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E�cient scheduling for the supporting operations of aircra�s in 
ight deck is critical to the aircra� carrier, and even several seconds’
improvement may lead to totally converse outcome of a battle. In the paper, we ameliorate the supporting operations of carrier-
based aircra�s and investigate three simultaneous operation relationships during the supporting process, including precedence
constraints, parallel operations, and sequence 
exibility. Furthermore, multifunctional aircra�s have to take o� synergistically and
participate in a combat cooperatively. However, their takeo� order must be restrictively prioritized during the scheduling period
accorded by certain operational regulations. To e�ciently prioritize the takeo� order while minimizing the total time budget on the
whole takeo� duration, we propose a novel mixed integer liner programming formulation (MILP) for the 
ight deck scheduling
problem. Motivated by the hardness of MILP, we design an improved di�erential evolution algorithm combined with typical local
search strategies to improve computational e�ciency.We numerically compare the performance of our algorithmwith the classical
genetic algorithm and normal di�erential evolution algorithm and the results show that our algorithm obtains better scheduling
schemes that can meet both the operational relations and the takeo� priority requirements.

1. Introduction

When the battle comes, carrier-based aircra�s have to take
o� wave by wave. 
e operation of the �rst wave of aircra�
takeo� is usually the most complicated since several types
of carrier-based aircra�s have to take o� synergistically.
Before taking o�, each carrier-based aircra� requires certain
supporting operations, for instance, inspection, charging,
oiling, and weapon mount. Some operations can be per-
formed simultaneously, including oiling and weapon mount.
All aircra�s do not need to wait for their order since this class
of operations can be processed by some di�erent supporting
groups at the same time. Nevertheless, some other operations
cannot be processed at the same time. For instance, charging
oxygen and oiling cannot be processed simultaneously due to
the safety concern and thus aircra�s have to be processed one
by one. 
erefore, the latter class of supporting operations

in turn a�ects the takeo� priority orders of aircra�s and it
is important to schedule the supporting groups e�ciently
such that all carrier-based aircra�s take o� in the minimal
time horizon.
e scheduling problem is usually called “deck
scheduling,” which can be viewed as an extension of the Flex-
ible Job Shop Scheduling Problem (FJSP) by incorporating
some practical restrictions.

Job Shop Scheduling Problem (JSP) falls in the classical
group of combinatorial optimization problems and is well
known to be NP-hard [1]. 
e Flexible Job Shop Scheduling
Problem (FJSP) is an extension of the JSP [2]. However,
traditionalmodels of JSP and FJSP do not consider the typical
features of the scheduling for the carrier-based aircra�s on
the deck, including the following.

First, in most JSP and FJSP models, they usually restrict
the precedence of operations in each job but do not consider
priorities of jobs, which means any job can be completed
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earlier than others. However, on the deck of the aircra�
carrier, the �rst wave of carrier-based aircra�s may include
helicopter, early warning aircra�, and �ghter jets, and there
are strictly takeo� orders for di�erent carrier-based aircra�s.
According to operational regulations, the helicopter must
take o� �rstly, and then the early warning aircra�, �ghter
jets, which make it more di�cult to schedule the supporting
resources.

Second, in most JSP and FJSP models, the precedence
among operations of a job is predetermined and cannot be
changed. In deck scheduling, some operations of a carrier-
based aircra� can be processed before or a�er other oper-
ations, which will increase the scheduling 
exibility. For
example, on the deck of the aircra� carrier, the carrier-
based aircra� needs to be charged oxygen and oiled, and
it is permitted to charge oxygen �rst, then oil, or vice
versa. But for safety, the two operations cannot be processed
simultaneously.


ird, the operations are processed one by one in most
JSP and FJSP, but in the job of supporting carrier-based
aircra�s, it will take a long time to charge oil and con�gure
weapon sequentially. In order to save time, the two operations
can be processed simultaneously.

To the best of our knowledge, only few researches con-
sidered the three typical features above in a single schedul-
ing problem. We address these challenges in terms of the
extended FJSP (EFJSP) with priority, parallel operations,
and sequence 
exibility. Based on FJSP, we propose a novel
MILP model for the problem. Nevertheless, when the typical
restrictions are incorporated into the model, few existing
algorithms in the literatures can solve it e�ciently. Motivated
by the hardness, we develop an improved di�erential evolu-
tion algorithm combined with typical local search strategies.
By using some practical instances 
ight deck scheduling
and random instances, we compare the performance of
the proposed algorithm with the general genetic algorithm
and di�erential evolution algorithm. Furthermore, we also
analyze the impact of the local search strategies on the
performance.

2. Literature Review

FJSP has been widely studied, but most of current literatures
study the scheduling problem involving one or two of the
above three features, which are priority, parallel operations,
and sequence 
exibility. Alvarez-Valdes et al. [3] introduced
some operations which can be processed simultaneously
in the glass production; a heuristic algorithm combining
the priority rule with local search is proposed to minimize
the optimization criteria, which is based on the earliest
completion and delay penalty. Vilcot and Billaut [4] discussed
the process characteristics of the printing industry, where
each operation has at least one former operation, but only
a subsequent operation, in a complete process, and some
operations can be carried out at the same time. Özgüven et
al. [5] introduced a relatively simple integer programming
model, in which a job can choose a feasible routing from
some reverse sets. However, once the process of the job is

determined, no operations can be processed simultaneously.
Birgin et al. [6] proposed a MILP model for an extended
version of the FJSP, which allowed the precedence to be given
by an arbitrary directed acyclic graph rather than a linear
order among operations of a job, and compared with [5],
the result showed the accuracy of the model. In the Birgin
model [6], Birgin et al. [7] put forward the scheduling list
algorithm to solve the problem, further extending to the
�ltered beam search method. 
e experiment results show
that the e�ciency and the e�ect of these twomethods are very
good.

