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ABSTRACT
Traditional planning and scheduling techniques still hold im-
portant roles in modern smart scheduling systems. Realis-
tic features present in modern manufacturing systems need
to be incorporated into these techniques. Flexible job-shop
scheduling problem (FJSP) is one of the most challenging
combinatorial optimization problems. FJSP is an extension
of the classical job shop scheduling problem where an op-
eration can be processed by several different machines. In
this paper, we consider the FJSP with parallel operations
(EFJSP) and we propose and compare a discrete firefly al-
gorithm (FA) and a genetic algorithm (GA) for the problem.
Several FJSP and EFJSP instances were used to evaluate
the performance of the proposed algorithms. Comparisons
among our methods and state-of-the-art algorithms are also
provided. The experimental results demonstrate that the FA
and GA achieved improvements in terms of efficiency and
efficacy. Solutions obtained by both algorithms are compa-
rable to those obtained by algorithms with local search. In
addition, based on our initial experiments, results show that
the proposed discrete firefly algorithm is feasible, more ef-
fective and efficient than our proposed genetic algorithm for
the considered problem.

CCS Concepts
•Theory of computation → Discrete optimization;
Evolutionary algorithms; Optimization with random-
ized search heuristics;

Keywords
Firefly algorithm, Genetic algorithm, Swarm Optimization,
Evolutionary Algorithm, Flexible job-shop scheduling prob-
lem

1. INTRODUCTION
Production scheduling is one of the most important issues
in the planning and scheduling of modern manufacturing
systems. There are several workshop styles in the manufac-
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turing system (including the Job Shop Scheduling Problem,
JSP). The JSP can be stated as follows. Consider a set of
machines and a set of jobs. Each job consists of a sequence of
operations to be processed in a given order. Each operation
must be processed individually on a specific machine. The
objective is to find a processing sequence for each machine
that minimizes an objective function, e.g. the completion
time of the last operation (makespan).

The inexistence of flexibility on the resources of each op-
eration presented on JSP may meet the requirements of a
traditional manufacturing system. However, with the ush-
ering of the fourth industrial revolution (Industry 4.0) many
computing devices, flexible manufacturing systems, and nu-
merical control machines are introduced in order to achieve a
higher level of autonomously, customization, and flexibility.
Therefore, the assumption that one machine only processes
one type of operation works in JSP but does not reflect the
reality of the modern manufacturing systems.

The Flexible Job Shop Problem (FJSP) is an extension of
the classical JSP problem where is considered that there
may be several machines, not necessarily identical, capable
of processing an operation. Particularly, for each operation,
a set of machines on which that operation can be processed
is given. The goal is to decide on which machine each op-
eration will be processed and in what order the operations
will be processed on each machine so that the makespan is
minimized.

In terms of computational complexity, JSP problem is known
to be one of the most difficult combinatorial optimization
problems [10], and has been proven to be an NP-hard prob-
lem [8]. Since the FJSP and EFJSP problems are at least as
difficult as the JSP, both are also NP-hard. Many methods
have been presented to solve the FJSP problem, e.g. exact
methods [6, 5, 1], and heuristic methods [15, 17, 7, 11, 13,
14].

In the literature, each job in the FJSP consists of a simple se-
quence of operations, so-called path-jobs. In some industrial
environments, it is common to have jobs whose operations
can be processed simultaneously. Mutually independent se-
quences of operations may feed into an “assembling” oper-
ations. Similarly, there may be “disassembling” operations
which split the sequences of subsequent operations into two
or more mutually independent sequences, so-called G-job.
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(a) G-job type. (b) Y-job type.

Figure 1: Types of jobs present in the FJSP with parallel operations (EFJSP).

Figure 1a shows a representation of G-job. Moreover, some
jobs may consist of two independent sequences of operations
followed by a third that puts together the results of the first
two, so-called Y-job. Figure 1b shows a representation of Y-
job. This problem will be referred to as “EFJSP” in this pa-
per. Figure 1 shows the types of jobs present in the EFJSP,
where each node represents an operation. The arcs represent
precedence constraints and all arcs are directed from left to
right. The black nodes are assembling operations and gray
nodes are disassembling operations.

In recent years, several evolutionary algorithms (EA) were
proposed to solve the FJSP. Recently, in [3], it was shown
that hybrid techniques have been applied more often than
other methods for solving FJSP. Furthermore, the technique
most frequently chosen for performing exploration in hybrid
algorithms is the genetic algorithm (GA). Although GA has
powerful global searching ability [11], a recently developed
algorithm called the Firefly Algorithm (FA), proposed in
[16], has been shown [12, 16] to outperform Particle Swarm
Optimization (PSO) and GA for continuous optimization
problems.

In this paper, we propose and compare a Genetic Algorithm
and a discrete Firefly Algorithm for solving the EFJSP. Sev-
eral FJSP and EFJSP instances are used to evaluate the
performance of both methods. Through experimental stud-
ies, the merits of each algorithm are demonstrated clearly.
Furthermore, the proposed algorithms are compared with
other state-of-the-art algorithms. The remainder of this pa-
per is structured as follows. The problem formulation is
discussed in Section 2. The solution representation for both
algorithms is defined in the Section 3. The discrete FA is
proposed in Section 4 and the GA is proposed in Section 5.
Experimental results related to the proposed approaches are
reported in Section 6. Section 7 addresses the conclusions
and potential future works.

