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Abstract A point interpolation method (PIM) with conti-

nuous strain field (PIM-CS) is developed for mechanics

problems using triangular background mesh, in which PIM

shape functions are used to construct both displacement and

strain fields. The strain field constructed is continuous in

the entire problem domain, which is achieved by simple

linear interpolations using locally smoothed strains around

the nodes and points required for the interpolation. A general

parameterized functional with a real adjustable parameter α

are then proposed for establishing PIM-CS models of special

property. We prove theoretically that the PIM-CS has an

excellent bound property: strain energy obtained using PIM-

CS lies in between those of the compatible FEM and NS-PIM

models of the same mesh. Techniques and procedures are

then presented to compute the upper and lower bound solu-

tions using the PIM-CS. It is discovered that an extended

Galerkin (x-Galerkin) model, as special case resulted from

the extended parameterized functional withα = 1, is outstan-
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ding in terms of both performance and efficiency. Intensive

numerical studies show that upper and lower bound solu-

tions can always be obtained, there exist α values at which

the solutions of PIM-CS are of superconvergence, and the

x-Galerkin model is capable of producing superconvergent

solutions of ultra accuracy that is about 10 times that of the

FEM using the same mesh.

Keywords Finite element method · Meshfree methods ·
Point interpolation method · Solution bound ·
Superconvergence · x-Galerkin weak form

1 Introduction

To solve engineering problems, powerful numerical methods

have been developed, such as the Finite Element Methods

(FEM) [1–4], Finite Difference Methods [5,6], Finite Volume

Methods (FVM) [7,8], and recently Meshfree Methods

[9–28]. These methods and techniques not only provide solu-

tion tools for many engineering problems, but also extend

our minds in the quest for even more effective and robust

computational methods.

The FEM is the most widely used reliable numerical

approach for engineering problems. However, there are three

major shortcomings. The first is the “overly stiff” phenome-

non of a fully compatible FEM model; the second concerns

with the mesh distortion related problems such as the signi-

ficant accuracy loss when the element mesh is heavily dis-

torted; the third is the poor accuracy in the stress solution.

The fully compatible FEM based on the standard Galerkin

weak form can usually produce a lower bound in energy

norm of the exact solution to the elasticity problems (with

homogenous Dirichlet boundary conditions) [1,2]. Although

an FEM model based on the complementary energy principles
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can produce upper bound solutions, such a model is much

more difficult to establish for complicated practical enginee-

ring problems, and there exists the so-called spurious modes

resulting in difficulties in solving dynamic problems [29,30].

Therefore, it is much more difficult to bound the solution

from above.

In the past several decades, many efforts have been made in

solving these shortcomings of fully compatible FEM models

[31]. Recently, Liu et al. developed some schemes to provide

some softening effects to system for solutions of high conver-

gence and accuracy, such as the α−FEM [32], cell-based

smoothed FEM (SFEM) [33–38] , node-based smoothed

FEM (NS-FEM) [39], node-based smoothed point interpola-

tion method (NS-PIM) [40] and edged-based smoothed FEM

(ES-FEM) [41]. Nguyen et al. investigated further the pro-

perties of SFEM and extended applications [42–44]. These

methods introduce the strain smoothing operations [45] and

point interpolation method into FEM procedures, and worked

very effectively for various problems in science and engi-

neering [46–51]. Liu [29] have recently presented a theo-

retical framework for those methods, where G spaces are

established for accommodating discontinuous functions and

hence different techniques for function approximation (such

as PIM [40] and RPIM [48]) with various ways for smoothing

operations. This new theory based on G spaces provides a

new foundation for developing a wide class of new efficient

computational methods, such as the meshfree methods of

smoothed PIM family and the smoothed FEM family.

When the node-based strain smoothing operations are

used, the NS-PIM provides an upper bound solution of the

exact solution in energy norm for general elasticity problems

(with homogenous essential boundary conditions). The

detailed discussions and theoretical analysis on the bound

properties and convergence for NS-PIM can be found in Refs.

[30,49]. It has been shown that the node-based smoothing

operation can produces a model that is sufficiently “softer”

than the real solids, and hence can offer an upper bound

to the exact solutions. The important point is that the fully

compatible FEM and the node-based smoothed PIM play

complementary roles in the numerical solution bounds, and

hence we have now a general way to bound the solution

from the both sides of the exact solution using a usual FEM

mesh. This technique has also been extended to establish real-

time computational model with bounds for inverse problems

[52,53].

Note that the strain field in an NS-PIM is constant in each

smoothing domain, and hence is a zero order approximation

of the compatible strain field. To provide a better approxi-

mation for the strain field, this work constructs a continuous

piecewisely linear strain field using the PIM shape func-

tions and the strain smoothing technique. The PIM-CS is

equipped with a real adjustable parameter α for solutions of

superconvergence. It is proven that the PIM-CS can produce

either a “softer” or a “stiffer” stiffness matrix than that of

real model, and hence provide an upper or lower bound to

the exact solution in the energy norm, as desired. It is also

possible for PIM-CS to produce a solution that is almost the

“exact” solution using a finite number of triangular cells. It is

discovered that an extended Galerkin (x-Galerkin) model, as

special case resulted from the extended parameterized func-

tional with α = 1, is outstanding in terms of both perfor-

mance and efficiency. It is capable of producing supercon-

vergent solutions of ultra accuracy that is about 10 times that

of the FEM using the same mesh.