For the FJSP, each operation could be processed by some
machines at di�erent time. If the job has several kinds of
processing routes, selecting one of them is called process
planning. At �rst, the process planning is optimized in the
case of su�cient resources, but the reality shows that this
cannot fully utilize resources. 
us, Saygin and Kilic [8]
established the integrated model combining process design
with production scheduling, which included 5 stages: 
exi-
ble process decomposition, machine tool selection, process
optimization, scheduling, and rescheduling. 
ere are some
similar models such as two-level model [9], two-stage model
[10], 
exible process selection model [11], and mixed integer
programming model [5]. However, in these studies, once
the process route is selected, the order of operations is
determined, and there is no essential di�erence with JSP and
FJSP.


ere are also some researches on the 
ight deck schedul-
ing; Ryan et al. [12] designed an interactive local and global
decision supporting system named deck operation course
of action planner for aircra� carrier deck scheduling. 
ey
applied the reverse reinforcement learning method [13] and
strategy optimization based on queuing network [14] in
aircra� adaptivemultistage scheduling problem, and through
deck operation simulation, the scheduling performance of
the optimization based on integer linear programmingmodel
is compared with the traditional expert heuristic rules [15].
According to the di�erence of carrier-based aircra� support
organization of di�erent launch mode carrier-based aircra�
needed, Wei et al. [16] introduced two carrier-based air-
cra� support scheduling models on the basis of reasoned
supposition and propriety predigesting: carrier-based aircra�
support scheduling model of wavily launching carrier-based
aircra� on carrier [17] and rescheduling model of carrier-
based aircra� support based onmission [18].
e twomodels
are solved based on the FJSP theory and rescheduling the-
ory, respectively. According to the constraint of supporting
process for single-carrier aircra�, a multiobjective integrated
supporting scheduling model of multicarrier aircra�s was
established by Han et al. [19], in which some operations can
be processed simultaneously.

From the above reviews, it can be seen that most
researches are concerned about one of the three features, and
there are few researches which consider the three features
simultaneously. 
us, the scheduling problem generated in
the supporting process for carrier-based aircra�s is a new
extension of the classical FJSP.


e remainder of this paper is organized as follows. In
Section 3, somede�nitionswill be proposed; the newmodel is
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Figure 1:�e process of a simple job. 
e nodes mean the operations
of job, the line with arrow represents the precedence constraint
between operations, and the dash line with arrow is the alternative
route of job.

formalized. In Section 4, the improved DE algorithms for the
extension are illustrated in detail. 
e computational results
and analysis are provided in Section 5. Finally, we conclude
the paper in Section 6.

3. The Formulation of the EFJSP Model


e deck scheduling for carrier-based aircra�s is to schedule
a number of supporting groups to complete the operations
for preparing the aircra�s well and let them take o� as
soon as possible. 
ere are usually a set of operations to
be completed before the carrier-based aircra� can take o�,
such as inspection, charging, oiling, and weapon mount.
Each operation must be conducted by one supporting group
selected from a set of candidate ones whose e�ciency is
di�erent. 
ere are also operational rules which restrict the
sequence of taking o� for di�erent types of aircra�s; for
instance, the helicopter must take o� before all the other
aircra�s. Further, the sequence of some operations can be
exchanged. For example, charging oxygen is allowed to be
processed before or a�er oiling, but not at the same time.
e
scheduling can be decomposed into two subproblems: the
sequencing subproblem which determines a sequence for all
operations and the routing subproblem that selects a suitable
supporting group for each operation. 
e objective is to �nd
a scheduling that minimizes the makespan.

We can see that the EFJSP is more complex than the FJSP:
First, in the EFJSP, di�erent jobs have di�erent priority, and
the �nal operation of the job with higher priority must be
completed earlier than others with lower priority. Second,
some operations of a job can be processed simultaneously,
such as operations 1 and 2 in Figure 1.
ird, some operations
of a job can be processed by exchanging their preference
order, in Figure 1, where operations 4 and 5 can be swapped.

Some de�nitions will be proposed based on these features
which have been mentioned previously.

De�nition 1 (job). All the supporting operations of a carrier-
based aircra� are considered as a job.

De�nition 2 (priority). Whenmany jobs need to be done, the
more important job should be completed earlier. However,
for the job with higher priority, it does not mean that each
operation has to be �nished earlier than others; in order to
make good use of the supporting groups, it is only required

that the �nal operation must be �nished earlier than others
with lower priority.

De�nition 3 (parallel operations). 
ere are no precedent
relations among some operations in a job, which can be
processed simultaneously.

De�nition 4 (sequence 
exibility). 
is means that there
are two operations in a job; they are neighbors and can
change their precedent constraint but cannot be processed
simultaneously.

Because the EFJSP is more complex than the FJSP, thus it
is alsoNP-hard. In detail, the following assumptions aremade
in the paper:

(1) All the supporting groups are available at time 0.

(2) All the jobs can be processed at time 0.

(3) Only one operation can be processed by a supporting
group at a time.

(4) Each operation must be completed without interrup-
tion once it starts.

(5) 
e precedence of some operations for a job is pre-
de�ned and cannot be changed; some can exchange
their preference orders.