2. PROBLEM FORMULATION
Let (V,A) be a directed acyclic graph (DAG), where the ver-
tices represent the operations, and the arcs represent prece-
dence constraints. We are also given a set M of machines
and a function F that associates a non-empty subset F (v) of
M with each operation v. The machines in F (v) are the ones
that can process operation v. Additionally, for each opera-
tion v and each machine k in F (v), we are given a positive
rational number pvk representing the processing time of op-
eration v on machine k. A machine assignment is a function
f that assigns a machine f(v) ∈ F (v) with each operation
v. Given a machine assignment f , let pfv := pv,f(v).

For each machine k, let Vk be the set of operations that can

be processed on machine k, that is, Vk = {v ∈ V : k ∈ F (v)}.
Let Bk be the set of all ordered pairs of distinct elements of
Vk. The pairs (v, w) in Bk are designed to prevent v and w
from using machine k at the same time. Let B denote the
union of all Bk. Hence, (v, w) ∈ B if and only if v 6= w and
F (v) ∩ F (w) 6= ∅.

Given a machine assignment f , let Bf be the set of all or-
dered pairs of distinct operations to be processed on the
same machine, that is, Bf = {(v, w) ∈ B : f(v) = f(w)}. A
selection is any subset Y of Bf such that, for each (v, w) ∈
Bf , exactly one of (v, w) and (w, v) is in Y . A selection cor-
responds to an ordering of the operations to be processed on
the same machine. A selection Y is admissible if (V,A ∪ Y )
is a dag.

Given a machine assignment f and a admissible selection Y ,
a schedule for (V,A∪Y, pf ) is a function s from V to the set
of non-negative rational number such that sv + pfv ≤ sw for
each (v, w) in A∪ Y . The number sv is the starting time of
operation v. The length of a (directed) path (v1, v2, ..., vl)
in the dag (V,A ∪ Y ) is the number pfv1 + pfv2 + ... + pfvl .
For any path P in (V,A ∪ Y ) ending at v and any schedule
s, the length of P is at most sv. For each v in V , let s∗v
be the maximum of the lengths of all paths in (V,A ∪ Y )
ending at v. There is a simple dynamic programming algo-
rithm that computes the tight schedule [4]. Not surprisingly,
the makespan of the tight schedule s∗ is determined by the
longest path: there exists a path P = (v1, v2, ..., vl, vl+1)
in (V,A ∪ Y ) such that the length of P plus pvl+1 equals
mks(s∗) (such P is known as a critical path).

Table 1: EFJSP instance with three jobs and a total
of ten operations and four machines. Job 1 is a
path-job, job 2 is a Y-job, and job 3 is a G-job. The
column DFS represents the topological order of each
respective job given by depth-first search algorithm.

Job v pv,1 pv,2 pv,3 pv,4 Route DFS

1 1 2 3 4 3 1 ; 2
1, 2, 32 3 5 2 2 2 ; 3

3 5 1 4 4 -
2 4 4 3 4 5 4 ; 6

4, 5, 65 3 3 4 2 5 ; 6
6 4 3 1 4 -

3 7 3 1 3 3 7 ; 8, 9
7, 9, 8, 108 5 3 1 3 8 ; 10

9 4 4 2 5 -
10 3 5 4 4 -

v ; u represents that v precedes u in the job route.
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V 1 2 3 4 5 6 7 8 9 10

MS 1 4 2 1 4 3 2 3 3 1

OS 3 1 2 3 2 3 1 3 2 1

TOS 7 1 4 9 5 8 2 10 6 3

Figure 2: Representation of a EFJSP solution.

2.1 EFJSP MILP Model
The MILP model for the EFJSP proposed in [1] can be given
as follows: find a rational number z, rational arrays s and
p′, and binary arrays x and y that

Minimize z

subject to

sv + p′v ≤ z ∀v ∈ V, (1)∑
k∈F (v)

xvk = 1 ∀v ∈ V, (2)

p′v =
∑

k∈F (v)
pvkxvk ∀v ∈ V, (3)

yvw+ywv ≥ xvk+xwk−1 ∀k∈M,∀(v, w)∈Bk, (4)

sv + p′v ≤ sw ∀(v, w) ∈ A, (5)

sv + p′v − (1− yvw)L ≤ sw ∀(v, w) ∈ B, (6)

sv ≥ 0 ∀v ∈ V. (7)

As x is binary, constraint (2) ensures that x is a machine
assignment. Then constraint (3) makes array p′ represent
the processing times of operations. In fact, p′ can be seen
as an intermediate value, not a variable, that helps to sim-
plify the presentation of the model. Since pv,k > 0 for all
v and k, thus p′v > 0 and so constraint (6) makes sure that
yvw and ywv are not both equal to 1. Hence, as y is binary,
constraint (4) implies that y represents a selection. Indeed,
if xvk = xwk = 1, which means v and w are assigned to ma-
chine k, then (4) forces y to decide whether v comes before
or after w. Otherwise, constraint (4) is trivially satisfied.
Once y is a selection and p′ represents the processing times,
constraints (5), (6), and (7) make s represent a schedule. Fi-
nally, the objective function and constraint (1) make sure z
is the makespan of the schedule, and is as small as possible.
Finally, L is an upper bound on the makespan of an optimal
solution of the FJSP problem.

