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Abstract Wireless communication systems are subject to short and long-term fading channels. In this paper, an extended
form of a statistical model for the composite fading channels is derived from the maximum entropy principle. Subsequently,
the composite fading channel is derived by replacing the conditional density by entropy-maximizing distribution (Mathai’s
pathway model). This pathway model is versatile enough to represent short-term fading as well as the shadowing. The new
wireless channel model generalizes the commonly used models for multipath fading and shadowing. In particular, using
the G-function, we derive the density function, distribution function and moments of the new model in closed form. These
derived results are a suitable device to analyze the performance of composite fading systems such as density function of the
Signal Noise to Ratio (SNR), Amount of Fading (AF), and Outage Probability (OP) etc. The results will be shown graphically
for different signal and fading parameter values.
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1. Introduction

The modeling of wireless communication channel is one of the fastest growing segments in the communication
industry. The applications of wireless system include internet access, web browsing, file transfer, video transfer,
entertainment, etc. Recently, various types of statistical models are used for describing the characteristics of
wireless communication systems. There are many approaches and several combinations are available in the
literature for modeling the composite fading channels. Modeling of composite fading channels is essential for
the analysis of several wireless communication problems, including interference analysis in cellular systems and
performance analysis of network MIMO, distributed antenna systems and cooperative relay networks. Most of the
available channels are based on the superpositions of multipath components. For a brief review of the composite
distribution in the context of the wireless communication channel, see [1].

In wireless communication systems, the received signal is likely to suffer from the damaging effects of the
channel in the form of short and long-term fading, also known as shadowing, while short term fading arises from
the existence of multiple paths between transmitter and receiver, shadowing is the result of the topographical
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elements such as buildings, trees and other structures in the transmission path. Since both short and long-term
fading conditions coexist in wireless systems, the density function of the envelope in a shadowed short-term fading
channel becomes

f(x) =

∫ ∞

0

h(x|y)g(y)dy. (1)

Many compound models are available in the literature for modeling fading channels, for example, Weibull-
lognormal [2], Nakagami-lognormal [3], Rayleigh-lognormal [4], Weibull-gamma [5], gamma-lognormal [1], K-
distribution [6], generalized K-distribution [7] etc. Due to the great importance of compound models, Nadarajah
and Kotz [8] generated a collection of compound distributions for the statistical modeling of shadowed fading
channels. However, the composite fading models are very difficult to handle analytically so, Atapattu et al. [9]
used the gamma mixtures for the composite fading channel. The performance analysis in a wireless channel with
multiple interferers, subject to shadowing and fading, using a compound model was studied by Shankar [10].

The objective of the present paper is to derive a compound gamma model for the composite fading channels on
the basis of the maximum entropy principle. This paper starts with a brief description of the composite fading
model. This article is structured as follows: Section 2 discusses the importance of entropy in wireless fading
channels. The connection between entropy and pathway model is mentioned in section 3. In section 4, we derive an
extended compound gamma model in the presence of pathway model. The performance measures such as Amount
of Fading (AF), Outage Probability (OP) and Average Bit Error Rate Probability (ABEP) of these systems are
obtained in section 5.

1.1. Composite fading channel

Let us start with the construction of composite fading model in wireless channels. Wireless channels are subject
to random fluctuations in received power arising from multipath propagation. Often these channels suffer from
long-term fading or shadowing arising from multiple scattering conditions. Since shadowing and fading occur
simultaneously, various models have been used to describe shadowed fading channels. The density function of the
received power γ, conditioned on the average power y, is a Nakagami density of the form

p1(x|y) =
2

Γ(m)

(
m

y

)m

x2m−1e−
mx2

y , x ≥ 0,m, y > 0, (2)

and p1(x|y) = 0 elsewhere, where Γ(.) is the gamma function and m is the multipath fading parameter. Note
that for m = 1