(6) 
e setting up time of supporting groups and trans-
ferring time of operations are negligible.


e following indices, sets, and parameters are used in the
new model:

�, ��: indices for jobs
�, ��: indices for operations
�: indices for supporting groups
�: number of jobs

��: number of operations in job �
�: set of supporting groups

���: operation � of job ����: set of supporting groups on which operation ���
can be processed,��� ⊆ �

��: immediate job predecessor of operation �������: processing time if operation ��� is to be per-
formed by supporting group �
�: a very large positive number

Decision Variables


��: starting time of operation ������: completion time of operation �������: 1 if supporting group � is assigned to operation���; 0, otherwise��������: 1 if operation��� is scheduled before operation����� where both operations are processed by support-
ing group �; 0, otherwise
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��: 1 if operation � is processed before operation �� in
job �; 0 if operation �� is processed before operation �
in job �


e EFJSP is formulated into a MILP. 
e mathematical
model is as follows:

min (�max) = min (max (����)) , (1)

��� = 
�� + ∑
�∈���

���� ∗ ����, (2)

∑
�∈���

���� = 1, (3)

max (��ℎ) ≤ 
��, ℎ ∈ 
��, (4)

�������� + �������� ≤ ����, � ̸= ��, (5)

�������� + �������� ≤ ������, � ̸= ��, (6)

�������� + �������� ≥ 1 − (1 − ������) � − (1 − ����) �,
� ̸= ��, (7)


�� ≥ ����� + (1 − ∑
�∈���

��������)�,
� ̸= ��.

(8)

If the priority of � is higher than ��, then
���� ≤ ������ , (9)

(��� − 
���)�� + (���� − 
��) (1 − ��) ≥ 0, � ̸= ��, (10)


�� ≥ 0, (11)

�������� ∈ {0, 1} , (12)

���� ∈ {0, 1} , (13)

�� ∈ {0, 1} , (14)

�, �� = 1, . . . , �;
� = 1, . . . , ��;
�� = 1, . . . , ��� ;
� ∈ ���.

(15)


e makespan is the objective function of the problem.
Constraint (2) makes sure that operation is not interrupted.
Constraint (3) guarantees that an operation is processed by
one supporting group. Constraint (4) describes the opera-
tion precedence constraints. Constraints (5)–(8) ensure that
operations cannot be processed by the same supporting group
at the same time. Constraint (9) shows jobs with higher
priority should be completed earlier than others with lower

Initialization Mutation Crossover Selection

Termination?
No

End

Yes

Figure 2: 
e 
ow of basic DE.

priority. Constraint (10) allows some operations to exchange
precedence order, but the operations will not be processed
simultaneously.

Comparing with the FJSP model, the EFJSP model
includes more constraints, such as constraint (4), paral-
lel operation; constraint (9), priority; and constraint (10),
sequence 
exibility.

4. Proposed Improved DE for the EFJSP Model

For the FJSP, when the number of jobs is small, some exact
algorithms can be employed to solve it, for example, brand-
and-bound [20–23], mathematical programming [24–26],
and Lagrangian relaxation [27–30]. But when the number
of jobs rises, it is di�cult to �nd an optimal solution in a
short time. Many researchers have heuristic methods to solve
the FJSP, such as genetic algorithm (GA) [31–34], ant colony
algorithm [35], particle swarm optimization [36], tabu search
[37], leapfrog algorithm [38], bee colony algorithm [39],
di�erential evolution (DE) algorithm [40–44], and memetic
algorithms [45, 46]. Some literatures study the combinations
of a variety of algorithms or an algorithm with local search
to obtain better performance, such as di�erential evolution
algorithm combining with genetic algorithm [47], particle
swarm optimization combining with simulated annealing
[48], and tabu search combining with local search [49]. But
these algorithms cannot solve the EFJSP model directly, and
new improved algorithms should be explored.

DE is an optimization algorithm proposed by Storn and
Price [50] for solvingChebyshev polynomials, which encodes
the chromosome with 
oating-point vector in continuous
space. DE algorithm is an intelligent optimization method
based on population, which searches the entire population
space with the help of the disturbance formatting by indi-
vidual di�erence, and seeks the optimal solution of the
problem through the greedy competition mechanism. 
e
DE algorithm has less controlled parameters and is easy
to understand and implement. Due to its high reliability,
robustness, and good performance, DE has been widely used
in optimization area. 
ere have been some works using
DE algorithm to solve FJSP and JSP [40–44], which show
the advantages of the DE algorithm compared with other
algorithms. 
e EFJSP problem is an extension of FJSP, and
wemade some improvement onDE by integrating some local
research strategies to solve our problem more e�ciently. 
e
basic framework of DE is just as presented in Figure 2.
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Table 1: Jobs and optional supporting groups.

Job Operation �1 �2 �3

1

�11 2 3 —�12 5 6 7�13 — — 4�14 6 — 8�15 — 10 —�16 3 5 —

2
�21 5 — 7�22 — 7 6

3
�31 4 3 —�32 7 6 5

Table 2: ID number assigned to operations.

Operation �11 �12 �13 �14 �15 �16 �21 �22 �31 �32
ID 1 2 3 4 5 6 7 8 9 10

4.1. Encoding. 
eEFJSPmodel can be decomposed into two
subproblems: sequencing and routing. 
us, a chromosome
contains two parts; more speci�cally, the �rst part (part 1) is
the sequencing that determines an operation order within a
job and an operation sequence of all jobs; the second part
(part 2) is the routing that assigns each operation to an
appropriate supporting group. Some works [51, 52] have been
done in the method of sequencing and routing.

4.1.1. Operation Sequence. 
e number of all operations is
calculated as  = ∑
�=1��. Let a number (ranging from 1)
denote the ID of each operation, and a smaller value of ID
means a higher priority in a job.

An example of EFJSP is shown in Table 1 as an illustration,
the precedent constraints of operations in job 1 are shown
in Figure 1, and the precedent constraints of operations in
job 2 and job 3 are liner. In Table 1, there are 3 supporting
groups: �1, �2, and �3. Each entry of the input table denotes
the processing time of that operation on the corresponding
supporting group. 
e tag “—” means that a supporting
group cannot process the corresponding operation. 
e ID
in Table 2 denotes the instances in Table 1.