3. ENCODING AND DECODING
Since the FJSP is composed of two sub-problems, its solu-
tion representation is composed of two strings, i.e., machine
assignment string (MS) and operation sequence string (OS).
The MS string denotes the assigned machine for each par-
ticular operation and the OS string represents the order in
which the operations are to be processed in their assigned
machines. We denote ζime as the eth element of the mth
string of the ith individual (or firefly), where ζi1 and ζi2
are respectively the MS string and the OS string. Figure 2
shows a solution for the given set of machines and operations
presented in Table 1. The solution ζi is composed of the MS
string (ζi1) and the OS string (ζi2). The OS is translated

Algorithm 1 Longest path l(0, ∗)
1: T ← topological sort of V
2: for each v ∈ T do
3: E ← out-edges of v
4: for each ε ∈ E do
5: u← target vertex of ε
6: if su < sv + pv,f(v) then
7: su ← sv + pv,f(v)
8: end if
9: end for u

10: end for v

onto TOS string and it maps the appearances of job id and
operation.

3.1 Machine Assignment
Each element of the MS string is associated with a unique
operation and the eth element represents the selected ma-
chine k for the corresponding operation Ve, where the index
Ve denotes the eth operation in V and k ∈ F (Ve). For ex-
ample, on Figure 2, ζi13 expresses that the machine 2 is
assigned for operation 3. The length of the MS string is
equal to

∑n
i=1 Ji, where Ji is the number of operations of

job i and n is the number of jobs. The index does not vary
throughout the whole searching process. Figure 2 shows an
example of MS strings based on the given set of machines
and operations presented in Table 1.

3.2 Operation Sequence
The OS string represents the order in which the operations
will be processed in their designated machines. To avoid re-
pair mechanisms, this representation uses an unpartitioned
permutation with Ji repetitions of the job numbers, i.e., the
index of job i appear in the string Ji times. Figure 2 dis-
plays an example of OS strings based on the jobs shown in
Table 1.

3.3 Translating the OS String
By scanning the OS string from left to right, the fith ap-
pearance of a job i refers to the fith operation in topological
order of the operations of job i. For example, scanning the
OS string from left to right, for every appearance of job i,
fi is increased by 1, and the fith operation on the topo-
logical order is added to the TOS string. The translation
mechanism bypasses the use of repair mechanism since any
permutation can be decoded into a DAG, leading to a feasi-
ble solution. For the instance shown in Table 1, one possible
OS string, and its TOS string is presented in Figure 2.

3.4 Calculation of the Makespan
Following the translation of the OS string and the assign-
ment based on the MS strings, the starting time of every
operation has to be defined in order to achieve the makespan
(mks) of the solution. The calculation of the mks can be
done by using graph traversal algorithms, commonly used
in temporal planning. Additionally to the notations given
in Section 2, two dummy nodes are introduced. In this way,
the set of vertices is V = V ∪{0, ∗}, 0 being the source and *
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Table 2: Movement update of ζi towards a brighter firefly ζj.

MS string OS string

Firefly ζj 1 4 2 1 4 3 2 3 3 1 3 1 2 3 2 3 1 3 2 1
Firefly ζi 2 4 3 1 2 3 2 3 1 1 3 2 1 3 2 3 1 2 1 3

Hij and Sij {1, 3, 5, 9} {(2,3), (8,10), (9,10)}
dij and dij |2− 1|+ |3− 2|+ |2− 4|+ |1− 3| = 6 |2− 3|+ |8− 10|+ |9− 10| = 4

Attractiveness β(r) 0.217 0.384
R and R {0.13, 0.78, 0.17, 0.24} {0.35, 0.72, 0.11}

Position after β-step 1 4 3 1 3 3 2 3 1 1 3 1 2 3 2 3 1 2 3 1
Position after α-step 1 4 3 1 3 3 2 3 1 4 3 1 2 2 3 3 1 2 3 1

being the sink node, respectively representing the start and
the end of the planning period.

The length of a path is defined as
∑q−1
i=1 µ(vi, vi+1)f , where

q is the number of nodes in the path, vi is the ith node,
and µ(v, u) gives maximal length of all edges between node
v and u. Denoting the value of some longest path from node
v to node u by l(v, u), the starting time of operation vi in a
left justified schedule is equal to l(0, vi) in the corresponding
solution graph. Therefore, the mks of a solution is equal to
the length of some longest path from 0 to *, l(0, ∗). The
pseudo code shown in Algorithm 1 summarizes the steps to
calculate the longest path l(0, ∗).