2 , the density function is half-Gaussian, while for m = 1, the density function is a Rayleigh. When
multipath fading is superimposed on shadowing, the average power y slowly varies and hence it can be considered
as a random variable. The fluctuation of the average power due to shadowing is usually modeled by the lognormal
distribution. However, in this paper, we use the gamma density for modeling the variation of the average power
since it is shown to be a good fit to experimental data [6],[7] and can approximate the lognormal distribution. The
form of the model is given by

p2(y) =
1

Γ(δ)

(
δ

β

)δ

yδ−1e−
δy
β , y ≥ 0, δ, β > 0, (3)

and p2(y) = 0 elsewhere, where δ is the shadowing parameter and β is a measure of the average power. Using (2),
(3), (1) and the definition of Bessel function, the form of the density function of the received signal power γ is as
follows,

pγ(x) =
4

Γ(m)Γ(δ)

(
mδ

β

)m+δ
2

xm+δ−1Kδ−m

(
2
√

(
δm

β
)x

)
, (4)

for x ≥ 0, β,m, δ > 0 and pγ(x) = 0 elsewhere.
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2. Entropy in channel modeling

The principle of maximum entropy provides a theoretical justification to make a model for wireless communication
systems out of the information available. The logic behind entropy maximization, popularized by Jaynes [11], is
that the Shannon entropy is a good measure of uncertainty, and therefore entropy maximization brings the powerful
model given the stated constraints. The role of entropy maximization method as a flexible tool for modeling the
correlated wireless channel was first introduced by Debbah and Müller [12]. Guillaud et al. [13] and Debbah and
Müller [12] used the concept of entropy maximization for obtaining models for MIMO wireless channels.

The wireless channel suffers from constructive/destructive interference signaling and therefore yields a
randomized channel frequency response. The correlation is a critical parameter for communication systems and
therefore we will pay special attention to it. Let pH|E describe the channel statistics corresponding to a given
correlation situation (given the location of the transmitter and receiver arrays and a given set of scatters) and
pE denote the model, which depends on the number, position and properties of the antennas in the transmit and
receive arrays, as well as of the scatters. Then the complete distribution of the correlated channel H is obtained by
marginalizing over E:

pH(h) =

∫
E

pH|E(h,E)pE(E)dE, (5)

and this is the logic behind this method, exposed in more detail in [13]. Our method can be summarized as follows:

1. derive pE(E) through entropy maximization,
2. derive PH|E(H,E) through entropy maximization,
3. marginalize over E to obtain

pH(h) =

∫
E

pH|E(H,E)pE(E)dE. (6)

Taking the statistical model with greatest entropy avoids the arbitrary introduction or assumption of information
that is not available. From the literature, we can see that entropy maximization method is a fundamental tool for
modeling the wireless communication systems. Motivated by the importance of entropy optimization procedure in
wireless communication systems, we propose a class of an extended compound gamma model.

3. Entropy and modeling

In physical situations when an appropriate model is selected, one procedure is the maximization of entropy.
Mathai and Haubold [14] introduced a new entropy measure which is a generalization of the Shannon entropy
measure. Consider a multinomial population p = (p1, p2, . . . , pk), pi > 0, i = 1, 2, . . . , k, p1 + p2 + · · ·+ pk = 1,
Mathai entropy measure is given by the relation

Mk,q(p) =

k∑
i=1

pi
2−q − 1

q − 1
, q ̸= 1, q < 2, (7)

and for the continuous case it is

Mk,q(f) =

∫∞
−∞[f(x)]2−qdx− 1

q − 1
, q ̸= 1, q < 2 (8)

where f(x) is a density function. When q → 1, the above entropy measure goes to the Shannon entropy measure.
By optimizing Mathai’s entropy measure, we get a model called pathway model, which consists of many of the
standard distributions in statistical literature as special cases see [15].
For the real scalar continuous case the pathway model is represented by the following density function.

g1(x) = c1 x
ν−1[1− a(1− q)xδ]