Part 1 code can be generated by the IDs listed randomly;
the length of part 1 is  . Take the instances in Table 1 as an
example, and suppose there is a random operation sequence:
part 1 = [8, 2, 1, 3, 5, 4, 9, 6, 7, 10], and�22(8) is the immediate
precedent operation of�21(7); it is obvious that the sequence
breaks the precedent constraint in job 2; as a result, part 1 code
should be changed as [7, 2, 1, 3, 5, 4, 9, 6, 8, 10].
4.1.2. Supporting Group Assignment. Following the opera-
tion sequencing, each operation should select a supporting
group in its alternative supporting group set. Take the
instances in Table 1 as an example, and suppose part 1 is[7, 2, 1, 3, 5, 4, 9, 6, 8, 10], and number “7” denotes the opera-
tion�21, which can be processed by�1 or�3; if the operation�21 is processed by �3, then the corresponding gene is “2” in

part 2. A possible supporting group assignment is shown in
Table 3. A chromosome is composed of part 1 and part 2.

4.1.3.�e IDs of Job with Higher Priority. In the EFJSPmodel,
some jobs have higher priorities, which must be �nished
earlier; as a result, the IDs should be assigned to the jobs with
higher priority �rst. Chromosomes which cannot satisfy the
rule should be abandoned.

4.2. Decoding

4.2.1. Decoding the Chromosome to an Active Scheduling.
Decoding is to convert the chromosome into a feasible so-
lution; there are mainly three decoding methods: active
scheduling, semiactive scheduling, and nondelay scheduling.
Some works [53, 54] have found that the optimal scheduling
to achieve the goal of makespan is an active scheduling; thus,
we decode the chromosome to an active scheduling here.
e
steps are shown as follows.

Step 1. Set up �"�#$% = 1.
Step 2. Take the �"�#$%th gene in part 1 and convert it into
the operation���; then select the �"�#$%th gene in part 2 and
convert it into supporting group �; the processing time is ����
which operation ��� processed by the supporting group �.
Step 3. If the operation ��� is the �rst one to be processed by
the supporting group �, 
�� = max����� ; otherwise we should
�nd all the idle time intervals [�
�, �&�] in the supporting
group �.
Step 4. If the length of the idle time interval is bigger than���� according to (16), the operation ��� should be inserted
into the interval; otherwise, it should be allocated in the end
of the supporting group �.


�� = max {max����� , �
�} ,

�� + ���� ≤ �&�. (16)

Step 5. Repeat Steps 2 to 4 until all operations of part 1 have
been processed.

4.3. Initial Population. Population initialization is crucial
since it can a�ect the speed of the algorithm’s convergence and
the quality of the solution. In this part, we present a method
to assign each operation to a suitable supporting group. 
e
method focuses on the processing time and workload of
supporting groups, namely, the global assignment, which is
an improved one of the work [52]; the steps are as follows.

Step 1. Create a new array to record the working time of each
supporting group; initial values are set as 0.

Step 2. Follow the order sequentially; take an operation from
part 1.

Step 3. Add the processing time of each alternative support-
ing group to the corresponding location in the array; then the
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Table 3: Instructions to the encoding of assigning supporting groups.

Part 1 7 2 1 3 5 4 9 6 8 10

Operation �21 �12 �11 �13 �15 �14 �31 �16 �22 �32
Groups

�1 �1 �1 �3 �2 �1 �1 �1 �2 �1�3 �2 �2 �3 �2 �2 �3 �2�3 �3
Assigned �3 �3 �1 �3 �2 �3 �2 �2 �2 �1
Part 2 2 3 1 1 1 2 2 2 1 1

corresponding supporting group with the shortest time will
be selected for the operation; if there are several supporting
groups with the same minimum time, the one with the least
processing time should be selected.

Step 4. 
e order of the selected supporting group in the
alternative supporting group set will be added to the corre-
sponding gene bit of part 2.

Step 5. In the array, modify the total working time of the
selected supporting group, and leave the others unchanged.

Step 6. Continue from part 1, and repeat Steps 3 to 6 until all
operations are processed.

4.4. Mutation. For the mutation, DE is not suitable for
discrete problems; the following two methods are applied:
POX (Precedence Operation Crossover, POX) [55] and MPX
(Multiple Point Crossover, MPX) [56]. 
e POX inherits the
characteristics of operation sequence from parent chromo-
somes to child chromosomes; the MPX transits the features
of supporting group assignment from parent chromosomes
to child chromosomes.

4.4.1. POX. Precedence operation crossover is the process to
cross the operation sequence in the parent chromosomes, and
the supporting group assignments are reserved to the child
chromosomes. 
e process is as follows.

First, the set of jobs {1, . . . , �} is divided into two random
complementary and nonempty sets: 
1, 
2.

Second, all the operations of jobs in set 
1 with their
assigned supporting groups are copied from “Parent 1” chro-
mosome to “Child 1” chromosome, and all the operations of
jobs in set 
1 with their assigned supporting groups are copied
from “Parent 2” chromosome to “Child 2” chromosome.


ird, all the operations of jobs in set 
2 with their
assigned supporting groups are copied from “Parent 2” chro-
mosome to “Child 1” chromosome, and all the operations of
jobs in set 
2 with their assigned supporting groups are copied
from “Parent 1” chromosome to “Child 2” chromosome.

Taking Table 1 as an example, the process of POX is shown
in Figure 3.

4.4.2. MPX. Multiple point crossover is the process to cross
the supporting group assignment in the parent chromo-
somes, and the operation sequence is reserved to the child
chromosomes. 
e process is as follows.