4. FIREFLY ALGORITHM
Firefly algorithm (FA) is a simple yet quite efficient nature-
inspired search technique for global optimization. Since FA
was developed, it has attracted a lot of attentions and be-
comes more popular in solving various real-world problems.
FA is a swarm-based intelligence algorithm, which mimics
the flashing behavior of fireflies [16]. A firefly flashes as a
signal to attract others for some purposes, e.g. predating or
mating. Accordingly, this biological phenomenon is formu-
lated as a meta-heuristic algorithm depending on following
three rules [16]:

• One firefly will be attracted to other fireflies regardless
of their sex;

• The attractiveness is proportional to the brightness

Algorithm 2 Firefly Algorithm

1: Objective function f(t), t = (ζ1, ..., ζd)
T

2: Generate initial pop. P of fireflies
3: Light intensity Ii = f(ζi)
4: Define light absorption coefficient γ
5: while (t < MaxGeneration) do
6: for each ζi ∈ P do
7: for each ζj ∈ P do
8: if (Ii < Ij) then Move ζi towards ζj end if
9: Vary β with distance r via exp[−γr]

10: Evaluate solutions and update light intensity
11: end for j
12: end for i
13: Rank fireflies and find the current global best
14: end while

and decrease as their distance increases. For any two
flashing fireflies, the less bright one will move towards
the brighter one;

• The brightness of a firefly is determined by the land-
scape of the objective function.

The pseudocode shown in Algorithm 2 summarizes the basic
steps of the FA which consists of the three addressed rules.

4.1 Classic Firefly Algorithm
In the firefly algorithm, there are two important issues: the
variation of light intensity and formulation of the attractive-
ness. For simplicity, we can always assume the attractiveness
of a firefly is determined by its brightness, which in turn is
associated with the encoded objective function.

The attractiveness function β(r) can be any monotonically
decreasing functions such as the following generalized form

β(r) = β0e
−γrm , m > 1, (8)

where β0 is the attractiveness at r = 0, and r is the distance
between two fireflies. As it is often faster to calculate 1/(1+
r2) than an exponential function [16], the Equation (8) can
be approximated as

β(r) =
β0

1 + γr2
. (9)

The distance between any two fireflies i and j, at position xi
and xj , respectively can be defined as a Cartesian distance:

rζiζj = ‖xζi − xζj‖=
√∑d

k=1
(xζik − xζjk)2, (10)

where xζik is the kth component of the spatial coordinate x
of the ζith firefly.

The random movement of a firefly i towards another more
brighter firefly j is determined by

xζi = xζi + β0e
−γr2ζiζj (xζi − xζj ) + α εζi , (11)

where the second term considers a firefly’s attractiveness,
the third term is randomization with α being the random-
ization parameter, and εi is a vector of random numbers
drawn from a Gaussian distribution or uniform distribution.
In a simplest form, εi can be replaced by x−1/2, where x is
a random number uniformly distributed in [0,1]. For most
applications we can take β0 = 1 and α ∈ [0, 1].
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P1 2 1 3 2 3 4 1 4

O1 2 3 1 2 3 4 1 4

P2 3 2 4 1 4 3 1 2

O2 1 2 4 3 4 3 1 2

P1 2 1 3 2 3 4 1 4

Jobset1 = {2, 4}, Jobset2 = {1, 3}

(a) POX crossover

P1 2 1 3 2 3 4 1 4

O1 2 3 1 2 3 4 1 4

P2 3 2 4 1 4 3 1 2

O2 3 2 2 1 4 3 1 4

P1 2 1 3 2 3 4 1 4

Jobset1 = {2, 4}, Jobset2 = {1, 3}

(b) JBX crossover

Figure 3: Crossover operators for OS string.

4.2 Discrete Firefly Algorithm for the FJSP
The FA has been originally developed for solving continu-
ous optimization problems and cannot be directly applied to
solve discrete optimization problems. The main challenges
for using the FA to solve combinatorial optimization prob-
lems are the calculation of the discrete distance between two
fireflies, and how they move in the coordination.

4.3 Distance
The discrete distance between two fireflies is defined by the
distance between the permutation of its strings. The dis-
cretization of the distance, assimilation and revolution op-
erators are described in details below.

4.4 Machine Assigment Distance
To calculate the distance between two MS strings, first, we
apply the Hamming distance to verify positions (indexes) of
the non-corresponding elements (values) of the strings, i.e.
if ζi1e 6= ζj1e, ∀e ∈ V , then the index Ve is store in Hij ,
{Ve ∈ Hij : ζi1e 6= ζj1e}, where Ve is the eth element in
V . Afterwards, these positions are used to calculate the MS
distance as

dij =
∑
∀e∈Hij

∣∣m(ζi1e, F (Ve))−m(ζj1e, F (Ve))
∣∣ , (12)

where m is a function that maps the index of the machine
ζi1e in the set F of the operation Ve. To illustrate Equation
(12), consider strings ζ1,1 = {5, 3, 1} and ζ2,1 = {1, 3, 4},
therefore H1,2 = {1, 3}. Supposing that F (V1) = F (V3) =
{1, 3, 4, 5}, therefore d1,2 = |4− 1|+

∣∣(1− 3)
∣∣.