1
1−q , δ > 0, a > 0, ν > 0, (9)
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for 0 < x < 1

[a(1−q)]
1
δ

and the normalizing constant c1 =
δ[a(1−q)]

ν
δ Γ( ν

δ +
1

1−q+1)

Γ( ν
δ )Γ(

1
1−q+1)

, which is available by optimizing

(7) under two general moment-like constraints. For q < 1 the model remains as a generalized type-1 beta model in
the real case. For q > 1 we may write (1− q) = −(q − 1) so that g1(x) takes the form

g2(x) = c2 x
ν−1[1 + a(q − 1)xδ]−

1
q−1 , x ≥ 0, δ > 0, a > 0, ν > 1, (10)

which is a generalized type-2 beta model for real x and the normalizing constant c2 =
δ[a(q−1)]

ν
δ Γ( 1

q−1 )

Γ( ν
δ )Γ(

1
q−1−

ν
δ )

, 1
q−1 − ν

δ >

0. For q > 1, (9) gives the superstatistics of Bect et al. [17, 16]. For ν = 1, δ = 1, (9) gives Tsallis statistics [18].
Note that for q < 1, the density in (9) belongs to the generalized type-1 beta family and for q > 1, the density in
(10) stays in the generalized type-2 beta family of densities. When q → 1 the forms in (9) and (10) reduce to the
generalized gamma form

g(x) = c xν−1e−axδ

, x ≥ 0, (11)

and g(x) = 0 elsewhere; and the normalizing constant c = δa
ν
δ

Γ( ν
δ )

. It is not difficult to show that the normalizing
constants in (9) and (10) reduce to the normalizing constant in (11). This can been seen by expanding the gamma
functions with the help of Stirling’s formula, which is given by

Γ(z + α) ≈
√

(2π)zz+α− 1
2 e−z for |z| → ∞ and α a bounded quantity.

The model (11) includes generalized gamma, gamma, exponential, chi-square, Weibull, Maxwell-Boltzmann,
Rayleigh distribution, etc. Densities appearing in a number of physical problems are seen to be special cases of
(9), a discussion of which may be seen from [14]. For example, δ = 2, ν = 2, q → 1, x > 0 in (10) is the Maxwell-
Boltzmann density; for δ = 2, ν = 1, q → 1,−∞ < x < ∞ in (10) is the Gaussian density; for ν = δ, q → 1 is the
Weibull density. Here we consider a q-analogue of the Nakagami model, which is a special case of Mathai [15],
by taking δ = 2, ν = 2m and a = m

y in (10). Then for x > 0 and for q > 1, g2(x) reduces to the following density
which we call q-Nakagami density:

f1(x|y) =

{
2Γ( 1

q−1 )(m(q−1))m

Γ(m)Γ( 1
q−1−m)ym x2m−1[1 + (q − 1)mx2

y ]−
1

q−1 , x ≥ 0,m > 0, q > 1, ν > 0

0, otherwise,
(12)

for 1
q−1 −m > 0, q > 1,m > 0. Thus, the parameter q creates a path of going from the type-1 beta family to

type-2 beta family to a gamma family of functions. The movement of q will provide thicker or thinner tailed
distributions which will also be helpful in a modeling situation where one may be looking for a thicker or thinner
tailed distribution as appropriate fit.

4. Extension of Nakagami-gamma distribution

Let us replace p1(x|y) by a pathway model f1(x|y) in (12), then the density function of the received power γ
denoted by h1(x) has the following form

h1(x) =

∫
y

f1(x|y)p2(y)dy

=
2Γ( 1

q−1 )(m(q − 1))mδδ

Γ(m)Γ(δ)Γ( 1
q−1 −m)βδ

x2m−1

∫ ∞

0

yδ−m−1e−
δy
β [1 + (q − 1)

mx2

y
]−

1
q−1 dy, (13)

for q > 1, 1
q−1 −m > 0,m > 0, δ > 0. The integral part in (13) can be evaluated by using Mellin convolution

property, by taking it as a statistical distribution problem. Let x1 and x2 be independently distributed real scalar
positive random variables. Let the densities be h3(x1) and h4(x2) respectively. Consider the transformation
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46 AN EXTENDED COMPOUND GAMMA MODEL

u = x1x2 and v = x1. Then the density of u is given by

g(u) =

∫
v

1

v
h3(v)h4

(u
v

)
dv. (14)