Part 1

Part 2

4 1086953127

2 112211132
Parent 1

Part 1

Part 2

3 6510498721

1 213112112
Parent 2

Child 2

Part 1

Part 2

4 1096853127

2 312211131
Child 1

Part 1

Part 2

3 6510489721

1 213112212

S1 = {1} S2 = {2, 3}

Figure 3: 
e process of POX.

First, an integer set )01 containing 0 and 1 is randomly
generated, the length of which is equal to the half-length of
chromosomes.

Second, the operations and their assigned supporting
groups whose positions correspond to 0 in set )01 are copied
from “Parent 1” chromosome to “Child 1” chromosome.


ird, selecting the operations in “Parent 1” chromosome
whose positions correspond to 1 in set )01, these operations
and assigned supporting groups in “Parent 2” chromosome
are copied to “Child 1” chromosome.

Similarly, for the “Child 2” chromosome, the operations
and their assigned supporting groups whose positions corre-
spond to 0 in set)01 are copied from “Parent 2” chromosome.

en, selecting the operations in “Parent 2” chromosome
whose positions correspond to 1 in set )01, these operations
and assigned supporting groups in “Parent 1” chromosome
are copied to “Child 2” chromosome. Taking Table 1 as an
example, the process of MPX is shown in Figure 4.


e mutation of chromosome is performed by

*�� = - ⊗ � (- ⊗ � (��
2 , ��
3) , ��
1) , (17)

where %1 ̸= %2 ̸= %3 ̸= �, ��
2 is the %2th chromosome in

the :th population, *�� is the �th chromosome in the :th
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Part 1

Part 2

4 1086953127

2 112211132
Parent 1

Part 1

Part 2

3 6510498721

1 213112112
Parent 2

Child 1

Part 1

Part 2

3 6510498721

1 211111212
Child 2

Part 1

Part 2 1 312211232

1 101001100

4 1086953127

R01

Figure 4: 
e process of MPX.

mutated population, - is scale factor, and ⊗ is cross symbol;
the calculation of (17) is composed of two parts: (18) and (19).

��� = - ⊗ � (��
2 , ��
3)
= {{{

�(��
2 , ��
3) , rand < -
��
2 , otherwise.

(18)

Equation (18) denotes the di�erence vector between two
parent chromosomes; rand is a random number between
0 and 1. When sequencing the operations, �(��
2 , ��
3) will
be crossed in the POX way. When assigning the supporting
groups, �(��
2 , ��
3) will be crossed in the MPX way.

*�� = - ⊗ � (��
2 , ��
3) = {{{
�(��� , ��
1) , rand < -
��� , otherwise. (19)

Equation (19) denotes the process that parent chromosomes
crosswith di�erence vector.We compute�(��� , ��
1)using the
way in �(��
2 , ��
3).
4.5. Crossover. A�er mutation, the crossover operator is
applied to generate the trial vector C��� as follows:

C��� = {{{
*��� , rand < CR

����, otherwise, (20)

where CR ∈ [0, 1] is a crossover parameter to control the
diversity of the population, rand denotes a random number
between 0 and 1, and the process of crossover is shown
in Figure 5. When we obtain C��� , some work needs to be

done for the deduplication and completion of solution. 
e
construction of new chromosomes should guarantee the
priority of some certain operations.

Part 1

Part 2

Part 1

Part 2

4 1086953127

2 112211132

3 6510498721

1 213112112

rand 0.4 0.80.90.10.20.70.90.70.20.5

Part 1

Part 2

4 1056958127

2 112212132

Parent 1(V)

Child(U)

Parent 2(X)

CR = 0.9

Figure 5: An illustration example of the crossover.

4.6. Selection. 
e selection operator is used to decide
whether the trial vector C�� is the member of the population
for the next generation, which can be described as

��+1� = {{{
C�� , D (C�� ) < D (��� )
��� , otherwise, (21)

where D(⋅) is the objective function to be minimized. 
ere-
fore, the trial vector C�� will replace the corresponding target
vector��� in the next generation if its objective function value
is not greater than that of the target vector; otherwise, the
target vector remains in the population.

4.7. Local Search Algorithm. In this part, a local search
algorithm based on neighborhood structure is proposed to
improve the scheduling. And the neighborhood structure is
based on the critical path in the disjunctive graph, which is a
kind of representation for the scheduling.

4.7.1. Disjunctive Graph. Disjunctive graph � = (F,G, &)
[25] is an important formulation of FJSP, whereF denotes a
set of all the nodes, and each node represents an operation
in the EFJSP (including dummy starting and terminating
operations); G represents the conjunctive arcs connecting
two adjacent operations within a job, and the direction
represents the processing order between the two connected
operations; & denotes all disjunctive arcs connecting two
adjacent operationswhich are processed by the same support-
ing group and their directions display the processing order.

e processed time of each operation is generally labeled on
the corresponding node and regarded as the node’s weight.
In Figure 6, �11, �32 are processed by the supporting group�1, and �15, �31, �16, and �22 are executed successively by
the supporting group �2, and �21, �12, �13, and �14 are
performed by the supporting group �3.

A scheduling of the EFJSP is feasible, if there are no cyclic
paths in its corresponding disjunctive graph. If a disjunctive
graph is acyclic, the longest path between the starting node 

and the ending node & is called a critical path, whose length
is de�ned as the makespan of the scheduling. Operations
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Figure 6:�e disjunctive graph.
e nodes mean the operations, the
solid lines represent the work
ow between operations in a job, and
the dash lines show the work
ow in a supporting group.

on the critical path are critical operations. For example,
the disjunctive graph illustrated in Figure 6 is a feasible
scheduling as it is acyclic, its critical path is 
 → �21 →�12 → �13 → �15 → �14 → �16 → �22 → &, and the
makespan is 48. Here, we de�ne �(", V) as the longest path
from node " to node V.