4.5 Operation Sequence Distance
To determine the distance between any two OS strings we
apply the so-called Swapping distance. The Swapping dis-
tance is the minimal number of swaps needed to perform in
a string in order to produce another. In our implementation,
every swap is considered a pair, where the first and second
values in each pair designate the positions of the elements
required to be swapped in order to advance one string to-
wards another. The minimal number of swaps in order to
move ζi2 towards ζj2 is stored in pair-wise fashion in Sij .

Following the calculation of the minimal amount of swaps,
the distance between two OS strings can be determined as

dij =
∑
∀p∈Sij

|p1 − p2| , (13)

where p1 and p2 are respectively the first and second value
of the pth pair. To illustrate Equation (13), consider ζ1,2 =
{2 3 1} and ζ2,2 = {1 3 2}, S1,2 = {(1, 3)}, where (1, 3)
means that ζi21 should be swapped with ζi23, therefore d1,2 =
2.

4.6 Moving Towards Another Firefly
In this study we split the movement into two sub-steps: as-
similation β-step and revolution α-step. The steps β and α
are not interchangeable, thereby, β-step must be computed
before α-step while finding the new position. Both steps are
described in details in Section 4.7 and Section 4.8. Both
steps are illustrated in details on Table 2, where the firefly
ζi updates its position towards a brighter firefly ζj . The pa-
rameters used in this illustration are β0 = 1,γ = 0.1. The
machines, jobs, operations, and topology considered in this
illustration are based on the values shown in Table 1.

The β-step brings the iterated firefly closer to the brighter
firefly by moving the MS string and the OS string towards
the strings of the brighter firefly. Sections 4.7 and 4.8 ex-
plains in details the β-step. The α-step allows shifting the
permutation into one of the neighboring permutations. Sec-
tion 4.9 explains the α-step in details.

4.7 Moving the MS String
For every element e in Hij a random number x ∈ X is
generated uniformly distributed over [0, 1], where Xe is the
eth random number for eth element of Hij . In the case that
Xe ≤ β(dij), the distance of the element ζi1e respective to
ζj1e is decreased by

floor
(

(β(dij)×
∣∣m(ζi1e, F (Ve)

)
−m

(
ζj1e, F (Ve)

)∣∣) + 1
)
.

(14)

4.8 Moving the OS String
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P1 2 4 3 1 3 4 2 1

O1 2 4 3 2 4 4 2 1

P2 3 2 4 2 4 2 3 1

O2 3 2 4 1 3 2 3 1

P1 2 4 3 1 3 4 2 1

Figure 4: Two-point crossover.

P 2 1 3 2 3 4 1 4

O 2 1 4 2 3 3 1 4

Figure 5: Swapping mutation.

For every pair p in Sij a random number x ∈ X is generated
uniformly distributed over [0, 1], whereXp is the pth random
number for pth pair of Sij . In case that Xp ≤ β(dij), the
value in ζi2p1 is swapped with the value in ζi2p2 .

4.9 Random Movement
The α-step is performed on both strings as follows: (1) an

element e ∈ ζi1 is chosen at random and a new machine
k ∈ F (Ve) is assigned at random; (2) elements e ∈ ζi2 and
e′ ∈ ζi2 are chosen at random and swapped.

5. GENETIC ALGORITHM
Genetic algorithm (GA) is a class of algorithms based on
the abstraction of Darwinian evolution of biological systems.
Starting from an initial population, the algorithm applies
genetic operators in order to produce offspring. At each
generation, every new individual corresponds to a solution,
i.e., a schedule of the given FJSP instance. The overall
structure of our GA can be described as follows:

• Coding: the genes of the chromosomes describe the
assignment of operations to the machines, and the op-
erations sequences, as presented in Section 3.

• Initial population: the initial chromosomes are obtained
by random permutation of jobs and machines.

• Fitness evaluation: the makespan is computed for each
individual in the current generation as described in
Section 3.4.

• Selection: the selection procedure is described in Sec-
tion 5.1.

• Offspring generation: the new generation is obtained
by changing the assignment of the operations and by
changing the sequencing of operations. Each string is
subjected to its own genetic operators. The crossover
and mutation operators are discussed in Sections 5.2
and 5.5.

• Stop criterion: fixed number of generations is reached.

Table 3: Experiments with the YFJS instances. These instances are composed of Y-jobs.