Let
h3(x1) = c3 x1

δ−me−
δx1
β , x1 > 0, δ,m, β > 0

and
h4(x2) = c4 [1 + (q − 1)x2]

− 1
q−1 , x2 > 0, q > 1,

so that h3(x1) and h4(x2) can create statistical densities for appropriate values of the normalizing constants c3 and
c4. Therefore

c3c4

∫ ∞

y=0

1

y
yδ−me−

δy
β [1 + (q − 1)

mx2

y
]dy =

∫ ∞

0

1

y
h1(y)h2

(
mx2

y

)
dy. (15)

Hence the Mellin transform of the left side is the product of the Mellin transform of the right side. Writing in terms
of statistical expectations,

E(x1
s−1) = c3

(
β

δ

)s+δ−m

Γ(s+ δ −m), ℜ(s+ δ −m) > 0, β, δ > 0, (16)

where ℜ(.) denotes the real part of (.), and

E(x2
s−1) = c4

(
1

q − 1

)s Γ(s)Γ( 1
q−1 − s)

Γ( 1
q−1 )

, ℜ(s) > 0,ℜ( 1

q − 1
− s) > 0. (17)

From (16) and (17),

E(us−1) = c3c4

(
β

δ

)s+δ−m (
1

q − 1

)s Γ(s+ δ −m)Γ(s)Γ( 1
q−1 − s)

Γ( 1
q−1 )

, (18)

for ℜ(s) > 0,ℜ(s+ δ −m) > 0,ℜ( 1
q−1 − s) > 0. For inverting the moment expression to get the density we need

the moments for complex variable s. Hence we have taken arbitrary moments. Then the integral is available by
taking the inverse Mellin transform and it is the following:

c3c4

∫ ∞

y=0

1

y
yδ−me−

δy
β [1 + (q − 1)

mx2

y
]−

1
q−1 dy, i =

√
−1

= c3c4
1

Γ( 1
q−1 )

(
β

δ

)δ−m
1

2πi

∫
L

Γ(δ −m+ s)Γ(s)Γ(
1

q − 1
− s)

(
mδ(q − 1)x2

β

)−s

ds

= c3c4
1

Γ( 1
q−1 )

(
β

δ

)δ−m

G2,1
1,2

[
δ(q − 1)mx2

β

∣∣∣∣1− 1
q−1

0,δ−m

]
, x ≥ 0, (19)

for q > 1, β,m, δ > 0, and h1(x) = 0 elsewhere, where G is the G-function. For the definition, theory, applications
and computable representations of G-function see [19]. From (19) we have the density of x, denoted by h1(x),
given by the following:

h1(x) =
2(m(q − 1))m

Γ(m)Γ(δ)Γ( 1
q−1 −m)

(
δ

β

)m

x2m−1G2,1
1,2

[
δ(q − 1)mx2

β

∣∣∣∣1− 1
q−1

0,δ−m

]
, (20)
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for x ≥ 0, 1
q−1 −m > 0,m, δ > 0, and h1(x) = 0 elsewhere. Using the definition of Whittaker function, h1(x)

becomes

h1(x) =
2(m(q − 1))mΓ( 1

q−1 )Γ(
1

q−1 + δ −m)

βmΓ(m)Γ(δ)Γ( 1
q−1 −m)

(
δ(q − 1)mx2

β

) δ−m−1
2

e
δ(q−1)mx2

2β

× Wm
2 − 1

q−1−
δ
2+

1
2 ,

m−δ
2

(
δ(q − 1)mx2

β

)
, (21)

for x ≥ 0, 1
q−1 −m > 0, 1

q−1 + δ −m > 0,m, β, δ > 0 and h1(x) = 0 elsewhere. The reason for the choice of
terminology is that this new extension of the gamma distribution can describe impulsive data and its density
function has a thicker tail when compared to the classical gamma distribution.

