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A five-parameter extended fatigue life model called the McDonald–Birnbaum–Saunders (McBS) distri-
bution is proposed. It extends the Birnbaum–Saunders and beta Birnbaum–Saunders [G.M. Cordeiro and
A.J. Lemonte, The β-Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling.
Comput. Statist. Data Anal. 55 (2011), pp. 1445–1461] distributions and also the new Kumaraswamy–
Birnbaum–Saunders distribution. We obtain the ordinary moments, generating function, mean deviations
and quantile function. The method of maximum likelihood is used to estimate the model parameters and its
potentiality is illustrated with an application to a real fatigue data set. Further, we propose a new extended
regression model based on the logarithm of the McBS distribution. This model can be very useful to the
analysis of real data and could give more realistic fits than other special regression models.

Keywords: Birnbaum–Saunders distribution; Kumaraswamy distribution; maximum-likelihood estima-
tion; McDonald distribution; regression model

1. Introduction

The statistics literature is filled with hundreds of continuous univariate distributions which have
been extensively used over the past decades for modelling data in several fields such as environ-
mental and medical sciences, engineering, demography, biological studies, actuarial, economics,
finance and insurance. However, in many applied areas such as lifetime analysis, finance and insur-
ance, there is a clear need for extended forms of these distributions. The Birnbaum–Saunders (BS)
[1,2] distribution, also known as the fatigue life distribution, is a very popular model which has
been extensively used for modelling failure times of fatiguing materials and lifetime data in the
fields cited above. A random variable T having the BS(α, β) distribution with shape parameter
α > 0 and scale parameter β > 0 is defined by

T = β

⎡⎣αZ

2
+
{(

αZ

2

)2

+ 1

}1/2
⎤⎦2

,
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2 G.M. Cordeiro et al.

where Z is a standard normal random variable. The cumulative distribution function (cdf) of T is
given by

Gα,β(t) = �(v), t > 0, (1)

where v = α−1ρ(t/β), ρ(z) = z1/2 − z−1/2 and �(·) is the standard normal cumulative function.
The parameter β is the median of the distribution: G(β) = �(0) = 1/2. For any k > 0, kT ∼
BS(α, kβ). Kundu et al. [3] discussed the shape of its hazard function. The probability density
function (pdf) corresponding to Equation (1) is

gα,β(t) = κ(α, β)t−3/2(t + β) exp

{
−τ(t/β)

2α2

}
, t > 0, (2)

where κ(α, β) = exp(α−2)/(2α
√

2πβ) and τ(z) = z + z−1. Results on improved statistical infer-
ence for the BS model are discussed by Wu and Wong [4] and Lemonte et al. [5,6]. The moments
of T are [7]

E(T p) = βpI(p, α), (3)

where

I(p, α) = Kp+1/2(α
−2) + Kp−1/2(α

−2)

2K1/2(α−2)
. (4)

The function Kν(·) is the modified Bessel function of the third kind and order ν.
The generalized beta distribution of the first kind (or beta type-I) may be characterized by the

density function [8]

fMc(t; a, b, c) = c

B(ac−1, b)
ta−1(1 − tc)b−1, 0 < t < 1, (5)

where a > 0, b > 0 and c > 0 are shape parameters. Two important special models are the beta
and Kumaraswamy [9] distributions for c = 1 and a = c, respectively.

For an arbitrary baseline distribution G(t) with parameter vector τ and density function g(t),
the McDonald generalized (denoted by the prefix ‘McG’ for short) cdf is defined by

FMcG(t) = IG(t)c(ac−1, b) = 1

B(ac−1, b)

∫ G(t)c

0
ω(a/c)−1(1 − ω)b−1 dω. (6)

Here, B(a, b) = �(a)�(b)/�(a + b) is the beta function, �(α) = ∫∞
0 wα−1 e−w dw is the gamma

function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio, By(a, b) = ∫ y
0 ωa−1

(1 − ω)b−1 dω is the incomplete beta function and a > 0, b > 0 and c > 0 are additional shape
parameters to those in τ to control skewness through the relative tail weights.

The density function corresponding to Equation (6) reduces to

fMcG(t) = c

B(ac−1, b)
g(t)G(t)a−1[1 − G(t)c]b−1. (7)

Clearly, the McDonald density (5) is a basic exemplar of Equation (7) for G(t) = t, t ∈ (0, 1).
Additionally, we obtain the classical beta and Kumaraswamy distributions for c = 1 and a = c,
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Statistics 3

respectively. The distribution of Kumaraswamy [9] is commonly termed the ‘minimax’ dis-
tribution. Jones [10] advocates its tractability, especially in simulations because its quantile
function takes a simple form, and its pedagogical appeal relative to the classical beta distribu-
tion. Equation (7) will be most tractable when both functions G(t) and g(t) have simple analytic
expressions. Its major benefit is the ability to fit skewed data that cannot be properly fitted by
existing distributions. Application of T = G−1(V 1/c) to a beta random variable V with positive
parameters a/c and b yields T with cumulative function (6).

The class of distributions (7) includes two important special sub-classes: the beta-generalized
(BG) and Kumaraswamy-generalized (KwG) distributions defined by Eugene et al. [11] and
Cordeiro and de Castro [12] when c = 1 and a = c, respectively. It follows immediately from
Equation (7) that the McG distribution with parent G(t) is the BG distribution with baseline
G(t)c. This simple transformation may facilitate the derivation of several of its properties. The
BG distributions can be limited in one aspect. They have only two additional shape parameters
and so they can add only a limited structure to the generated distribution. For instance, a BG
distribution may have problems to capture the behaviour of random variables with symmetric but
highly leptokurtic distributions. While the beta parameters offer explicit control over skewness
when the parent is symmetric, they have less control over higher moments such as kurtosis.
Further, a KwG distribution still introduces only two extra shape parameters, whereas three may
be required to control both tail weights and the distribution of weight in the centre. Hence, the
generated distribution (7) is a more flexible model since it has one more shape parameter than the
classical beta or Kumaraswamy generators. This parameter can give additional control over both
skewness and kurtosis.

In this note, we study some structural properties of a new five-parameter distribution, called
the McDonald–BS (McBS) distribution, defined from Equation (7) by taking G(t) and g(t) to be
the cdf and pdf of the BS(α, β) distribution, respectively. The McBS distribution can be widely
applied in many areas of engineering and biology. Further, we propose a generalized regression
model based on the logarithm of a random variable following the McBS distribution, i.e. the
log-McBS (LMcBS) distribution. This regression model extends the log-BS (LBS) model, also
referred to as the sinh-normal regression model [13]. The regression model introduced by Rieck
and Nedelman [13] has been studied by several authors in the last few years. Some references are
[14–21], among others. A sinh-normal nonlinear regression model is presented by Lemonte and
Cordeiro [22].

The article is outlined as follows. In Section 2, we define the McBS distribution. Section 3
provides a useful expansion for its density function. Section 4 deals with non-standard measures
for the skewness and kurtosis. A power series expansion for the McBS quantile function is derived
in Section 5. In Section 6, we obtain two simple expansions for the moments. Section 7 provides
two expansions for the moment-generating function (mgf). Mean deviations, Bonferroni and
Lorenz curves and the reliability are investigated in Sections 8 and 9, respectively. Maximum-
likelihood estimation is discussed in Section 10. Section 11 introduces the LMcBS distribution.
The mgf of this distribution is derived in Section 12. We propose an extended LMcBS regression
model in Section 13. Further, we provide applications to real data in Section 14. Finally, Section 15
offers some concluding remarks.