Instance Size
BRG GA FA

mks CPU mks Mean StDev CPU mks Mean StDev CPU

YFJS01 4, 10, 7 773 11.5 773 773 0.0 3.98 773 773.0 0.0 2.16
YFJS02 4, 10, 7 825 9.88 825 825 0.0 6.49 825 825.0 0.0 2.89
YFJS03 6, 4, 7 347 3.72 347 348.8 3.6000 7.19 347 347.0 0.0 4.59
YFJS04 7, 4, 7 390 7.82 390 390 0.0 7.64 390 390.0 0.0 4.97
YFJS05 8, 4, 7 445 357.55 445 447.8 3.4292 12.87 445 447.1 3.2078 5.49
YFJS06 9, 4, 7 [425.29;449] 3600 447 447.5 1.0246 13.94 447 447.0 0.0 6.44
YFJS07 9, 4, 7 444 1392 444 445.2 3.6000 13.19 444 444.0 0.0 5.49
YFJS08 9, 4, 12 353 0.67 353 356.3 5.0408 11.49 353 353.0 0.0 4.88
YFJS09 9, 4, 12 242 14.03 242 243.8 2.7495 17.95 242 242.0 0.0 7.56
YFJS10 10, 4, 12 399 4.03 399 399.0 0.0 12.31 399 399.0 0.0 5.94
YFJS11 10, 5, 10 526 177.43 526 527.2 1.4696 37.56 526 526.9 1.3747 21.55
YFJS12 10, 5, 10 512 3218.89 512 512.4 0.4898 44.11 512 512.4 0.4898 28.74
YFJS13 10, 5, 10 405 1624.66 405 405.4 0.8000 174.12 405 405.2 0.6000 69.98
YFJS14 13, 17, 26 1317 3293.58 1317 1317.4 0.4898 186.22 1317 1317.2 0.4000 71.56
YFJS15 13, 17, 26 [1239;1244] 3600 1242 1246.6 6.2000 158.38 1239 1243.5 6.4691 75.23
YFJS16 13, 17, 26 [1200;1245] 3600 1222 1233.6 8.2849 135.32 1222 1225.2 2.1354 56.97
YFJS17 17, 17, 26 [1133;2379] 3600 1139 1141.5 4.2720 249.82 1134 1135.8 2.2271 105.32
YFJS18 17, 17, 26 [1220;2082] 3600 1230 1281.1 23.0844 305.13 1226 1237.2 10.9526 129.45
YFJS19 17, 17, 26 [926;1581] 3600 948 959.5 7.7103 326.79 943 952.3 6.8709 149.62
YFJS20 17, 17, 26 [968;2312] 3600 1001 1010.4 10.3169 311.33 974 978.0 2.0000 127.61
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Figure 6: Best makespan and mean CPU time for the experiment with the YFJS instances.
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Figure 7: Box plot of the makespan obtained with the experiments involving the YFJS instances.

5.1 Selection
In GAs, the selection operator is used to select the individu-
als according to their fitness and maintain the highest qual-
ity chromosomes and characteristics within the population.
In our algorithm, the selection strategy includes two parts:
the method of keeping the best individuals and tournament
selection. The method of keeping the best individuals is to
copy the 1% of the best individuals for the next generation.
The tournament selection strategy, proposed in [9], works as
follows: two solutions are selected randomly as the parent
solutions, if a random number generated between 0 and 1
is smaller than the probability r which usually is set to 0.8,
then the better one is selected; otherwise, the worst one is
selected.

5.2 Crossover
Crossover is the recombination of two parent chromosomes
through the exchange of a part of one chromosome with a
corresponding part of another in order to produce offspring.
We denote the crossover probability as pc. In this paper,
two crossover operators: (a) precedence operation crossover
(POX), proposed in [18]; (b) job-based crossover (JBX), pro-
posed in [19]; are adopted for the OS string. During the OS
string crossover procedure, one crossover operator is selected
randomly.

5.3 Operation Sequence Crossover
The basic working procedure of POX is described as bellow
(two parents are denoted as P1 and P2; two offspring are

denoted as O1 and O2). Figure 3 shows an example of POX
crossover operator.

1. The Job set J = {J1, J2, J3, ..., Jn} is divided into two
groups Jobset1 and Jobset2 randomly;

2. Any element in P1 which belongs to Jobset1 are ap-
pended to the same position in O1 and deleted in P1;
any element in P2 which belongs to Jobset1 are ap-
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Figure 8: Experiment with FJSP instances.
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Table 4: Experiment with the DAFJS instances. These instances are composed of G-jobs.