4.1. Properties of extended Nakagami-gamma distribution

Theorem 1
When the density function of the received power γ conditioned on the average power y is of the form f1(x|y)
in (12), when the density function of the average power due to shadowing is of the form p2(y) in (3) then the
unconditional (received signal power due to both multipath and shadowing) density of x, denoted by h1(x) is given
by

h1(x) =
2(m(q − 1))mΓ( 1

q−1 )Γ(
1

q−1 + δ −m)

βmΓ(m)Γ(δ)Γ( 1
q−1 −m)

(
δ(q − 1)mx2

β

) δ−m−1
2

e
δ(q−1)mx2

2β

× Wm
2 − 1

q−1−
δ
2+

1
2 ,

m−δ
2

(
δ(q − 1)mx2

β

)
, (22)

for x ≥ 0, 1
q−1 −m > 0, 1

q−1 + δ −m > 0,m, β, δ > 0 and h1(x) = 0 elsewhere. As q → 1, h1(x) tends to h(x)

where h(x) is the Nakagami-gamma density with parameters β, δ, q and m, and it is given by

h(x) =
4

Γ(m)Γ(δ)

(
mδ

β

)m+δ
2

xm+δ−1Kδ−m

(
2
√

(
δm

β
)x

)
, (23)

for x ≥ 0, β,m, δ > 0 and h(x) = 0 elsewhere.

In the following section, we discuss the statistical properties of the extended Nakagami-gamma model.

4.2. Behavior of extended Nakagami-gamma model

The possible shapes of h1(x) in (22) are provided for some selected values of the parameters in Figure 1. Figure 1,
shows the density curves for the extended Nakagami-gamma density for selected values of the parameters m, β, δ
and for various values of the parameter q. In Figure 1, we take m = 2, δ = 3, β = 3 and allow q to vary from 1 and
2 so that one can obtain thicker tailed curves for the same set of m = 2, δ = 3, β = 3 by varying q for 1 < q < 2.
The main advantage of the extended model is that one can see the movement of the basic density, producing thicker
tails as pathway parameter q varies.

4.3. Moments

The hth moment of a random variable x with the density function (22) is

E(xh) =

∫ ∞

0

xhh1(x)dx

=

(
δ(q − 1)m

β

)−h
2 Γ(m+ h

2 )Γ(δ +
h
2 )Γ(

1
q−1 −m− h

2 )

Γ(m)Γ(δ)Γ( 1
q−1 −m)

(24)

for q > 1,m > 0, δ > 0, β > 0, 1
q−1 −m > 0,ℜ( 1

q−1 −m− h
2 ) > 0,ℜ(δ + h

2 ) > 0,ℜ(m+ h
2 ) > 0.
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Figure 1. Density functions of extended Nakagami-gamma density: β = 3, m = 2, δ = 3 fixed, and for different values of q.

4.4. Distribution function

The distribution function H1(x) of the extended Nakagami-gamma density function h1(x) is given by

H1(x) = 1− 1

Γ(m)Γ(δ)Γ( 1
q−1 −m)

(
β

mδ(q − 1)

)
H3,1

2,3

[(
δ(q − 1)m

β

) 1
2

x

∣∣∣∣(1+m− 1
q−1+

1
2 ,

1
2 ),(1,1)

(0,1),(m, 12 ),(δ,
1
2 )

]
, (25)

for x ≥ 0, q > 1,m, δ, β > 0, 1
q−1 −m > 0, where H3,1

2,3 is a H-function, which is a generalization of the G-
function. For theory and applications of H-function see [20]. Computable representation of this function is also
available in the literature.