2. The McBS distribution

To avoid non-identifiability problems, we allow b to vary on the interval [1, ∞) only. Let η = b − 1
which varies on [0, ∞). From now on, we denote a random variable having the McBS(a, η, c, α, β)

distribution by T ∼ McBS(a, η, c, α, β). The cdf of T reduces to F(t) = I�(v)c(ac−1, η + 1). The
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4 G.M. Cordeiro et al.

density function of T (for t > 0) can be expressed from Equation (7) as

f (t) = cκ(α, β)t−3/2(t + β)

B(ac−1, η + 1)
exp

{
−τ(t/β)

2α2

}
�(v)a−1{1 − �(v)c}η, (8)

where β is a scalar parameter and α, a, η and c are positive shape parameters. The hazard rate
function associated with Equation (8) is given by

r(t) = cκ(α, β)(t + β)t−3/2

B(ac−1, η + 1)[1 − I�(v)c(ac−1, η + 1)] exp

{
−τ(t/β)

2α2

}
�(v)a−1{1 − �(v)c}η. (9)

The study of the new distribution seems important since it extends some distributions previously
considered in the literature. In fact, the BS model (with parameters α and β) is clearly a basic
exemplar for a = c = 1 and η = 0, with a continuous crossover towards models with different
shapes (e.g. a particular combination of skewness and kurtosis). The McBS model contains as
sub-models the beta BS (BBS) [23] and Kumaraswamy–BS (KwBS) distributions when c = 1 and
a = c, respectively. Plots of the McBS density and hazard rate functions for selected parameter
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Figure 1. Plots of the density function (8) for some parameter values. (a) For values α = β = 1.0 and c = 1.5; (b) for
values α = β = 1.0 and η = 1.5; (c) for values α = β = 1.0 and a = 1.5 and (d) for values α = β = 1.0.
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Figure 2. Plots of the hazard rate function (9) for some parameter values. (a) For values α = β = 1.0 and c = 1.5;
(b) for values α = β = 1.0 and η = 1.5; (c) for values α = β = 1.0 and a = 1.5 and (d) for values α = β = 1.0.

values are given in Figures 1 and 2, respectively. The density function and hazard rate function can
take various forms, depending on the parameter values. It is evident that the shapes of the McBS
distribution are much more flexible than the BS distribution. Figure 3 provides some relationships
among the models defined from the McBS distribution.

Figure 3. Relationships of the McBS sub-models.
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6 G.M. Cordeiro et al.

The new model is easily simulated as follows: if V is a beta random variable with parameters
a/c and η + 1, then

T = β

{
α�−1(V)

2
+
[

1 + α2�−1(V)2

4

]1/2
}2

has the McBS(a, η, c, α, β) distribution. This scheme is useful because of the existence of fast
generators for beta random variables and the standard normal quantile function is available in
most statistical packages.

3. Density function expansion

An expansion for Equation (8) can be derived using the concept of exponentiated distributions.
We define a random variable Y having the exponentiated BS (EBS) distribution with parameters
α, β and a > 0, say Y ∼ EBS(α, β, a), if its cdf and pdf are given by H(y; α, β, a) = �(v)a

and h(y; α, β, a) = agα,β(y)�(v)a−1, respectively, where v = α−1ρ(y/β). The properties of some
exponentiated distributions have been studied by several authors. In particular, the reader is
referred to [24–27].

By expanding the binomial in Equation (8), we obtain the linear combination representation
(with b = η + 1)

f (t) =
∞∑

k=0

wkh(t; α, β, kc + a), (10)

where h(t; α, β, kc + a) denotes the EBS(α, β, kc + a) density function and the weights wk are
given by

wk =
(−1)kc

(
η

k

)
B(ac−1, η + 1)(kc + a)

.

The McBS density function is then a linear combination of EBS density functions. The
EBS(α, β, kc + a) density function follows directly from Equation (8) by setting η = 0 and c = 1
and replacing a by kc + a. So, some McBS properties can be obtained by knowing those of the
EBS distribution.

By integrating Equation (10), we obtain

F(t) =
∞∑

k=0

wk�(v)kc+a. (11)

If a is a positive real non-integer, we can expand �(v)a as

�(v)a =
∞∑

r=0

sr(a)�(v)r , (12)

where

sr(m) =
∞∑

j=r

(−1)r+j

(
m
j

)(
j
r

)
.
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Statistics 7

Thus, from Equations (2), (10) and (12), we can write

f (t) = gα,β(t)
∞∑

r=0

er�(v)r , (13)

where er =∑∞
k=0 dksr(kc + a − 1).

4. Quantile measures

The McBS quantile function, say Q(u) = F−1(u), can be expressed in terms of the BS quantile
function (QBS(·)) and beta quantile function (Qβ(·)). The BS quantile function is straightforward
to be computed from the standard normal quantile function x = QN (u) = �−1(u) by [23]

QBS(u) = β

2
{2 + α2QN (u)2 + αQN (u)[4 + α2QN (u)2]1/2}. (14)

Let w = Qβ(u) be the quantile function of a beta random variable with parameters ac−1 and η + 1.
By inverting F(t) = I�(v)c(ac−1, η + 1) = u, the McBS quantile function can be determined by
t = Q(u) = QBS(Qβ(u)1/c).

The effect of the shape parameters a, b and c on skewness and kurtosis can be considered based
on quantile measures. The shortcomings of the classical kurtosis measure are well known. One
of the earliest skewness measures to be suggested is the Bowley skewness [28] defined by the
average of the quartiles minus the median, divided by half the interquartile range, namely

B = Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are ignored, this
adds robustness to the measure. The Moors kurtosis [29] is based on octiles

M = Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
.

These measures are less sensitive to outliers and they exist even for distributions without moments.
For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness
relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness.
Because M is based on octiles, it is not sensitive to variations of the values in the tails or to variations
of the values around the median. The basic justification of M as an alternative measure of kurtosis
is the following: keeping Q(2/8) and Q(6/8) fixed, M clearly decreases as Q(3/8) − Q(1/8) and
Q(7/8) − Q(5/8) decrease. So, Q(3/8) − Q(1/8) → 0 and Q(7/8) − Q(5/8) → 0, M → 0 and
half of the total probability mass is concentrated in the neighbourhoods of the octiles Q(2/8)

and Q(6/8). Clearly, M > 0 and there is a good concordance with the usual kurtosis measures
for some distributions. For the normal distribution, B = M = 0.

Figures 4–6 provide plots of the measures B and M for some parameter values, respectively.
These plots show that both measures depend on all shape parameters. Figure 6 also shows that
they can be very sensitive to the extra third parameter c even in the case when a = b = η + 1. The
BBS distribution has only two extra shape parameters and so it can add only a limited structure
to the skewness and kurtosis of the generated distribution.
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8 G.M. Cordeiro et al.
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Figure 4. Plots of the measure B for some parameter values. (a) For values α = 0.5, β = 1.0 and η = 1.5 and (b) for
values α = 0.5, β = 1.0 and a = 1.5.