4.7.2. Neighborhood Structures. Neighborhood structure is
key to the local search, which can guide the search of
algorithm e�ectively and avoid the blind search. 
e neigh-
borhood structure of JSP is designed to make good use of
the idle time in supporting groups. For the FJSP, another
factor should be considered, which is the assignment of
the supporting groups. For the EFJSP, the priority of jobs,
parallel operations, and the 
exibility of operation order will
in
uence the neighborhood structure. 
erefore, a new local
search algorithm will be introduced based on the work [57].
Since the critical path de�nes themakespan of the scheduling,
so only the critical operations should be used to search for idle
time in the alternative supporting group set and implement
the local search.


e following notations are used in the local search
algorithm:

I: critical operationJ
(I): set of immediate precedent operations of IJ
(I): set of immediate succeeding operations of I
K�(I): the earliest starting time of I
L�(I): the earliest completing time of I
K�(I): the latest starting time of I
L�(I): the latest completing time of I


e idle time in the alternative supporting groups of I
can be divided into two types: (1) the idle time in current
supporting group which processed I and (2) the idle time
in other supporting groups which are in the alternative
supporting group set of I. 
erefore, the move of I is
also two types: (1) in current supporting group and (2) in

other alternative supporting groups. Each type of idle time
corresponds to a kind of local search.


e �rst-level local search is the moving in the current
supporting group.

It is known that each operation in J
(I)must be �nished
before the starting of I, and I must be �nished before the
starting of each operation in J
(I). 
e biggest time interval

of the processing I is [max(L�(J
(I))),min(K�(J
(I)))].
Suppose operations M and N are neighbors, processed by

the same supporting group with I. 
e biggest idle time

interval between M and N is [L�(M), K�(N)]; if the intersection
of sets [L�(M), K�(N)] and [max(L�(J
(I))),min(K�(J
(I)))]
is not empty, it is possible to decrease makespan by insertingI between M and N. So the condition tomoveI in the current
supporting group is (22) [33]:

[L� (M) , K� (N)]
∩ [max (L� (J
 (I))) ,min (K� (JK (I)))] ̸= 0. (22)


e second-level local search is the moving to the other
alternative supporting group.

Similarly, operations M, N are neighbors; processed
by the supporting group �, which does not processI. ��� is the processing time if I is processed by �.
If the intersection of sets between [L�(M), K�(N)] and[max(L�(J
(I))),min(K�(J
(I)))] is bigger than ���, then it
is possible to decrease the makespan by inserting I betweenM and N. 
erefore, the condition to move I to the other
supporting group � is [33]

[L� (M) , K� (N)]
∩ [max (L� (J
 (I))) ,min (K� (JK (I)))]

> ���.
(23)


e scheduling may not be feasible a�er moving the critical
operations; it is important to �nd the conditions that can
guarantee the feasibility of the scheduling when we are
moving the critical operations. 
e work [58] proposed two
rules to make sure the scheduling of FJSP is feasible when
moving critical operations; wewill improve these rules for the
EFJSP model.

4.7.3. Rules for Moving Operation within the Current

Supporting Group

�eorem 5. For a feasible scheduling of an EFJSP model, op-
erations ", V are processed by the same supporting group and "
is precedent to V; if one of the following conditions is satis�ed,
then when " becomes the immediate succeeding operation of V,
the scheduling is still feasible: (1) " is the �nal operation of job,
and the set J
(") is empty; (2) ∀"� ∈ J
("), �(V, &) ≥ �("�, &),
and V ∉ J
("), the set J
(") is nonempty; (3) if " and V are the
operations of a job, they can be swapped.

�e proof of (1) and (2) can be referred to in [58]. Under
condition (3), when operations " and V are swapped, which do
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Find a critical path 
 → ��1 → ��2 → ⋅ ⋅ ⋅ → ��� → & in a scheduling
for � = 1 to I do

Get the alternative supporting group set ��1 of critical operation ���
for � = 1 to U$�:Vℎ(��1) do
Find the set UWLXV�W�� of positions where ��� can move into supporting group �
for � = 1 to U$�:Vℎ(UWLXV�W��) do
if � is the current supporting group processing ��� and the condition (22) is satis�ed
then

move operation ��� into position �, return the new scheduling;
end if

if � is not the current supporting group processing ��� and the condition (23) is satis�ed then

move operation ��� into position �, return the new scheduling;
end if

end for

end for

end for

Algorithm 1: 
e local search algorithm.

not in�uence other operations, the job still can be processed, so
the scheduling is feasible.

�eorem 6. For a feasible scheduling of an EFJSP model, op-
erations ", V are processed by the same supporting group and "
is precedent to V; if one of the following conditions is satis�ed,
then when V becomes the immediate precedent operation of ",
the scheduling is still feasible: (1) V is the �rst operation of job,
and the set J
(V) is empty; (2) ∀V� ∈ J
(V), �(0, ") + �� ≥�(0, V� + �

V
�), and " ∉ J
(V), the set J
(V) is nonempty; (3) if" and V are the operations of a job, they can be swapped.

�e proof of (1) and (2) can be seen in [58] and the proof of
(3) is the same as �eorem 5.

4.7.4. Rules for Moving Operation to the Other Supporting

Groups

�eorem 7. For a feasible scheduling of an EFJSP model,
operations M,N are neighbors, processed by the same supporting
group, and M is the immediate precedent operation of N; the
supporting group is the alternative supporting group of I,
which will be inserted between M and N; if the two following
conditions are met simultaneously, then the scheduling is still
feasible: (1) I is the �nal operation of job, and the set J
(I) is
empty, or ∀I� ∈ J
(I), �(M, &) ≥ �(I�, &), and M ∉ J
("),
the set J
(I) is nonempty; (2) I is the �rst operation of job,
and the set J
(I) is empty, or ∀I� ∈ J
(I), �(0, N) + �� ≥�(0, I� + ���), and N ∉ J
(I), the set J
(I) is nonempty.