4.5. Laplace transform

The Laplace transform Lh1(t) of the density function h1(x) is given by

Lh1(t) =

∫ ∞

0

e−txh1(x)dx. (26)

Using equation (2.19) in Mathai et al. (2010), we get

Lh1(t) =
(mδ(q − 1))

1
2

tΓ(m)Γ(δ)Γ( 1
q−1 −m)β

1
2

H2,2
2,2

[(
δ(q − 1)m

β

) 1
2 1

t

∣∣∣∣(0,1),( 1
2+m− 1

q−1 ,
1
2 )

(m− 1
2 ,

1
2 ),(δ−

1
2 ,

1
2 )

]
, (27)

for t > 0,m > 0, δ > 0, β > 0, q > 1, 1
q−1 −m > 0.

5. Statistics of the output SNR

Let us consider a single receiver system operating over the extended Nakagami-gamma composite fading channel
in the presence of Additive White Gaussian Noise (AWGN). The performance of any communication system, in
terms of Bit Error Rate (BER) and signal outage will depend on the instantaneous SNR per received signal is given
by

γ = x2 Es

N0
, (28)

where Es is the average transmitted signal per energy and N0 is the single sided AWGN power spectral density.
The corresponding average SNR is

γ̄ = E(x2)
Es

N0
, (29)
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where E(.) denotes the expectation and

γ̄ =

∫ ∞

0

γpγ(γ)dγ,

is the average SNR. In this section, closed-form expressions for the moments of the output SNR of single receiver
system operating over extended Nakagami-gamma fading channels, are derived. Here we will compute the density
of γ in (28) by using the density of x in (20). The results are given in the form of theorems:

Theorem 2
(Density function): The density function of the instantaneous received SNR can be obtained as

pγ(γ) =
(δm(q − 1)d)m

(γ̄β)mΓ(m)Γ(δ)Γ( 1
q−1 −m)

γm−1G2,1
1,2

[
δ(q − 1)md

βγ̄
γ

∣∣∣∣1− 1
q−1

0,δ−m

]
, (30)

for γ ≥ 0, δ, β,m, γ̄ > 0, 1
q−1 −m > 0, q > 1, where d = β

1−(m+1)(q−1) and pγ(γ) = 0 elsewhere.

Theorem 3
(Moments): The hth moment of γ can be found in closed form as

E(γh) =

(
βγ̄

δ(q − 1)md

)h Γ(δ + h)Γ(m+ h)Γ( 1
q−1 −m− h)

Γ(δ)Γ(m)Γ( 1
q−1 −m)

, (31)

for β, δ,m, d > 0, γ̄ > 0, 1
q−1 −m > 0,ℜ( 1

q−1 −m− h) > 0,ℜ(δ + h) > 0,ℜ(m+ h) > 0.

Theorem 4
(Distribution function): The distribution function of SNR is given by

Pγ(γ) = 1− 1

Γ(m)Γ(δ)Γ( 1
q−1 −m)

G3,1
2,3

[
δ(q − 1)md

βγ̄
γ

∣∣∣∣1,1+m− 1
q−1

0,m,δ

]
, (32)

for γ > 0, 1
q−1 −m > 0,m, δ, β, d > 0, γ̄ > 0, q > 1.

Theorem 5
(Laplace transform): The Laplace transform of the instantaneous SNR is given by

Lpγ (t) =
m(q − 1)δd

tβγ̄Γ(m)Γ(δ)Γ( 1
q−1 −m)

G2,2
2,2

[
δ(q − 1)md

βγ̄t

∣∣∣∣0,m− 1
q−1

m−1,δ−1

]
, (33)

for m, d, δ, β > 0, 1
q−1 −m > 0, γ̄ > 0, t > 0.