1.18

1.20

1.22

1.24

1.26

1.28

1.30

c

M

a=0.5
a=1.0
a=1.5
a=2.5
a=4.0

(a)

1.18

1.20

1.22

1.24

1.26

c

M

η=0.5
η=1.0
η=1.5
η=2.5
η=4.0

(b)

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 5. Plots of the measure M for some parameter values. (a) For values α = 0.5, β = 1.0 and η = 1.5 and (b) for
values α = 0.5, β = 1.0 and a = 1.5.
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Figure 6. Plots of the measures (a) B and (b) M for some parameter values with α = 0.5 and β = 1.0.
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5. Quantile expansion function

Power series methods are at the heart of many aspects of applied mathematics and statistics.
In this section, we derive a power series expansion for Q(u) that can be useful to determine
some mathematical measures of the new distribution. Let F(t) = Iw(ac−1, η + 1) = u, where
w = �(v)c. We can express w as a power series expansion of u given by [23]

w =
∞∑

r=0

frurc/a, (15)

where f0 = 0 and fi = qi{ac−1B(ac−1, η + 1)}i/a for i ≥ 1, and the quantities qi’s for i ≥ 2 can
be obtained from the cubic recursive equation

qi = 1

[i2 + (ac−1 − 2)i + (1 − ac−1)]

{
(1 − δi,2)

i−1∑
r=2

qrqi+1−r[r(1 − ac−1)(i − r) − r(r − 1)]

+
i−1∑
r=1

i−r∑
s=1

qrqsqi+1−r−s[r(r − ac−1) + s(ac−1 + η − 1)(i + 1 − r − s)]
}

,

where δi,2 = 1 if i = 2 and δi,2 = 0 if i �= 2. The quadratic term in the last expression contributes
only for i ≥ 3. We have q0 = 0, q1 = 1, q2 = η/(ac−1 + 1), q3 = η[a2c−2 + 3ac−1(η + 1) −
ac−1 + 5η + 1]/[2(ac−1 + 1)2(ac−1 + 2)] and

q4 =
η[a4c−4 + (6η + 5)a3c−3 + (η + 3)(8η + 3)a2c−2 + (33η2 + 36η + 7)ac−1

+(η + 1)(31η − 16) + 18]
[3(ac−1 + 1)3(ac−1 + 2)(ac−1 + 3)] .

Equation (15) yields w in (0, 1), since it is an expansion for the beta quantile function.
We use throughout an equation in Section 0.314 of Gradshteyn and Ryzhik [30] for a power

series raised to a positive integer j given by( ∞∑
i=0

aix
i

)j

=
∞∑

i=0

cj,ix
i, (16)

whose coefficients cj,i (for i = 1, 2, . . .) are determined from the recurrence equation

cj,i = (ia0)
−1

i∑
m=1

(jm − i + m)amcj,i−m (17)

and cj,0 = aj
0. Hence, the coefficients cj,i can be computed directly from cj,0, . . . , cj,i−1 and, there-

fore, from a0, . . . , ai. They can be given explicitly in terms of the ai’s, although it is not necessary
for programming numerically our expansions in any algebraic or numerical software.

Following again Cordeiro and Lemonte [23], we can invert �(v) = w1/c if the condition −2 <

(t/β)1/2 − (β/t)1/2 < 2 holds, to express t as a power series expansion of w

t = Q(u) =
∞∑

k=0

mk

(
w1/c − 1

2

)k

. (18)
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10 G.M. Cordeiro et al.

The coefficients mk in Equation (18) can be expressed in terms of known constants

mk = (2π)k/2
∞∑

j=0

pjej,k ,

where p0 = β, p2j+1 = βα2j+1
(

1/2
j

)
2−2j for j ≥ 0, p2 = βα2/2 and p2j = 0 for j ≥ 2 and the

quantities ej,k follow recursively from Equations (16) and (17) by ej,0 = dj
0 and

ej,k = (kd0)
−1

k∑
m=1

(jm − k + m)dmej,k−m.

Here, the quantities dm are defined by dm = 0 (for m = 0, 2, 4, . . .) and dm = b(m−1)/2 (for k =
1, 3, 5, . . .), where the bm’s are calculated recursively from

bm+1 = 1

2(2m + 3)

m∑
r=0

(2r + 1)(2m − 2r + 1)brbm−r

(r + 1)(2r + 1)
.

We have b0 = 1, b1 = 1/6, b2 = 7/120, b3 = 127/7560, . . . .
Combining Equations (15) and (18), we obtain

t =
∞∑

k=0

mk

⎡⎣( ∞∑
r=0

frurc/a

)1/c

− 1

2

⎤⎦k

.

Hence,

t =
∞∑

k=0

mk

k∑
i=0

(
k
i

)(
−1

2

)k−i
( ∞∑

r=0

frurc/a

)i/c

.

Since the last sum belongs to the interval (0, 1), we can use Equation (12) to obtain[ ∞∑
r=0

frurc/a

]i/c

=
∞∑

m=0

sm(i/c)

( ∞∑
r=0

frurc/a

)m

,

where

sm(i/c) =
∞∑

j=m

(−1)m+j

(
i/c
j

)(
j
m

)
.

Further, we can write ( ∞∑
r=0

frurc/a

)m

=
∞∑

r=0

cm,rurc/a, (19)

whose coefficients cm,r (for r = 1, 2, . . .) can be obtained from cm,0 = f m
0 and

cm,r = (rf0)
−1

r∑
l=1

(ml − r + l)flcm,r−l.
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Statistics 11

Hence,

t = Q(u) =
∞∑

r=0

qrurc/a, (20)

where

qr =
∞∑

k,m=0

mkcm,r

k∑
i=0

(
k
i

)(
−1

2

)k−i

sm(i/c). (21)

Equation (20) provides a power series expansion for the McBS quantile function. Some of its
measures of interest (such as moments and mgf) can be derived from Equation (20).

6. Moments

The ordinary moments of the McBS random variable T can be derived from the probability
weighted moments [31] of the BS distribution formally defined for p and r non-negative integers by

τp,r =
∫ ∞

0
tpgα,β(t)�(v)r dt. (22)

The integral (22) can be easily computed numerically in software such as MAPLE, MATLAB,
MATHEMATICA, Ox and R. Cordeiro and Lemonte [23] proposed an alternative representation to
compute τp,r as

τp,r = βp

2r

r∑
j=0

(
r
j

) ∞∑
k1,...,kj=0

A(k1, . . . , kj)

2sj+j∑
m=0

(−1)m

(
2sj + j

m

)
I

(
p + (2sj + j − 2m)

2
, α

)
,

where sj = k1 + · · · + kj, A(k1, . . . , kj) = α−2sj−jak1 , . . . , akj , ak = (−1)k2(1−2k)/2[√π(2k +
1)k!]−1 and I(p + (2sj + j − 2m)/2, α) is calculated from Equation (4).

