that $Z^{\prime \prime 4}=Z$.

The points $z, z^{\prime \varphi}$ and $z^{\prime \varphi}$ are all different. For example, if $z^{\prime \varphi}=z^{\prime \prime \phi}$ then $\varphi \psi^{-1}$ sends $\Sigma^{y}\left(z^{\prime}\right)$ to $\Sigma^{y^{\prime \prime}}\left(z^{\prime \prime}\right)$, whereas $\Sigma\left(y^{\prime}\right)^{e}$ and $\Sigma\left(y^{\prime \prime}\right)^{e}$ are inequivalent.

Thus, if we leave y fixed and vary y^{\prime}, there are at most q possibilities for $z^{\prime \phi}$. This proves the lemma, and completes the proof of Theorems 1 and 2.

4. Concluding Remarks

1. Replacing $\left(q^{e}\right)^{m}-1$ by $\left(q^{e}\right)^{m}+1$ throughout Section 3, we obtain the following result.

Theorem 3. If q is even and $n-1$ is odd and composite, then an $\Omega^{+}(2 n, q)$ space has more than $q^{(1 / 2) \sqrt{n}}$ pairwise inequivalent spreads, each of which admits an orthogonal automorphism cyclically permuting its $q^{n-1}+1$ members.

Moreover, no orthogonal spread arising in Theorem 3 can be equivalent to any appearing in Theorem 2 (by [5, (3.3)]). Similarly, no generalized Kerdock code arising from Theorem 3 (with $q=2$) can be extended cyclic.
2. In Section $3, Z$ has only $q-1$ nonsingular 1 -spaces. The estimates leading to $q^{(1 / 2) \sqrt{n}}$ are very crude.
3. The Kerdock sets implicitly constructed in Section 3 are given explicitly in [5, (9.2)]. However, it is not clear how to choose more than $2^{(1 / 2) \sqrt{n}}$ of them which produce pairwise inequivalent codes.

It seems likely that Σ^{y} and $\Sigma^{y^{\prime}}$ are inequivalent whenever $\Sigma(y)$ and $\Sigma\left(y^{\prime}\right)$ are.

References

1. Baker, R. D., and Wilson, R. M., unpublished.
2. Cameron, P. J., and Seidel, J. J., Quadratic forms over GF(2), Nederl. Akad. Wetensch. Proc. Ser. A 76 (1973), 1-8.
3. Dye, R. H., Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Pura Appl. (4) 114 (1977), 173-194.
4. Kantor, W. M., Spreads, translation planes and Kerdock sets, I, SIAM J. Disc. Alg. Methods 3 (1982), 151-165.
5. Kantor, W. M., Spreads, translation planes and Kerdock sets, II, SIAM J. Disc. Alg. Methods 3 (1982), 308-318.
6. Kantor, W. M., On the inequivalence of generalized Preparata codes, IEEE Trans. Inform. Theory, in press.
7. Kerdock, A. M., A class of low-rate non-linear binary codes, Inform. and Control 20 (1972), 182-187.
8. MacWilliams, F. J., and Sloane, N. J. A., "The Theory of Error-Correcting Codes," North-Holland, Amsterdam, 1977.
9. Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

[^0]: * This research was supported in part by NSF Grant MCS 79-03130.