Instance Size
BRG GA FA

mks CPU mks Mean StDev CPU mks Mean StDev CPU

DAFJS01 4, 5-9,5 257 78.93 257 257.3 0.4714 10.33 257 257.0 0.0 4.95
DAFJS02 4, 5-7, 5 289 1271.7 289 290.7 1.1235 12.87 289 289.5 0.8844 5.46
DAFJS03 4, 10-17, 10 576 15.8 576 582.6 13.2 15.73 576 576.0 0.0 10.53
DAFJS04 4, 9-14, 10 606 1.22 606 606.0 0.0 31.55 606 606.0 0.0 9.17
DAFJS05 6, 5-13, 5 [347.53;403] 3600 395 398.5 2.7293 29.75 389 395.2 4.7638 7.23
DAFJS06 6, 5-13, 5 [326;435] 3600 416 421.3 3.2139 33.49 412 417.0 3.2455 6.16
DAFJS07 6, 7-23, 10 [497;562] 3600 519 524.7 4.0277 45.32 512 517.9 4.2968 9.43
DAFJS08 6, 6-23, 10 [628;631] 3600 628 633.1 5.1623 40.42 628 632.1 3.660 17.51
DAFJS09 8, 4-9, 5 [315;475] 3600 470 473.6 3.4020 35.16 464 469.4 1.9253 11.97
DAFJS10 8, 4-11, 5 [336;575] 3600 534 542.0 3.8471 49.62 533 538.2 5.2051 20.15
DAFJS11 8, 10-23, 10 [658;708] 3600 659 664.5 4.4252 110.64 659 662.1 2.205 55.43
DAFJS12 8, 9-22, 10 [530;720] 3600 652 656.6 4.0792 135.64 645 651.1 3.9643 66.48
DAFJS13 10, 5-11, 5 [304;718] 3600 662 666.5 3.5188 106.73 656 660.4 3.3823 46.98
DAFJS14 10, 4-10, 5 [358.95;860] 3600 736 748.2 9.4671 115.39 735 741.7 6.0955 51.97
DAFJS15 10, 8-19, 10 [512;818] 3600 677 686.8 5.7643 155.61 671 681.5 6.1738 71.95
DAFJS16 10, 6-20, 10 [640;819] 3600 679 688.9 7.9872 125.33 679 684.1 4.2719 61.73
DAFJS17 12, 4-11, 5 [300;909] 3600 804 813.4 6.2268 151.13 800 806.7 4.5821 59.49
DAFJS18 12, 5-9, 5 [322;951] 3600 803 808.2 4.3543 119.64 799 803.3 4.7703 40.95
DAFJS19 8, 7-13, 7 [512;592] 3600 525 527.5 2.3343 103.43 524 525.4 1.9596 49.27
DAFJS20 10, 6-17, 7 [434;815] 3600 712 720.9 5.3971 119.78 705 710.3 3.4538 69.72
DAFJS21 12, 5-16, 7 [504;965] 3600 815 819.9 5.1441 164.85 808 811.7 2.5157 75.81
DAFJS22 12, 5-17, 7 [464;902] 3600 720 724.5 5.3275 168.53 708 713.9 3.2958 85.49
DAFJS23 8, 6-17, 9 [450;538] 3600 476 480.5 2.9635 109.71 476 479.9 2.6297 61.51
DAFJS24 8, 6-25, 9 [476;666] 3600 568 572.8 3.4871 135.13 564 567.2 2.8566 55.32
DAFJS25 10, 9-19, 9 [584;897] 3600 755 758.5 3.5752 119.55 752 757.7 4.8397 69.84
DAFJS26 10, 8-17, 9 [565;903] 3600 751 756.9 6.1413 188.64 745 748.6 2.9394 78.81
DAFJS27 12, 7-22, 9 [503;981] 3600 838 845.1 6.9557 193.56 831 835.0 2.7568 81.55
DAFJS28 8, 8-15, 10 [535;671] 3600 545 552.9 4.3889 129.91 543 547.2 2.4000 60.48
DAFJS29 8, 7-19, 10 [609;726] 3600 657 663.7 4.2026 131.14 654 656.3 2.4129 61.41
DAFJS30 10, 8-19, 10 [467;656] 3600 557 564.9 5.5554 137.11 555 558.3 1.8856 65.36

pended to the same position in O2 and deleted in P2;

3. the remaining elements in P2 are appended to the re-
maining empty positions in O1 seriatim; and the re-
maining elements in P1 are appended to the remaining
empty positions in O2 seriatim.

The second crossover operator for OS string is the job-based
crossover (JBX). The basic working procedure of JBX is de-
scribed below. Figure 3 shows an example of JBX crossover
operator.

1. The Job set J = {J1, J2, J3, ..., Jn} is divided into two
groups Jobset1 and Jobset2 randomly;

2. Any element in P1 which belongs to Jobset1 are ap-
pended to the same position in O1; any element in P2

which belongs to Jobset2 are appended to the same
position in O2;

3. Any element in P2 which belongs to Jobset2 are ap-
pended to the remaining empty positions in O1 seri-
atim; and any element in P1 which belongs to Jobset1
are appended to the remaining empty positions in O2

seriatim.

5.4 Machine Selection Crossover
For the MS string, a two-point crossover has been adopted
as the crossover operation. In this operation, two positions
are selected at random. Based on the selected positions,
two children strings are created by swapping all elements
between the positions of the two parent strings. Figure 4
shows an example of two-point crossover.

5.5 Mutation
Mutation operator is applied on a single chromosome for
the purpose of changing a gene at its respective location.
The gene 1011 can be mutated as 1111, as the gene at lo-
cation 2 is flipped from 0 to 1. The mutation operator is
used to change some information in a selected chromosome
or diversify the solution space for further exploration. The

Table 5: Parameters of the GA and FA.