The sth moment of T can be written from Equation (13) as

μ′
s = E(T s) =

∞∑
r=0

erτs,r , (23)

where τs,r is obtained from Equation (22) and er is given after Equation (13). Equation (23) can
be computed numerically in any symbolic software (e.g. MAPLE, MATLAB and MATHEMATICA)
by taking in the sum a large number of summands. These algebraic software have currently the
ability to deal with analytic expressions of formidable size and complexity.

As a simple application of Equation (20), we obtain an alternative expression for μ′
s (for a real

non-integer) using the quantile function Q(u). We can write from Equation (13)

μ′
s =

∞∑
p=0

er

∫ 1

0
Q(u)sup du.

Further, we can easily evaluate the integral in (0, 1) from Equation (20) as∫ 1

0

( ∞∑
r=0

qrurc/a

)s

up du =
∞∑

r=0

ds,r

∫ 1

0
up+rc/a du =

∞∑
r=0

ds,r

(p + 1 + rc/a)
,
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12 G.M. Cordeiro et al.

where ds,r follows the recurrence equation (with ds,0 = qs
0)

ds,r = (rq0)
−1

t∑
m=1

(sm − r + m)qmds,t−m.

Finally, we obtain

μ′
s =

∞∑
p,r=0

erds,r

(p + 1 + rc/a)
,

which is an alternative formula to Equation (23).
Plots of the skewness and kurtosis of the McBS distribution as a function of c for selected

values of a and η for α = 0.5 and β = 1.0 are shown in Figures 7 and 8, respectively.
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Figure 7. Plots of the skewness of the McBS distribution as a function of c for some values of a and η for α = 0.5 and
β = 1.0. (a) η = 1.5 and (b) a = 1.5.
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Figure 8. Plots of the kurtosis of the McBS distribution as a function of c for some values of a and η for α = 0.5 and
β = 1.0. (a) η = 1.5 and (b) a = 1.5.
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Statistics 13

7. Generating function

Here, we provide two representations for the mgf of the McBS(a, b, c, α, β) distribution, say
M(s) = E{exp(sX)}. From expansion (13), we obtain a first expansion

M(s) =
∞∑

r=0

er

∫ ∞

0
exp(st)gα,β(t)�(v)r dt =

∞∑
r,p=0

erτp,r

p! sp.

A second representation for the mgf is based on the quantile expansion (20). We have

M(s) =
∫ ∞

0
exp(st)f (t) dt =

∫ 1

0
exp

{
s

( ∞∑
r=0

qrurc/a

)}
du,

where qr is given by Equation (21). The polynomial expansion

M(s) =
∞∑

i,r=0

pi,rsi

i!
∫ 1

0
urc/a du =

∞∑
i=0

tis
i,

where

ti =
∞∑

r=0

api,r

(rc + a)i!
follows and the quantities pi,r can be obtained from the recurrence equation (for i = 1, 2, . . .)
(with pi,0 = qi

0)

pi,r = (rq0)
−1

r∑
m=1

(im − r + m)qmpi,r−m.

8. Mean deviations

The deviations from the mean and from the median can be used as a measure of spread in a
population. Let T be a random variable having the McBS(a, η, c, α, β) distribution. We can derive
the mean deviations about the mean and about the median from the relations

δ1(T) = E(|T − μ′
1|) =

∫ ∞

0
|t − μ′

1| f (t) dt and δ2(T) = E(|T − m|) =
∫ ∞

0
|t − m|f (t) dt,

respectively, where the mean μ′
1 = E(T) is calculated from Equation (23) and the median m is

given by m = QBS(Qβ(0.5)1/c). The measures δ1(T) and δ2(T) can be expressed as

δ1(T) = 2μ′
1F(μ′

1) − 2J(μ′
1) and δ2(T) = μ′

1 − 2J(m),

where F(μ′
1) = I�(w)c(ac−1, η + 1), J(q) = ∫ q

0 tf (t) dt and w = α−1ρ(μ′
1/β). In what follows,

we obtain an expression for the integral J(q). From Equation (13), J(q) can be written as

J(q) =
∞∑

r=0

erρ(q, r), (24)
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14 G.M. Cordeiro et al.

where ρ(q, r) = ∫ q
0 tgα,β(t)�(v)r dt. From Cordeiro and Lemonte [23], we have

�(v)r = 1

2r

r∑
j=0

(
r
j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m

(
2sj + j

m

)
t(2sj+j−2m)/2,

where sj and A(k1, . . . , kj) are defined in Section 6. Thus,

ρ(q, r) = κ(α, β)

2r

r∑
j=0

(
r
j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m

(
2sj + j

m

)

×
∫ q

0
t(2sj+j−2m−1)/2(t + β) exp

{
−τ(t/β)

2α2

}
dt.

Let

D(p, q) =
∫ q

0
tp exp

{
− (t/β + β/t)

2α2

}
dt = βp+1

∫ q/β

0
up exp

{
− (u + u−1)

2α2

}
du.

From Terras [32], we can write

D(p, q) = 2βp+1Kp+1(α
−2) − qp+1Kp+1

(
q

2α2β
,

β

2α2q

)
,

where Kν(x1, x2) denotes the incomplete Bessel function with arguments x1 and x2 and order ν

(for further details, see [33–35]). Hence, we obtain

ρ(q, r) = κ(α, β)

2r

r∑
j=0

(
r
j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A(k1, . . . , kj)

2sj+j∑
m=0

(−β)m

×
(

2sj + j
m

){
D

(
2sj + j − 2m + 1

2
, q

)
+ βD

(
2sj + j − 2m − 1

2
, q

)}
,

which can be calculated from the function D(p, q). Hence, we can use this expression for ρ(q, r)
to compute J(q) from Equation (24).

From Equation (24), we obtain the Bonferroni and Lorenz curves defined by B(π) =
J(q)/(πμ′

1) and L(π) = J(q)/(μ′
1), respectively, where q = Q(π) = QBS(Qβ(π)1/c) is cal-

culated for a given probability π . These curves have applications in economics, reliability,
demography, insurance and medicine.

9. Reliability

In the context of reliability, the stress–strength model describes the life of a component which
has a random strength T1 that is subjected to a random stress T2. The component fails at the
instant that the stress applied to it exceeds the strength, and the component will function satisfac-
torily whenever T1 > T2. Hence, R = Pr(T2 < T1) is a measure of component reliability which
has many applications in engineering. Here, we derive the reliability R when T1 and T2 have
independent McBS(a1, η1, c1, α, β) and McBS(a2, η2, c2, α, β) distributions with the same shape
parameters α and β.
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Statistics 15

The pdf of T1 and the cdf of T2 can be written from Equations (10) and (11) as

f1(t) =
∞∑

k=0

w1k(kc1 + a1)gα,β(t)�(v)kc1+a1−1 and F2(t) =
∞∑

j=0

w2j�(v)jc2+a2 ,

respectively, where

w1k =
(−1)kc1

(
η1

k

)
B(a1c−1

1 , η1 + 1)(kc1 + a1)
and w2j =

(−1)jc2

(
η2

j

)
B(a2c−1

2 , η2 + 1)( jc2 + a2)
.

We have

R =
∫ ∞

0
f1(t)F2(t) dt

and then

R =
∞∑

k,j=0

w1kw2j(kc1 + a1)

∫ ∞

0
gα,β(t)�(v)kc1+a1+jc2+a2−1.