�e proof can be referred to in [58].

4.7.5. Local Search Algorithm. With the three theorems, the
scheduling obtained a�er moving the critical operations
is feasible. 
e detailed procedure to obtain acceptable
scheduling from the neighborhood structure is described in
Algorithm 1.

4.8. Improved DE with Local Search. 
e improved DE with
local search is depicted as follows.

Step 1. Set the size of the population NP, scale factor -,
crossover probability CR, and maximum number of gener-
ations �max.

Step 2. Initialize the population, when assigning supporting
groups, the number of chromosomes selecting the supporting
group is 0.8 ∗ NP with the method of the global assignment,
and the others select their supporting groups randomly.

Step 3. Evaluate each chromosome.

Step 4 (mutation). Generate NP donor vectors *�� , � =1, . . . ,NP.
Step 5 (crossover). Generate NP trial vectors C�� , � =1, . . . ,NP.
Step 6 (selection). Determine NP target vectors ��+1� , � =1, . . . ,NP, by one-to-one selection operator for the next
generation.

Step 7 (local search). Choose the chromosome whose mak-

espan is the biggest one in ��+1� , � = 1, . . . ,NP, perform the
local search to the chromosome, and if a new chromosome is
found whose makespan is smaller than that one, then it will
be replaced by the new chromosome.

Step 8. If � < �max, then repeat Steps 4 to 7; otherwise, stop.
5. Experiment Design and Computational

Results Analysis

In order to analyze the performance of the improved di�eren-
tial evolution algorithmwith local search strategies (IDE&LS)
proposed in Section 4, we test the algorithm through some
practical instances from 
ight deck scheduling. All the
instances are also solved by the general genetic algorithm
(GA), di�erential evolution (DE) algorithm, and improved
di�erential evolution (IDE) algorithm without local search
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Table 4: Supporting group and its supporting operation and supporting time.

Supporting group (Operation, time) Supporting group (Operation, time)

1 (A, 2) 16 (G, 2)

2 (A, 3) 17 (H, 1)

3 (B, 2) 18 (H, 2)

4 (B, 2) 19 (I, 13)

5 (C, 3) 20 (I, 14)

6 (C, 2) 21 (I, 15)

7 (D, 4) 22 (I, 16)

8 (D, 5) 23 (J, 3)

9 (E, 11) 24 (J, 4)

10 (E, 12) 25 (K, 6)

11 (E, 10) 26 (K, 7)

12 (E, 11) 27 (L, 2)

13 (F, 7) 28 (L, 3)

14 (F, 8) 29 (L, 4)

15 (G, 4) 30 (L, 5)

strategies; their computational results are compared with
that of the proposed algorithm. In the encodings of GA
and DE, the supporting group is selected randomly, and the
chromosome is not decoded to an active scheduling.

5.1. Experiment Design. All the methods are implemented
in MATLAB 2013(a) on 2.50GHz Intel Core i5-3210m CPU,
4GB of RAM, Windows 7.0. 
ere are �ve instances based
on the 
ight deck scheduling. In each instance, there are 5
types of carrier-based aircra�s considered, which include a
helicopter (number 1), a warning airplane (number 2), an
escort �ghter (number 3), an antisubmarine aircra� (number
4), and some attack �ghters. In di�erent instances, the
amounts of attack �ghters are di�erent.

Instance 1. 
ere are four attack �ghters (numbers 5–8).

Instance 2. 
ere are six attack �ghters (numbers 5–10).

Instance 3. 
ere are eight attack �ghters (numbers 5–12).

Instance 4. 
ere are ten attack �ghters (numbers 5–14).

Instance 5. 
ere are twelve attack �ghters (numbers 5–16).


e order of taking o� is helicopter, warning airplane,
escort �ghter, antisubmarine aircra�, and attack �ghters. 
e
supporting operations of a carrier-based aircra� are shown
in Figure 7; there are 12 operations (A–L, numbers 1–12)
to support a carrier-based aircra�, but some carrier-based
aircra�s are di�erent; for example, the helicopter andwarning
airplane are without weapon mount, and the helicopter does
not need to catapult.


ere are 30 supporting groups; operations that each sup-
porting group can process and processing time (in minutes)
are shown in Table 4.

Di�erent population sizes and iterations are tested, and
computational results showed that all algorithms converge

fast when population size NP = 100, and iterations �max =400. For other parameters of the algorithms, [59] presents
some experiential value for the crossover probability, muta-
tion probability, and GGAP for the GA, and [60] suggests
the value of scale factor and crossover probability in most
cases for the DE. Based on their studies, we conducted some
sensitivity analysis on the value of the parameters, which help
us �nd their suitable value in our problem.

Figure 8 presents the computational results for the
IDE&LS to solve Instance 3, when the value of scale factor -
varies from 0.1 to 0.9. 
e makespan is the average value for
results of 100 times’ run of the algorithm. It can be seen that
the best solution is obtained when - = 0.5. Figure 9 presents
the results when the value of CR changes from 0.1 to 0.95,
and we can see that the best solution is obtained at CR = 0.9.
Similarly, we estimate the value for other parameters. 
us,
for DE, IDE, and IDE&LS, we set NP = 100, - = 0.5,
CR = 0.9, and �max = 400, while for GA, we set NP = 100,YM = 0.8, Y� = 0.06, GGAP = 0.9, and �max = 400.
5.2. Experimental Results and Analysis. Each method is run
100 times in each instance; calculating the average results, the
experiment results are shown in Table 5, and the “makespan”
is the object (in minutes).