Instance F/I T (fa)/T (ga) γ pc pm

Small 100/250 400/300 0.10 0.85 0.02
Medium 250/500 800/500 0.10 0.85 0.02

Large 500/750 1200/750 0.10 0.85 0.02

APPLIED COMPUTING REVIEW  JUN. 2018,  VOL. 18,  NO. 2 53



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

200

400

600

800

DAFJS instances

M
a
k
es

p
a
n

GA mks FA mks

0

100

200

T
im

e
(s

)

GA CPU FA CPU

Figure 9: Best makespan and mean CPU time for the experiment with the DAFJS instances.
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Figure 10: Box plot of the makespan obtained with the experiments involving the DAFJS instances.

mutation probability pc should be small since a high proba-
bility will be adverse for the information preservation of the
good chromosomes. In this paper, the swapping mutation
[19], has been adopted for the OS string. In this procedure,
two positions are selected and its respective elements are
swapped. A single point mutation is used for the MS string.
In this procedure, a position of the MS string is selected,
and a new machine is assigned for its respective operation.
Figure 5 shows an example of swapping mutation.

6. NUMERICAL RESULTS
This section presents the results of computational experi-
ments involving the algorithms. We used as benchmarks 10
FJSP instances (named Mk) introduced in [2], 20 EFJSP
instances composed of Y-jobs (named YFJS) proposed in
[1], and 30 EFJSP instances composed of G-jobs (named
DAFJS) further proposed in [1]. Experiments involving the
metaheuristics were conducted on the same computer, an
Intel Core i7 2.70GHz. The computer used for the MILP
model has an Intel Xeon E5440 2.83GHz processor. The
proposed algorithms were implemented in C++. A supple-
mentary material (e.g., the instances used in this work) is
provided at https://willtl.github.io/acr2018_summer/.

Based on experiments we find out the best parameters for
the GA and FA based on the size of the instances. We di-
vided into three categories (i.e., small, medium, large), and
for each category. Small instances, i.e., less or equal to 6
jobs and 5 machines; medium instances, i.e., less or equal to
10 jobs and 8 machines; larger instances, i.e., instances that

does not belong to another group. The number of individ-
uals, fireflies, and the number of generations are shown in
Table 5, where F is the number of fireflies, I is the number
of individuals, T is a function that gives the number of gen-
erations for each algorithm. The attraction coefficient was
kept as β0 = 1.0 for all experiments.

Figure 8 presents the results for the FJSP instances proposed
in [2]. The bars denote the mks and the lines represent the
CPU time, in seconds. This set of instances include only
path-jobs. We analyze our proposed methods with another
state-of-the-art algorithm, a memetic algorithm (MA) pro-
posed in [17]. The MA was implemented on an Intel Core
i7-3520M 2.9 GHz processor in Java.

We experiment our algorithms with two sets of EFJSP in-
stances proposed in [1]. Figure 6 and Figure 9 shows the
best mks and CPU time for the experiments with the YFJS
and DAFJS instances. Figure 7 and Figure 10 shows the
variation of observed data through quartiles for the experi-
ments with the YFJSP and DAFJS instances. Tables 3 and
4 present the numerical results for the experiments involv-
ing the YFJSP and DAFJS instances. The instance col-
umn designates the names of the instances. For the MILP
model [1] (we name it BRG), the mks column designates
the optimal makespan or the lower and upper bounds found
by CPLEX. The CPU column records the CPU time in sec-
onds. The CPLEX was limited to 3600 seconds. Regarding
the metaheuristics, for each instance, the experiment was
performed 25 times. Therefore, column mks designates the
best-obtained makespan, column Mean records the mean of
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the best-obtained values, column StDev records the stan-
dard deviation, and the column CPU designates the mean
CPU times.

On the experiment among the [2] instances, we can per-
ceive that the FA was able to find the optimal solution for
most of the instances except the two largest instances (i.e.
Mk06 and Mk10). The FA is more efficient related to the
GA and MA, however, the MA was more efficient for the
MK10. Based on the investigations with Y-job and G-job
instances given on Tables 3 and 4, we can see that both the
GA and FA loses efficiency for larger instances due to the
fact that the parameters had to be adjusted in order to in-
crease the searching capabilities of the algorithms. In that
case, even with readjusted parameters (e.g., a higher num-
ber of individuals, fireflies, and iterations), the GA was not
able to obtain similar solutions to those that FA found for
the largest instances. The MILP model is more efficient for
smaller instances, and as expected, it does not scale well for
larger instances.

Here is a summary of our results. The proposed FA is more
effective and efficient than the proposed GA. As expected,
both the GA and FA are more efficient than the MILP. Based
on the bounds given by the MILP model, we can see that
the FA decreased the gap (i.e. the distance between lower
and upper bounds) for several instances.

7. CONCLUSION
In the present paper, we extended the definition of the FJSP
taking into account parallel operations in the route of the
jobs. We put forward a discrete firefly algorithm and a ge-
netic algorithm to solve the EFJSP. In order to evaluate the
performance of the solution methods, 50 EFJSP instances
were used in the computational experiments. Furthermore,
10 famous FJSP instances were used to provide comparisons
with other state-of-the-art algorithms. To evaluate the per-
formance of the proposed algorithms, a MILP model was
used to provide optimal solutions or solution bounds. The
experiments with the GA and FA shows that both are pos-
sible approach for the considered problem.
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