From Equation (12), we can write

�(v)kc1+a1+jc2+a2−1 =
∞∑

r=0

sr(kc1 + a1 + jc2 + a2 − 1)�(v)r

and then R reduces to

R =
∞∑

k,j=0

w1kw2j(kc1 + a1)

∞∑
r=0

sr(kc1 + a1 + jc2 + a2 − 1)τ0,r .

10. Estimation

The estimation of the model parameters of the McBS distribution will be investigated by maximum
likelihood. Let t = (t1, . . . , tn)
 denote a random sample of size n obtained from the McBS model
and let θ = (a, η, c, α, β)
 be the parameter vector. The total log-likelihood function for θ can be
reduced to

�(θ) = n log{cκ(α, β)} − n log{B(ac−1, η + 1)} − 3

2

n∑
i=1

log(ti) +
n∑

i=1

log(ti + β)

− 1

2α2

n∑
i=1

τ

(
ti
β

)
+ (a − 1)

n∑
i=1

log{�(vi)} + η

n∑
i=1

log{1 − �(vi)
c}.

By taking the derivatives of the log-likelihood function in relation to the parameters, the
components of the score vector Uθ = (Ua, Uη, Uc, Uα , Uβ)
 are given by

Ua = −nψ(ac−1)

c
+ nψ(ac−1 + η + 1)

c
+

n∑
i=1

log{�(vi)},
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16 G.M. Cordeiro et al.

Uη = −nψ(η + 1) + nψ(ac−1 + η + 1) +
n∑

i=1

log{1 − �(vi)
c},

Uc = n

c
+ nψ(ac−1)a

c2
− nψ(a + η + 1)a

c2
− η

n∑
i=1

�(vi)
c log{�(vi)}

1 − �(vi)c
,

Uα = − n

α

(
1 + 2

α2

)
+ 1

α3

n∑
i=1

(
ti
β

+ β

ti

)
− 1

α

n∑
i=1

viφ(vi)

�(vi)

{
(a − 1) − ηc�(vi)

c−1

1 − �(vi)c

}
,

Uβ = − n

2β
+

n∑
i=1

1

ti + β
+ 1

2α2β

n∑
i=1

(
ti
β

− β

ti

)

− 1

2αβ

n∑
i=1

τ(
√

ti/β)φ(vi)

�(vi)

{
(a − 1) − ηc�(vi)

c−1

1 − �(vi)c

}
,

where φ(·) is the standard normal density function, ψ(·) is the digamma function, vi =
α−1ρ(ti/β) = α−1{(ti/β)1/2 − (β/ti)1/2} and τ(

√
ti/β) = (ti/β)1/2 + (β/ti)1/2 for i = 1, . . . , n.

The maximum-likelihood estimate (MLE) θ̂ = (â, η̂, ĉ, α̂, β̂)
 of θ = (a, η, c, α, β)
 is obtained
by setting Ua = 0, Uη = 0, Uc = 0, Uα = 0 and Uβ = 0 and solving the nonlinear equations
simultaneously. These equations can be solved by iterative techniques such as a Newton–Raphson-
type algorithm to obtain the estimate θ̂. The Broyden–Fletcher–Goldfarb–Shanno method [36,37]
with analytical derivatives has been used to maximize �(θ). We considered the Ox matrix pro-
gramming language [38] to obtain the MLEs of the model parameters by using the subroutine
MaxBFGS.

The normal approximation for the MLE of θ can be used to construct approximate confidence
intervals and for testing hypotheses on the parameters a, η, c, α and β. Under conditions that are ful-

filled for the parameters in the interior of the parameter space, we obtain
√

n(θ̂ − θ)
A∼ N5(0, K−1

θ ),

where
A∼ means approximately distributed and Kθ is the unit expected information matrix. The

asymptotic result Kθ = limn→∞ n−1Jn(θ) holds, where Jn(θ) is the observed information matrix.
The average matrix evaluated at θ̂, say n−1Jn(θ̂), can estimate Kθ . The observed information
matrix Jn(θ) = −∂2�(θ)/∂θ∂θ
 is given in Appendix 1.

We can compute the maximum values of the unrestricted and restricted log-likelihood functions
to obtain likelihood ratio (LR) statistics for testing some McBS sub-models. We consider the
partition θ = (θ


1 , θ

2 )
 for the vector of parameters of the McBS distribution, where θ1 is a

subset of parameters of interest and θ2 is a subset of the remaining parameters. The LR statistic
for testing the null hypothesis H0 : θ1 = θ

(0)
1 against the alternative hypothesis H1 : θ1 �= θ

(0)
1

is given by w = 2{�(θ̂) − �(θ̃)}, where θ̂ and θ̃ are the MLEs under the alternative and null
hypotheses, respectively, and θ

(0)
1 is a specified parameter vector. The statistic w is asymptotically

(as n → ∞) distributed as χ2
k , where k is the dimension of the subset θ1 of interest. For example,

the McBS and BBS models are compared by testing H0 : c = 1 versus H1 : c �= 1 and the LR
statistic becomes w = 2{�(â, η̂, ĉ, α̂, β̂) − �(ã, η̃, 1, α̃, β̃)}, where â, η̂, ĉ, α̂ and β̂ are the MLEs
under H1 and ã, η̃, α̃ and β̃ are the estimates under H0.

As pointed out by an anonymous referee, when the expected information matrix is not available,
the Wald statistic by considering the observed information matrix is used frequently in practice
for hypothesis testing, especially in conjunction with higher-order asymptotic methods. So, this
statistic may be used instead of the LR statistic since it avoids the potential problems in finding
the restricted MLEs. Based on the referee’s argument, a future research could be conducted to
compare the LR and Wald statistics for testing its model parameters.
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Statistics 17

11. Log-McBS distribution

In this section, we extend the log-BS model [13] by replacing the BS distribution by the McBS
distribution. First, let T be a random variable having the McBS density function (8). The random
variable W = log(T) has a LMcBS distribution (also referred to as the beta sinh-normal distribu-
tion). After some algebra, the density function of W , parametrized in terms of μ = log(β), can
be expressed as

fW (w) = cξ01 exp(−ξ 2
02/2)�(ξ02)

a−1[1 − �(ξ02)
c]η

2
√

2πB(ac−1, η + 1)
, w ∈ R,

where ξ01 = 2α−1 cosh((w − μ)/2) and ξ02 = 2α−1 sinh((w − μ)/2). The parameter μ ∈ R is a
location parameter and a, η, c and α are positive shape parameters. Now, we define the standardized
random variable Z = (W − μ)/2 having density function

π(z) = 2c cosh(z) exp{−2 sinh2(z)/α2}
B(ac−1, η + 1)

√
2πα

�

(
2

α
sinh(z)

)a−1 [
1 − �

(
2

α
sinh(z)

)c]η

, z ∈ R.

(25)
Some sub-models can be immediately obtained from Equation (25). The special cases c = 1 and
a = c correspond to the log-BBS (LBBS) and log-KwBS (LKwBS) distributions, respectively.
Further, c = 1 and η = 0 yields the log-EBS model and a = c = 1, η = 0 and σ = 2 gives the
sinh-normal distribution or LBS distribution [13].

