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An Exponential Number of 
Generalized Kerdock Codes 

WILLIAM M. K A N T O R *  

Department of Mathematics, University of Oregon, Eugene, Oregon 97403 

If n -  1 is an odd composite integer then there are at least 2 tl/2)~f~ pairwise 
inequivalent binary error-correcting codes of length 2 n, size 22n, and min imum 
distance 2 n 1-2(1/2)n 1. 

1. INTRODUCTION 

If  a subcode of the second order Reed-Mul ler  code of length 2 ~ has 
minimum distance 2 ~ - ~ - 2  (1/2)~-~ then it has at most  2 2~ words. A 
generalized Kerdock code is defined to be such a subcode in which this 
max imum is attained. Such codes were first constructed by Kerdock [7]. His 
codes are extended cyclic codes, in the sense that there is an au tomorphism 
of order 2" - 1 fixing one coordinate and cyclically permuting the remaining 
ones. In this note we will construct a large number  of cyclic generalized 
Kerdock codes: 

THEOREM 1. I f  n -- 1 is odd and composite, then there are more than 
2 tl/2)v/~ pairwise inequivalent extended cyclic generalized Kerdock codes of  
length 2 n. 

For  the same values of  n, we will also construct  more than 2 (1/2)x/~ 

pairwise inequivalent generalized Kerdock codes of  length 2" which are not 
extended cyclic. 

There is a well-known formal duality between Kerdock codes and 
Preparata  codes: their weight-enumerators are related in the same manner  as 
are those of  a linear code and its dual [5; 8, p. 468]. However,  the weight 
enumerators  of  all generalized Kerdock codes of  length 2 n coincide [8, 
p. 668], which suggests that the aforementioned apparent  relationship is 
merely a coincidence. It should be noted that fewer than n "generalized 
Prepara ta  codes" of  length 2" are presently known [1, 6]. 
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All generalized Kerdock codes also have design-theoretic properties in 
common.  The codewords of each weight in such a code form a 3-design [8, 
pp. 162, 461]. 

This article can be regarded as a continuation of [4, 5]: several results 
found near the beginning of those articles will be used. However,  in order to 
prove Theorem 1 only rough estimates will be required, instead of the precise 
discussions of  equivalence found in those articles. 

2. KERDOCK SETS 

A binary Kerdock set ~/ '  is a set of  2 " -  ~ binary skew symmetric  n × n 
matrices, each having zero diagonal, such that the sum of any two is 
nonsingular. Clearly, n must be even. We will always assume that 0 C ~ ' .  

Corresponding to each Kerdock set J f  is a generalized Kerdock code 
C ( ~ ) ,  defined as follows. Each M = (u~j) E J U  determines a quadratic form 
QM((Xi ) )  = ~i<j/.lijXiXj, where (xi) ~ Z~. Let L denote a linear functional on 
Z~. Then C(S f )  consists of all subsets of 2~ which are the zero sets of  
functions of  the form Q,u(v) + L(v)  + e, where M ranges through ~?~, L is an 
arbitrary linear functional, and e is constant (so c = 0 or 1). A proof  that 
this defines a generalized Kerdock code can be found in [2]. Letting M = 0, 
we see that C ( ~ / )  contains the first order Reed-Muller  code C 0. 

LEMMA 1. (i) Aut  C(.~') is 
transformations o f  Z ~. 

(ii) 

(iii) 

Proof  
2 ~-J, Aut  

(ii) 
( y~ )  = v + 

contained in the group o f  all affine 

Aut C(W') contains all translations v --, v + b o f  Z ~. 

Aut C(~U ~) is transitive on coordinates. 

(i) Since C O consists of  all words in C ( ~ ' )  of  weight 0, 2" or 
C(~/~) ~< Aut C O . 

Let v = (xi) and M = ~i j )  ~ ,W" with QM(v) = 0. Set b = (bi) and 
b. Then 

O ~  ~ #~jxix J = ~S ~ #~j(yi + b~)(yj + bfl 
i<j i<j 

\7 S" = ._. #,iY~YJ + ~ #,jb,yj + ~ #,:bjy~ + - -  #~jb,bj. 
i<j i<1 i<j i<j 

so that (Yi) - C(.W'). 

(iii) This is immediate in view of (ii). 

LEMMA 2. Let ,,/U. and 3~/'' be Kerdock sets o f  n × n matrices. Then 
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C ( ~ )  and C(J / " )  are equivalent i f  and only i f  there is a nonsingular n × n 
matrix A such that the transformation M ~ A M A  t sends JU to ~ ' .  

Proof. Let g: C(~U)~ C(~.~') be an equivalence. Since g sends C O to 
itself, g is induced by an affine transformation of Z~. By Lemma l(ii), we 
may assume that g has the form v --, vA - 1 for some nonsingular matrix A - 1 

Let M = (/tij) E ~U, and write A = (aij). If (xi) E C(JS) and QM((xi)) = 0, 
set ( Y i ) =  (xi) A - l  and compute as follows. 