5.1. Performance analysis

In this section, we derive the expressions of the Amount of Fading (AF), Outage Probability (OP), Average channel
Capacity (AC), Outage Capacity (OC) and Average Bit Error Probability (ABEP) for digital communication system
operating over extended Nakagami-gamma fading channel, using the expressions given in theorems 1, 2, 3, 4.

5.2. Amount of Fading (AF)

The AF is introduced by Simon and Alouini [1] as a unified performance measure of the severity of fading, is an
important measure for the performance of a diversity system since it can be utilized to parameterize the distribution
of the signal to noise ration (SNR) of the received signal. The amount of fading is defined as the ratio of the variance
to the square average of the instantaneous SNR. That is

AF =
E(γ2)

[E(γ)]2
− 1.
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Then using (31), the AF can be easily derived as

AF =
Γ(δ + 2)Γ(m+ 2)Γ( 1

q−1 −m− 2)Γ(δ)Γ(m)Γ( 1
q−1 −m)

Γ2(δ + 1)Γ2(m+ 1)Γ2( 1
q−1 −m− 1)

− 1, (34)

for δ,m > 0, 1
q−1 −m− 2 > 0, 1

q−1 −m− 1 > 0, 1
q−1 −m > 0. It can be seen that the AF depends on fading

parameter m and shadowing parameter δ.

5.3. Outage Probability Performance (OP)

The outage probability is defined as the probability that the instantaneous error rate exceeds a specified value or
equivalently, the probability that the output signal to noise ratio(SNR), γ, falls below a predetermined threshold γ0
(i.e, γ < γ0),

Pout = P (0 ≤ γ ≤ γ0) =

∫ γ0

0

pγ(γ)dγ (35)

where pγ(γ) is the density function of γ obtained in (30). In other words, Pout is the cumulative distribution
function (CDF) of the random variable γ evaluated at γ0. Then Pout is directly given by

Pout = Pγ(γ0) (36)

where Pγ(γ) is given in (32).
In Figure 2, the Pout is plotted as a function of the normalized outage threshold, γ0

γ̄ , for several values of m and δ.

Figure 2. Outage probability versus the normalized outage threshold for several values of m and δ.

5.4. Average Channel Capacity (AC)

Based on the Shannon’s theorem, the average channel capacity C can be calculated by averaging the instantaneous
channel capacity over SNR as

C̄γ = W

∫ ∞

0

ln(1 + γ)pγ(γ)dγ. (37)

where W is the signal transmission bandwidth and pγ(γ) is given in (30). Using the definition of G-function, we
get

C̄γ =
W (δ(q − 1)md)m

(γ̄β)mΓ(m)Γ(δ)Γ( 1
q−1 −m)

× I1,
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where

I1 =

∫ ∞

0

γm−1G1,2
2,2

[
γ

∣∣∣∣1,1
1,0

]
G2,1

1,2

[
δ(q − 1)md

βγ̄
γ

∣∣∣∣1− 1
q−1

0,δ−m

]
dγ. (38)

Using the Mellin transform of the product of two G-functions, see [20], we get

C̄γ =
W

Γ(m)Γ(δ)Γ( 1
q−1 −m)

G2,4
4,3

[
βγ̄

δ(q − 1)md

∣∣∣∣1,1,1−m,1−δ

1, 1
q−1−m,0

]
, (39)

for m, δ, β, γ̄, d > 0, q > 1, 1
q−1 −m > 0.

5.5. Outage Capacity (OC)

The outage capacity is another important statistical measure to quantify the spectral efficiency in fading channels,
which is defined as the probability that the instantaneous capacity, Cγ falls below a certain specified threshold C0

i.e,

Cout = P (0 ≤ Cγ ≤ C0) =

∫ C0

0

pCγ(c)dc, (40)

where pCγ (c) is the density function of the instantaneous capacity Cγ , defined in (37). The outage capacity (OC),
Cout can be given in terms of the cumulative distribution function of the channel capacity as follows

Cout = Pγ(2
C0|W − 1). (41)

Then the outage capacity of the extended Nakagami-gamma composite fading channel as follows,

Cout = 1− 1

Γ(m)Γ(δ)Γ( 1
q−1 −m)

G3,1
2,3

[
δ(q − 1)md

βγ̄
(2C0|W − 1)

∣∣∣∣1,1+m− 1
q−1

0,m,δ

]
, (42)

for m, δ, β, d > 0, 1
q−1 −m > 0, γ̄ > 0.