Let Y = μ + σZ , whose density function takes the form

f (y) = cξ1 exp(−ξ 2
2 /2)�(ξ2)

a−1[1 − �(ξ2)
c]η√

2πσB(ac−1, η + 1)
, −∞ < y < ∞, (26)

where

ξ1 = 2

α
cosh

(
y − μ

σ

)
and ξ2 = 2

α
sinh

(
y − μ

σ

)
.

Here, σ > 0 is a kind of scale parameter. If Y is a random variable having density
function (26), we write Y ∼ LMcBS(a, η, c, α, μ, σ). Thus, if T ∼ McBS(a, η, c, α, β), then
Y = μ + σ [log(T) − μ]/2 ∼ LMcBS(a, η, c, α, μ, σ). The survival function corresponding to
Equation (26) is

S(y) = 1 − 1

B(ac−1, η + 1)

∫ �(ξ2)
c

0
wac−1−1(1 − w)η = 1 − I�(ξ2)c(ac−1, η + 1).

Plots of the density function (26) for selected parameter values are given in Figure 9. These
plots show great flexibility for different values of the shape parameters a, η and c. They indi-
cate that the density function (26) is very flexible and hence can be used in many practical
situations.

12. LMcBS generating function

Here, we obtain the mgf of the standardized LMcBS distribution (25) parametrized in terms of
a, η, c and α. First, we can write from the binomial expansion

�

(
2

α
sinh(z)

)a−1 [
1 − �

(
2

α
sinh(z)

)c]η

=
∞∑

i=0

(−1)i

(
η

i

)
�

(
2

α
sinh(z)

)ci+a−1
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18 G.M. Cordeiro et al.

and then using Equation (12)

�

(
2

α
sinh(z)

)a−1 [
1 − �

(
2

α
sinh(z)

)c]η

=
∞∑

i,r=0

(−1)i

(
η

i

)
sr(ci + a − 1)�

(
2

α
sinh(z)

)r

,

where as before

sr(ci + a − 1) =
∞∑

j=r

(−1)r+j

(
ci + a − 1

j

)(
j
r

)
.

Hence,

MZ(s) =
∞∑

i,r=0

pi,r

∫ ∞

−∞
exp(sz) cosh(z) exp

{
−2 sinh2(z)

α2

}
�

(
2

α
sinh(z)

)r

dz,

where pi,r = pi,r(a, η, c, α) = (−1)i2c( η

i )sr(ci + a − 1)[B(ac−1, η + 1)
√

2πα]−1.
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Figure 9. Plots of the LMcBS density for some parameter values. (a) For values c = 1.5, α = 1.5, μ = 0 and σ = 1;
(b) for values η = 1.5, α = 1.5, μ = 0 and σ = 1 and (c) for values a = 1.5, α = 1.5, μ = 0 and σ = 1.
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Statistics 19

The last integral, say Ir(s, α), follows from the error function erf(·)

�(x) = 1

2

[
1 + erf

(
x√
2

)]
and erf(x) = 2√

π

∫ x

0
exp(−y2) dy

and its power series expansion erf(x/
√

2) =∑∞
m=0 bmx2m+1, where

bm = (−1)m[(2m + 1)2m/2m!√π ]−1.

We have

�

(
2

α
sinh(z)

)r

= 1

2r

{
1 +

∞∑
m=0

dm sinh(z)2m+1

}r

,

where dm = 22m+1bmα−(2m+1). Thus, using Equation (17), we obtain

�

(
2

α
sinh(z)

)r

= 1

2r

r∑
k=0

(
r
k

)( ∞∑
m=0

dm sinh(z)2m+1

)k

=
∞∑

m=0

em,r sinh(z)2m+1,

where em,r = 2−r
∑r

k=0 ( r
k ) gk,m, gk,0 = dj

0 and

gk,m = (id0)
−1

m∑
�=1

(k� − m + �)d�gk,m−�.

Further,

Ir(s, α) =
∞∑

m=0

em,r

∫ ∞

−∞
exp(sz) cosh(z) sinh(z)2m+1 exp

{
−2

sinh2(z)

α2

}
dz.

Now, using the identity cosh(2z) = 2 sinh2(z) + 1, the definition of sinh(z) and cosh(z), and
expanding the binomial, we obtain after some algebra

Ir(s, α) =
∞∑

m=0

em,r

∫ ∞

−∞
exp(sz) cosh(z) sinh(z)2m+1 exp

{
−2 sinh2(z)

α2

}
dz

= exp

(
1

α2

) ∞∑
m=0

em,r

2m+3

2m+1∑
j=0

(−1)j

(
2m + 1

j

)

×
∫ ∞

−∞

{
exp
[(

m + 1 − j + s

2

)
x
]

+ exp
[(

m − j + s

2

)
x
]}

exp

{
−cosh(x)

α2

}
dx.

Using the integral representation Kv(β) = 0.5
∫∞
−∞ exp{−β cosh(x) − vx} dx, it follows that

Ir(s, α) = exp

(
1

α2

) ∞∑
m=0

em,r

2m+2

2m+1∑
j=0

(−1)j

(
2m + 1

j

)

×
[

K−(m+1−j+s/2)

(
1

α2

)
+ K−(m−j+s/2)

(
1

α2

)]
. (27)

Finally, the LMcBS generating function can be expressed as

MZ(s) =
∞∑

i,r=0

pi,rIr(s, α),

where Ir(s, α) is calculated from Equation (27).
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20 G.M. Cordeiro et al.

13. The LMcBS regression model

In many practical applications, the lifetimes ti are affected by explanatory variables such as the
cholesterol level, blood pressure and many other factors. Let xi = (xi1, . . . , xip)


 be the explanatory
variable vector associated with the ith response variable yi for i = 1, . . . , n. Consider a sample
(y1, x1), . . . , (yn, xn)of n independent observations, where each random response is defined by yi =
min{log(ti), log(ci)}, and log(ti) and log(ci) are the log-lifetime and log-censoring, respectively.
We assume non-informative censoring and assume that the observed lifetimes and censoring times
are independent.

For the first time, we propose a linear regression model for the response variable yi based on
the LMcBS distribution given by

yi = x

i β + σ zi, i = 1, . . . , n, (28)

where the random error zi follows the density function (25), β = (β1, . . . , βp)

 is a p-vector

(p < n) of regression parameters, σ > 0, a > 0, η > 0 and c > 0 are unknown scalar parameters
and xi is the vector of explanatory variables modelling the location parameter μi = x


i β. Hence,
the location parameter vector μ = (μ1, . . . , μn)


 of the LMcBS model has a linear structure
μ = Xβ, where X = (x1, . . . , xn)


 is a known model matrix of full rank, i.e. rank(X) = p. The
LBS (or the sinh-normal) regression model comes from Equation (28) with a = c = 1, η = 0 and
σ = 2.

Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respec-
tively. The total log-likelihood function for the model parameters θ = (a, η, c, α, σ , β
)
 can be
expressed from Equations (25) and (28) as

�(θ) = q log

[
(2π)−1/2c

B(ac−1, η + 1)σ

]
+
∑
i∈F

log(ξ1i) − 1

2

∑
i∈F

ξ 2
2i + (a − 1)

∑
i∈F

log{�(ξ2i)}

+ η
∑
i∈F

log{1 − �c(ξ2i)} +
∑
i∈C

log{1 − I�c(ξ2i)(ac−1, η + 1)}, (29)

where q is the observed number of failures and

ξ1i = ξ1i(θ) = 2

α
cosh

(
yi − μi

σ

)
, ξ2i = ξ2i(θ) = 2

α
sinh

(
yi − μi

σ

)
, i = 1, . . . , n.

The score functions for the parameters a, η, c, α, σ and βj (j = 1, . . . , p) are given by

Ua(θ) = −q

c
[ψ(ac−1) − ψ(ac−1 + η + 1)] +

∑
i∈F

log[�(ξ2i)] −
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]a

1 − I�c(ξ2i)(ac−1, η + 1)
,

Uη(θ) = −q[ψ(η + 1) − ψ(ac−1 + η + 1)] +
∑
i∈F

log[1 − �c(ξ2i)]

−
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]η
1 − I�c(ξ2i)(ac−1, η + 1)

,

Uc(θ) = q

c

[
1 − ψ(ac−1 + η + 1)

c
+ ψ(ac−1)

c

]
− η

∑
i∈F

�c(ξ2i) log[�(ξ2i)]
1 − �(ξ2i)

−
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]c

1 − I�c(ξ2i)(ac−1, η + 1)
,
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Statistics 21

Uα(θ) = − 2

α2

∑
i∈F

ξ−1
1i cosh(zi) + 2

α2

∑
i∈F

ξ2i sinh(zi) − 2(a − 1)

α2

∑
i∈F

φ(ξ2i)�
−1(ξ2i) sinh(zi)

+ 2ηc

α2

∑
i∈F

φ(ξ2i)�
c−1(ξ2i) sinh(zi)

1 − �c(ξ2i)
−
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]α
1 − I�c(ξ2i)(ac−1, η + 1)

,

Uσ (θ) = − 2

ασ

∑
i∈F

ξ−1
1i sinh(zi)zi + 2

ασ

∑
i∈F

ξ2i cosh(zi)zi − 2(a − 1)

ασ

∑
i∈F

φ(ξ2i)�
−1(ξ2i)

× cosh(zi)zi + 2ηc

ασ

∑
i∈F

×φ(ξ2i)�
c−1(ξ2i) cosh(zi)zi

1 − �c(ξ2i)
−
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]σ
1 − I�c(ξ2i)(ac−1, η + 1)

,

Uβj (θ) = − 2

ασ

∑
i∈F

ξ−1
1i sinh(zi)xij + 2

ασ

∑
i∈F

ξ2i cosh(zi)xij − 2(a − 1)

ασ

∑
i∈F

φ(ξ2i)�
−1(ξ2i)

× cosh(zi)xij + 2ηc

ασ

∑
i∈F

φ(ξ2i)�
c−1(ξ2i) cosh(zi)xij

1 − �c(ξ2i)
−
∑
i∈C

[İ�c(ξ2i)(ac−1, η + 1)]βj

1 − I�c(ξ2i)(ac−1, η + 1)
,

where

zi = yi − μi

σ
and [İ�c(ξ2i)(ac−1, η + 1)]k = ∂I�c(ξ2i)(ac−1, η + 1)

∂k
.

The MLE θ̂ of θ is obtained by solving the nonlinear-likelihood equations Ua(θ) = 0,
Uη(θ) = 0, Uc(θ) = 0, Uα(θ) = 0, Uσ (θ) = 0 and Uβj (θ) = 0. They cannot be solved analyt-
ically and statistical software can be used to solve the equations numerically. As initial values,
we suggest

β̄ = (X
X)−1X
y, ᾱ =
√√√√4

n

n∑
i=1

sinh2

(
yi − x


i β̄

2

)
,

for β and α, respectively, where y = (y1, . . . , yn)

, and take the values 1, 0, 1 and 2 for a, η, c

and σ , respectively.
For interval estimation and tests of hypotheses on the parameters is necessary to obtain the

(p + 5) × (p + 5) observed information matrix corresponding to the parameters a, η, c, α, σ and β.
This matrix is too complicated to be presented here. The LR statistic, for example, can be used
to discriminate between the LBBS and LMcBS regression models since they are nested models.
In this case, for testing the null hypothesis H0 : c = 1 against H1 : H0 is not true, it becomes
w = 2{�(θ̂) − �(θ̃)}, where θ̃ is the MLE of θ under H0. The null hypothesis is rejected if
w > χ2

1−γ (1), where χ2
1−γ (1) is the upper γ th quantile of the chi-square distribution with one

degree of freedom.
From the fitted model (28), the survival function for yi can be estimated by

Ŝ(yi) = 1 − I�(ξ̂2i)ĉ(âĉ−1, η̂ + 1), i = 1, . . . , n, (30)

where ξ̂2i = ξ2i(θ̂).
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22 G.M. Cordeiro et al.

14. Applications

14.1. Data: breaking stress

First, we provide an application of the McBS model and its BBS, KwBS, exponentiated BS
(EBS) and BS sub-models. We compare the results of the fits of these models by considering an
uncensored data set from Nichols and Padgett [39] on breaking stress of carbon fibres (in Gba).
The data are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69,
3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81,
4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83,
1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59,
2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68,
2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.
All the computations were done using the Ox matrix programming language [38]. Ox is freely
distributed for academic purposes and available at http://www.doornik.com.

Table 1 lists the MLEs of the model parameters and the following statistics: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and Hannan–Quinn Information Criterion
(HQIC). These results show that the KwBS distribution has the lowest AIC, BIC and HQIC values
among all fitted models, and so it could be chosen as the best model. Additionally, it is evident
that the BS distribution presents the worst fit to the current data and then the proposed models
outperform this distribution. In order to assess if the model is appropriate, the estimated pdf and
cdf of the fitted distributions are shown in Figure 10. From these plots, we conclude that the McBS
and KwBS models yield the best fits and that they could be adequate for these data. Note that the
McBS and KwBS models present similar fitted density curves.

Table 1. MLEs and the measures AIC, BIC and HQIC.

Estimates Statistic

Model α β a η c AIC BIC HQIC

McBS 5.8339 0.0366 18.9355 5.7196 45.3233 292.50 305.52 297.77
BBS 1.0681 43.2830 0.2232 263.5054 295.61 306.03 299.83
KwBS 4.1227 0.1650 16.9030 20.9144 290.57 300.99 294.78
EBS 0.0938 5.2869 0.0171 298.28 306.09 301.44
BS 0.4622 2.3660 304.12 309.33 306.23
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Figure 10. Estimated density and cumulative functions of the McBS, BBS, KwBS, EBS and BS distributions.
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Statistics 23

Table 2. LR tests.

Model w p-Value

McBS versus BBS 5.1108 0.0238
McBS versus KwBS 0.0674 0.7952
McBS versus EBS 9.7780 0.0075
McBS versus BS 17.6236 0.0005
BBS versus EBS 4.6672 0.0307
BBS versus BS 12.5128 0.0019
KwBS versus EBS 9.7106 0.0018
KwBS versus BS 17.5563 0.0002
EBS versus BS 7.8456 0.0051

In addition to comparing the models, we consider LR statistics and formal tests. First, the
McBS model includes some sub-models, thus allowing their evaluation relative to each other
and to a more general model. The values of the LR statistics for testing some sub-models of the
McBS distribution are given in Table 2. The figures in this table indicate that there is no difference
among the fits of the McBS and KwBS models to the current data. In addition, these two models
provide a better representation for these data than the BS model based on the LR test at any usual
significance level.