Table 5 summaries the average performance of four
methods in �ve experimental instances. 
e best results are
presented in bold. 
e statistically signi�cant improvements
of the best result over competitors are indicated with asterisks∗ (two-sample t-test at the default 0.05 signi�cance level),
followed by Y value in brackets [61]. As we can see from
Table 5, IDE&LS always get the lowest average value and
statistically better than GA and DE in all settings. Compared
with the state-of-the-art IDE, IDE&LS (81.10) still have
statistically lower value than IDE (83.40) in the ��h case.

ese results demonstrate the bene�t of the proposedmethod
in this paper.
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Table 5: 
e average makespan of each method and relevant Y value.

Instance GA DE IDE IDE&LS

1 52.75∗(0.00) 51.90∗(0.01) 51.15 50.95

2 62.05∗(0.00) 61.95∗(0.00) 59.25 58.80

3 72.05∗(0.00) 70.55∗(0.00) 67.40 66.50

4 81.45∗(0.00) 79.30∗(0.00) 75.70 74.85

5 92.15∗(0.00) 87.55∗(0.00) 83.40∗(0.00) 81.10
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Figure 7: 
e supporting process of a carrier-based aircra�.
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Figure 10: 
e convergence curves of the four methods in Instance
5.

For Instance 5, one experimental result of each method
is selected randomly from 100 and its convergence curve is
shown in Figure 10.

From the above computational results, we can see that
the IDE&LS can obtain much better solutions than GA, DE,
and IDE without local search, and also it converges much
faster than other methods in the same number of iterations.

at is because in the initializing process of the IDE&LS,
we utilized some heuristic strategies to generate better and
feasible chromosomes, which increase the search e�ciency
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Figure 11: 
e scheduling of Instance 5 by IDE&LS.

in the beginning of the algorithm. Further, the local search
strategies integrated in the method help to improve the
quality of chromosomes of each generation, which increase
the search quality.

In the military operation, the scheduling plans of sup-
porting groups for di�erent situations are usually made
before the beginning of the battle, and the commanders
concern more on the optimality of the plan. 
us, in the
above analysis, we compared the average makespan of the
algorithms while ignoring the computing time. Our com-
putational experiments show that, even for the largest scale
instance, the computing time of IDE&LS is not over 11
minutes, which is reasonable and can satisfy the requirement
of military operation.

5.3. A Feasible Scheduling Scheme. In order to check the pri-
ority, parallel operation, and sequence 
exibility, a scheduling
Gantt chart of Instance 5 is generated by IDE&LS; as shown
in Figure 11, the vertical axis represents the number of
the supporting group, the horizontal axis represents the
processing time, the �rst or �rst two digits of the digital
representation are the number of carrier-based aircra�, and
the latter two represent the number of operation: for example,
“507” indicates operation 7 (operationG) of the carrier-based
aircra� 5 and “1203” indicates operation 3 (operationC) of the
carrier-based aircra� 12.


e results in Figure 11 show the following:

(1) 
ere are some vertical lines, whichmean the carrier-
based aircra�s have no operations: for example, “112”
indicates that number 1 carrier-based aircra� has no
operation 12 (operation G), which is in line with the
reality: the helicopter does not need catapult to take
o�.

(2) Departure time (operation G) is sorted according to
helicopter (number 1), warning airplane (number 2),

escort �ghter (number 3), antisubmarine aircra�
(number 4), and �ghters (numbers 5–12), because
�ghters have same priorities, so anyone of which is
allowed to take o� �rstly.

(3) In the maintenance of each carrier-based aircra�,
there are some operations being processed simulta-
neously.

(4) For carrier-based aircra�s with higher priorities, not
all the operations of them must be �nished earlier
than those with lower priorities, as long as the last
operation can be completed earlier. For example,
the helicopter (number 1) should take o� �rst, then
warning airplane (number 2), but in Figure 11, oper-
ation A of warning airplane is processed earlier than
helicopter.

(5) Operation 4 (operation D) is processed before opera-
tion 5 (operation E) for some carrier-based aircra�s,
such as numbers 2, 6, 8, 12, 13, and 14; the others are
opposite. In conclusion, the scheduling is feasible.

6. Conclusions

In this paper, we investigated a complex scheduling problem
drawn from the deck scheduling of supporting operations for
carrier-based aircra�s, where precedence constraints, parallel
operations, and sequence 
exibility should be considered.
Such scheduling problem also commonly appears in pro-
duction and maintenance of huge items, like aircra�, ship,
and its engine. An EFJSP model is established to formu-
late the scheduling problem, and an improved di�erential
evolution algorithm was proposed to solve the problem.
Firstly, the codes were initialized with the shortest time and
load balancing strategy, in which the random generation
and the priority strategies are also integrated. Secondly,
the decoding was done in the way of activity scheduling,
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re
ecting the parallel, 
exible features of the operations,
and the combination of POX cross and MOX cross was
used to make chromosomes mutation. Instances based on
practical deck scheduling are utilized to test the proposed
model and algorithm. Computational results show that our
solution approach can present better solutions in reasonable
computational time.

Besides the typical 
ight deck scheduling problem, the
approach developed in this paper can also be extended
to other classes of huge item production and maintenance
scheduling problems, such as aircra�, ship, and its engine.


e problem studied in the paper is a new one, and we
solve it by improving the di�erential evolution algorithm.
However, many other algorithms may be improved and used
to solve the deck scheduling problem, such as ant colony
algorithm, particle swarm optimization, leapfrog algorithm,
and bee colony algorithm. 
us, it is an important extension
to work on the improvement of these algorithms to make
them able to solve the proposed deck scheduling problem and
compare with the IDE algorithm in this paper, which may
help �nd more e�cient algorithms in future.
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