O = ~ p i j X i X j = ~ P i J ( ~ Y k a k i ) ( ~ Y t a t  0 
i<j i<j 

= ~k,I ('<i~<j akiflijau ) yk yI" 

Let Vkt = Y~i,j akil@atj and c k = Y~i <j akiCtijagi • Then 

0 = ~ v~t Yk Yl + ~ Ck Yk" 
k<l k 

It follows that (vkt) = A M A  t E ~U', as required. The converse is obtained by 
reversing this argument. 

Lemma 2 reduces the proof of Theorem 1 to the construction of 
sufficiently many Kerdock sets. The next reduction involves orthogonal 
geometry. 

Define the quadratic form Q on Z~ n by Q ( ( x i )  ) = ~,n_l  XlXi+ n. A vector 
(xi) is singular if Q((xi) ) = 0. Let E be the n-space in 2~ n defined by x i = 0 
for i >  n; similarly, let F be defined by x i = 0  for i~< n. Then Q ( E ) =  
Q(F) = 0: these are totally singular (t.s.) n-spaces. 

Let ~,U be any Kerdock set of n × n matrices, and define 5 ~ ( J  ') as 
follows: 

y ( ~ r ) = { E } L )  I F ( /  0i) M ~ I .  

Then ~ ( ~ ' )  is an orthogonal spread: a family of 2" 1 + 1 t.s. n-spaces such 
that every nonzero singular vector is in exactly one of them [4, Sect. 5]. 
Conversely, each orthogonal spread containing E and F produces a Kerdock 
set: just reverse this construction. Moreover, if Y(_,U) and Y ( ~ ' )  are two 
orthogonal spreads which are inequivalent under the orthogonal group 
O+(2n, 2), then Lemma 2 and [4, (5.4)] imply that C(~U) and C(~$ r ' )  are 
inequivalent codes. 

LEMMA 3. Let  Y ( S )  be as above, and assume that there is an 
orthogonat transformation o f  order 2 n- 1 _ 1 f ix ing E and F and cyclically 
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permuting the remaining members of Y(~/') .  Then C(J/) is an extended 
cyclic code. 

Proof. The given t ransformation can be viewed as a matrix (~ 0 8 ), where 
A, B and 0 are n × n matrices. Since Q is preserved, B = ( A - 1 )  t. The 
calculation used in L e m m a  2 shows that the linear t ransformation 
M ~ A M A  t acts on C ( ~ ' )  as desired (compare  [4, (5.4)]). 

In order to prove Theorem 1, we can now ignore codes and focus on 
spreads. Thus, Theorem 1 is an immediate consequence of the next result 
(for q = 2). 

THEOREM 2. I f  q is even and n -  1 is odd and composite, then an 
.Q + (2n, q) space has more than qll/2)'/~ pairwise inequivalent spreads each oJ 
which admits an orthogonal automorphism fixing two members and cyclically 
permuting the remaining ones. 

Here, an S'2+(2n, q) space is (up to a change of coordinates) the vector 
space GF(q) 2" equipped with the quadratic form Q((xi))=~7= ~ xix,+ i. A 
vector (xi) or 1-space ((xi)) is called singular if Q((xi) ) = 0 and nonsingular 
otherwise; and a subspace E is again called t.s. if Q(E) = 0. A spread of such 
a space is a family of  q"-1 + 1 t.s. n-spaces partitioning the nonzero singular 
vectors. Equivalence is defined in terms of the group FO+(2n, q) of 
semilinear t ransformations preserving Q projectively (cf. [4, Sect. 2]); when 
q = 2 this is just the orthogonal  group determined by Q. 

There is also a bilinear form (u, v) = Q(u + v) + Q(u) + Q(v) on GF(q) z", 
and hence a notion of perpendicularity. If  S is any subset of  GF(q) 2" then 
S ± = {v C V I (v, S) = 0}. I f y  is any 1-space then y c y  ± (since (v, v) = 0 for 
any vector v), and we can form the quotient space y±/y. This inherits the 
form (u ,v)  via (u + y, v + y ) =  (u, v), but it does not inherit Q if y is 
nonsingular. A subspace X ofy±/y is called totally isotropic if (X, X) = 0. 

For  further background,  see [4, 5]. 

3.  P R O O F  O F  T H E O R E M  2 

Set n - - l = m e ,  w h e r e e / > m >  1. 
In [3; 4, Sect. 3], a spread Z of an D + ( 2 m  + 2, qe) space was constructed 

(called a desarguesian orthogonal  spread). Here, S admits an orthogonal 
au tomorphism g of order (qe)m __ 1 fixing two members  of  Z and cyclically 
permuting the others. The proof  of  Theorem 2 will consist of  suitably 
modifying L" as described in [5, Sect. 2]. 