Secondly, we apply formal tests in order to verify which distribution better fits these data.
We consider the Cramér–von Mises (W∗) and Anderson–Darling (A∗) statistics. In general, the
smaller the values of the statistics W∗ and A∗, the better the fit to the data. Let H(x; θ) be the
cdf, where the form of H is known but θ (a k-dimensional parameter vector, say) is unknown. To
obtain the statistics W∗ and A∗, we can proceed as follows: (i) compute vi = H(xi; θ̂), where the
xi’s are in ascending order, yi = �−1(vi), where �−1(·) is the standard normal quantile function
and ui = �{(yi − ȳ)/sy}, where ȳ = n−1∑n

i=1 yi and s2
y = (n − 1)−1∑n

i=1(yi − ȳ)2; (ii) calcu-
late W2 =∑n

i=1{ui − (2i − 1)/(2n)}2 + 1/(12n) and A2 = −n − n−1∑n
i=1{(2i − 1) log(ui) +

(2n + 1 − 2i) log(1 − ui)} and (iii) modify W2 into W∗ = W2(1 + 0.5/n) and A2 into A∗ =
A2(1 + 0.75/n + 2.25/n2). For further details, the reader is referred to Chen and Balakrishnan
[40]. The values of the statistics W∗ and A∗ for all models are given in Table 3. Based on these
statistics, it follows that the McBS model fits the current data better than the BBS, EBS and BS
sub-models, and it is slightly better than the KwBS model.

14.2. Data: components

The data set consists of failure times (T ) of eight components at three different temperatures. The
data were obtained from Murthy et al. [41]. The original sample size was n = 24 components.
The following variables are associated with each component: ti, observed time (in years); xi1,
temperatures (temperature category: 100, 120 and 140), for i = 1, 2, . . . , 24. We analyse these

Table 3. Formal tests.

Statistic

Distribution W∗ A∗

McBS 0.06619 0.39066
BBS 0.11992 0.68449
KwBS 0.06826 0.40021
EBS 0.19431 1.04883
BS 0.29785 1.61816
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24 G.M. Cordeiro et al.

data using the LMcBS regression model. First, we consider the regression model

yi = β0 + β1xi1 + σ zi, i = 1, . . . , 24,

where the random errors zi’s (i = 1, . . . , n) are independent random variables having density
function (25).

Table 4 lists the MLEs of the parameters for the LMcBS, LBBS, LKwBS and LBS regression
models fitted to these data using the NLMixed procedure in SAS. Iterative maximization of the
logarithm of the likelihood function (29) starts with initial values for β and α taken from the fit
of the LBS regression model with a = c = 1, η = 0 and σ = 2. We note from the fitted LMcBS
regression model that x1 is significant at 1% and that there is a significant difference among the
levels of the temperature for the failure times.

The values of the AIC, Corrected AIC (CAIC) and BIC statistics to compare the LMcBS,
LBBS, LKwBS and LBS regression models are given in Table 5. Note that the LMcBS and
LKwBS regression models outperform the LBBS and LBS models irrespective of the criteria
and then the proposed regression model can be used effectively in the analysis of these data.
A comparison of the McBS regression model with some of its sub-models using LR statistics is
performed in Table 6. The figures in this table, specially the p-values, indicate that the LMcBS
and LKwBS regression models yield better fits to these data than the other sub-models.

A graphical comparison among the LMcBS, LBBS and LBS models is given in Figure 11.
The curves displayed in this figure are the empirical survival function and the estimated survival

Table 4. MLEs (p-values between parentheses) for the LMcBS, LBBS, LKwBS and LBS regression models fitted to
the component data.

Estimates

Model a η c α σ β0 β1

LMcBS 117.09 85.1230 0.3823 86.1542 0.5359 6.7077 −0.0306
(<0.01) (<0.01)

LBBS 9.1965 9.3392 0.7435 8.1351 7.8052 −0.0330
(<0.01) (<0.01)

LKwBS 2.0085 1E − 8 10.4550 0.5219 6.6927 −0.0307
(<0.01) (<0.01)

LBS 0.9317 7.6629 −0.0344
(<0.01) (<0.01)

Table 5. Statistics AIC, BIC and CAIC.

Statistic

Model AIC CAIC BIC

LMcBS 46.7 67.7 68.9
LBBS 73.2 78.2 80.3
LKwBS 58.4 63.4 65.5
LBS 66.4 67.6 69.9

Table 6. LR statistics.

Model Hypotheses w p-Value

LMcBS versus LBBS H0 : a = b = 1 versus H1 : H0 is false 14.5 <0.01
LMcBS versus LKwBS H0 : a = c versus H1 : H0 is false 0.1 0.9512
LMcBS versus LBS H0 : a = b = 1, η = 0 vs H1 : H0 is false 13.7 <0.01
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Figure 11. Estimated survival functions and the empirical survival: (a) LMcBS versus LBBS; (b) LMcBS versus LBS.

functions are given by Equation (30). Based on these plots, it is evident that the LMcBS model
provides a superior fit.

15. Concluding remarks

We introduce a five-parameter continuous distribution, called the McBS distribution, which
extends the BS and the BBS [23] distributions. We provide a mathematical treatment of the
new distribution including expansions for the density function, moments, generating and quantile
functions, mean deviations and reliability. The model parameters are estimated by the method of
maximum likelihood and the observed information matrix is derived. An application of the new
distribution to real data is given to show that it can provide consistently better fits than the other
special models. Further, based on the logarithm of the McBS distribution, we propose an extended
regression model which generalizes the well-known LBS regression model [13]. This extended
regression model is very flexible and can be used in many practical situations. Its usefulness is
also illustrated in an analysis of real data. Our formulas in connection with the new distribution
and with the extended regression model are manageable, and with the use of modern computer
resources and their analytic and numerical capabilities, the proposed models may prove to be an
useful addition to the arsenal of applied statisticians.
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Appendix 1. Observed information matrix for the McBS model

The observed information matrix Jn(θ) for the parameters a, η, c, α and β can be derived after extensive algebraic
manipulations. It is given by

Jn(θ) = − ∂2�(θ)

∂θ∂θ
 = −

⎛⎜⎜⎜⎝
Uaa Uaη Uac Uaα Uaβ

· Uηη Uηc Uηα Uηβ

· · Ucc Ucα Ucβ
· · · Uαα Uαβ

· · · · Uββ

⎞⎟⎟⎟⎠ ,

whose elements are

Uαα = n

α2
+ 6n

α4
− 3
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n∑
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(
ti
β

+ β

ti

)
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viφ(vi)

�(vi)
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v3
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+ v2
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�(vi)2
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where ψ ′(·) is the trigamma function and zi = {3(ti/β)1/2 + (β/ti)1/2}/(4β2), for i = 1, . . . , n.
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