5.6. Average Bit Error Probability (ABEP)

The instantaneous bit error probabilities (IBEP), conditioned on the instantaneous SNR γ, in an AWGN channel
can be written in compact form as

PE(γ) =
Γ(c, aγ)

2Γ(c)
(43)

where Γ(., .) is the incomplete gamma function. The parameter a and b take specific values for specific modulations.
For instance a = 1

2 for coherent detection and 1 for noncoherent/differentially coherent detection, and c = 1
2 for

orthogonal FSK and 1 for antipodal PSK. Using pγ(γ), the average BEP is given by

P̄E(γ) =

∫ ∞

0

PE(γ)pγ(γ)dγ. (44)

Then substituting (43) and PE(γ) in to (44), the ABEP in extended Nakagami-gamma fading channel is given in
closed form in the following theorem.

Theorem 6
(Average Bit Error Probability): Let γ, be the instantaneous SNR at the output of the single receiver operating in
extended Nakagami-gamma wireless fading channels. Then the ABEP P̄E is given by

P̄E(γ) =
1

Γ(m)Γ(δ)Γ( 1
q−1 −m)Γ(c)

G3,2
3,3

[
βγ̄

δ(q − 1)md

∣∣∣∣1−m,1−δ,1

c, 1
q−1−m,0

]
, (45)

for β, δ,m, c, d > 0, 1
q−1 −m > 0.
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Proof: Substituting (30) and PE(γ) in to (44), the ABEP P̄E(γ) can be given as

P̄E(γ) =
(δm(q − 1)d)−m

Γ(m)Γ(δ)Γ( 1
q−1 −m)Γ(c)(γ̄β)−m

∫ ∞

0

Γ(c, aγ)γm−1G2,1
1,2

[
δ(q − 1)md

βγ̄

∣∣∣∣1− 1
q−1

0,δ−m

]
(46)

substituting Meijer’s G function representation of both the incomplete gamma and pg(γ), we get

P̄E(γ) =
(δm(q − 1)d)−m

Γ(m)Γ(δ)Γ( 1
q−1 −m)Γ(c)((̄γ)β)−m

× I2,

where

I2 =

∫ ∞

0

γm−1G2,0
1,2

[
aγ

∣∣∣∣1
c,0

]
G2,1

1,2

[
δ(q − 1)md

βγ̄
γ

∣∣∣∣1− 1
q−1

0,δ−m

]
dσ. (47)

Using the Mellin transform of the product of two G-functions, see Mathai et al. (2010), we get

P̄E(γ) =
1

Γ(m)Γ(δ)Γ(c)Γ( 1
q−1 −m)

G3,2
3,3

[
βγ̄

δ(q − 1)md

∣∣∣∣1−m,1−δ,1

c, 1
q−1−m,0

]
, (48)

for β, δ,m, d > 0, 1
q−1 −m > 0, γ̄ > 0, q > 1.

The performance of ABEP for the coherent BPSK are seen in the following figure.

Figure 3. The ABEP of Nakagamai-gamma and extended Nakagami-gamma fading channels versus the average input SNR
for several values of m, β and δ.

6. Conclusion

In this paper, we have developed an extended form of a statistical model for composite fading channel modeling.
The density function is evaluated in terms of G-function. In addition, the distribution function, the Laplace
transform and moments of these random variables are determined. These derived results can be used to analyze
the outage probability and the bit error probability in digital communication systems operating over multipath and
shadow fading channels.
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