The t ransformation g fixes qe __ 1 nonsingular l-spaces y of  the underlying 
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vector space. The 2m-dimensional space yZ/y inherits a symplectic structure. 
The family 

z(y)  = I<y, y± mx>/ylx  s} 

consists of  (qe)m ÷ 1 totally isotropic m -- 1-spaces which partition the set of  
all nonzero vectors in y~/y. Turn y±/y into a 2me-dimensional symplectic 
space over GF(q) (by following the bilinear form on y±/y with the trace map  
GF(q ~)~ GF(q)). Then S(y)  becomes a family Z(y) e of qm~ + i totally 
isotropic me-spaces which still partitions the nonzero vectors in y±/y. Note 
that g induces a symplectic t ransformation of y~/y preserving both Z(y) and 
Z(y) e, and permuting their members  exactly as it permutes those of S. 

Let V be an £2 + (2me + 2, q) space. Fix a nonsingular 1-space z of V, and 
identify z±/z with y±/y. Then the family Z(y) e determines an essentially 
unique orthogonal  spread Z y (called S ( Z ( y )  e) in [5, Sect. 2]) such that 
SY(z) = Z ( y )  e. Moreover,  g extends to an orthogonal  t ransformat ion g*  of V 
fixing z, preserving S y and permuting SY as required in Theorem 2. 

We will show that, as y ranges over the original set of  qe _ 1 nonsingular 
1-spaces in the . O + ( 2 m + 2 ,  q e) space we started with, Z y ranges over 
sufficiently many  pairwise inequivalent .(2 + (2me + 2, q) spreads. 

Consider the symplectic spreads X(y) e. If  N is the number  of  pairwise 
inequivalent symplectic spreads of  this sort, then N ~> (q~ - 2)/(2 log 2 q~) (by 
[4, (4.2) or (3.5)]). These produce N orthogonal  spreads ZY. Since 
N/(q ÷ l )  > q(1/z)~/n, Theorem 2 is a consequence of the following lemma. 

LEMMA 4. There do not exist q + 2 choices y(1)  ..... y(q + 2) for y such 
that the symplectie spreads Z(y( i ) )  are pairwise inequivalent while the 
orthogonal spreads S y(i) are pairwise equivalent. 

Proof Fix y, and let V, z and g* be as above. There is a prime 
r[q me -- 1 such that  r~'2 i - 1 whenever 1 < 2 i < qem [9]. Let (h)  be a Sylow 
r-subgroup of ( g * ) .  Then (h)  is also a Sylow r-subgroup of 
FO+(2me + 2, q). Since h induces the identity on both z and V/z l, there is a 
2-space Z in V on which h induces the identity. Then h acts on 
Z±/(Z ~ ZX); using the order of  h, we find that Z ~ Z z = 0 and Z consists 
of  all vectors fixed by h. Let G consist of all elements of FO + (2me + 2, q) 
preserving S y. 

Now consider two further choices y '  and y"  such that Z(y) e, 2~(y') ~ and 
Z(y")  e are pairwise inequivalent but such that Z "y is equivalent to both S y' 
and £Y". Define V', z ' ,  h ' ,  Z ' ,  G '  and V", z",  Z "  in the obvious manner.  We 
may  assume that V =  V' = V". 

Let ~0, ~, C FO+(2me + 2, q), where (XY') ~ = Z y and (XY") ° = X y. 
Clearly, G ' ° =  G and ( h ' )  is a Sylow r-subgroup of G. Thus, we may  
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assume that h ' O = h .  Then Z " ° = Z .  Similarly, we may  assume that 
Z "° = Z. 

The points z, z '~ and z 1. are all different. For  example, if z ' ° =  z "° then 
~0~ -1 sends ZY'(z ') to ZY"(z ' ) ,  whereas X ( y ' )  e and Z ( y " )  e are inequivalent. 

Thus, if we leave y fixed and vary y ' ,  there are at most  q possibilities for 
z '~. This proves the lemma, and completes the proof  of  Theorems 1 and 2. 

4. CONCLUDING REMARKS 

1. Replacing (qe)m _ 1 by (qe)m + 1 throughout Section 3, we obtain 
the following result. 

THEOREM 3. I f  q is even and n -  1 is odd and composite, then an 
~ + ( 2 n ,  q) space has more than q~1/2)~/~ pairwise inequivalent spreads, each 
o f  which admits an orthogonal automorphism cyclically permuting its 
qn- l  + 1 members. 

Moreover,  no orthogonal  spread arising in Theorem 3 can be equivalent to 
any appearing in Theorem 2 (by [5, (3.3)]). Similarly, no generalized 
Kerdock code arising from Theorem 3 (with q = 2) can be extended cyclic. 

2. In Section 3, Z has only q -  1 nonsingular 1-spaces. The estimates 
leading to  q(1/z)x/~ are very crude. 

3. The Kerdoek sets implicitly constructed in Section 3 are given 
explicitly in [5, (9.2)]. However,  it is not clear how to choose more than 
2 ~l/2)x/~ of them which produce pairwise inequivalent codes. 

It seems likely that S y and Z "y' are inequivalent whenever 22(y) and X ( y ' )  
are. 
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