The paper is outlined as follows. Section 2 briefs the linear

elasticity, and Sect. 3 gives a briefing on NS-PIM. The idea

of the PIM-CS is presented in Sect. 4. The convergence and

bound properties of the PIM-CS are presented and theore-

tically proven in Sect. 5. In Sect. 6, the unique supercon-

vergent properties of the PIM-CS are discussed. In Sect. 7,

numerical examples are presented and discussed to verify

the theorems and properties of the PIM-CS. Conclusions are

drawn in Sect. 8.

2 Brief on basic equations of linearity elasticity

Consider a 2D static elasticity problem governed by the equi-

librium equation in the domain � bounded by Ŵ(Ŵ = Ŵu +
Ŵt , Ŵu ∩ Ŵt = 0) as

LT
d σ + b = 0 in � (1)

where Ld is a matrix of differential operators defined as

Ld =
[ ∂

∂x1
0 ∂

∂x2

0 ∂
∂x2

∂
∂x1

]T

(2)

σ
T = (σ11, σ22, σ12) is the vector of stresses, bT = (b1, b2)

is the vector of body forces. The stresses relate the strains via

the generalized Hook’s law:

σ = Dε (3)

where D is the matrix of material constants [54], and ε
T =

(ε11, ε22, γ12) (with γ12 = 2ε12) is the vector of strains given

by

ε = Ldu (4)

Essential boundary conditions are:

u = u0 on Ŵu (5)

where uT = (u1, u2) is the vector of the displacement and u0

is the vector of the prescribed displacements on the essential

boundary Ŵu. In this paper, we consider only homogenous

essential boundary conditions u0 = 0.
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Natural boundary conditions are:

LT
n σ = T on Ŵt (6)

where T is the vector of the prescribed tractions on the natural

boundary Ŵt, and Ln is the matrix of unit outward normal

which can be expressed as

Ln =
[

nx1 0 nx2

0 nx2 nx1

]T

(7)

3 Briefing on the NS-PIM (or LC-PIM) [40]

In the node-based smoothed PIM (NS-PIM), the problem

domain is first discretized by a set of background triangular

cells as shown in Fig. 1. The total number of nodes, cells, and

edges in the problem domain are denoted as Nn , Nc and Ne,

respectively. The displacements in a cell are approximated

using PIM shape functions:

u(x) =
∑

i∈ne

Φi (x)di (8)

where ne is the set of nodes of the local support domain

containing x which is in general beyond the cell, di is a

vector of displacements at this set of nodes, and

Φi (x) =
[

ϕi (x) 0

0 ϕi (x)

]

(9)

is the matrix of the shape function for node i which is

constructed generally using the PIM procedure and hence

is of Delta function property.

k
kΩ

kΓ I

J

P

Field node ( qk, ); Mid-edge-point ( P );  

Centroid of triangle ( JI , )

q

Fig. 1 Triangular elements and the smoothing cells created by

sequentially connecting the centroids with the mid-edge-points of the

surrounding triangles of a node

In carrying out the numerical integration with proper

smoothing operations, the problem domain � is divided into

smoothing domains �k containing node k, as shown in Fig. 1.

The smoothing domain �k is constructed using a triangular

element mesh by connecting sequentially the mid-edge-point

P to the centroids I of the triangles. The boundary of �k is

labeled as Ŵk and the union of all �k forms � exactly.

NS-PIM uses constant strain for each of the smoothing

domain defined by [45]

εk ≡ ε(xk) = 1

Ak

∫

�k

ε̃(x)d� (10)

where Ak =
∫

�k
d� is the area of smoothing domain for

node k, and ε̃(x) = Ldu is the compatible strain.

As the NS-PIM is variationally consistent when the solu-

tion is sought from a Hilbert space [29] and the convergence

is ensured when the solution is in a G space [55]. The assu-

med displacement u and the corresponding assumed strains ε

satisfies the generalized smoothed Galerkin weak form [29]

∫

�

δεT(u)Dε(u)d� −
∫

�

δuTbd� −
∫

Ŵt

δuTTdŴ = 0 (11)

Substituting Eqs. (8) and (10) into Eq. (11) yields the discre-

tized system equation:

K d = f, (12)

where

K =
N
∑

k=1

K
(k)

i j =
N
∑

k=1

∫

�k

B
T

i (xk)DB
T

j (xk)d� (13)

f i =
∫

Ŵt


i TdŴ +
∫

�


i bd� (14)

4 The idea of the PIM-CS

4.1 Choice of the shape functions

In the PIM-CS, the point interpolation method (PIM) is used

to construct shape functions using a small set of nodes dis-

tributed in a local support domain. As the triangular cells

can be generated automatically [17], background cells of tri-

angles are employed in the present PIM-CS to select nodes

for both shape function and strain field constructions. The

details on the construction and detailed distribution of the

PIM shape function can be found in Refs. [17,40]. Using
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PIM shape functions, the displacement field in the PIM-CS

can be approximated as follows.

û(x) =
∑

i∈ne

Φi (x)d̂i (15)

where ne is the set of nodes in the support domain containing

x, d̂i is the vector of nodal displacements and

Φi (x) =
[

ϕi (x) 0

0 ϕi (x)

]

(16)

is the matrix of the PIM shape functions for node i .

The procedure for the shape function construction of PIM-

CS is simple and possesses the following features: (1) it uses

local supporting nodes selected based on triangular cells,

which overcomes the singular moment matrix issue, gua-

rantees the linearly independence of these shape functions,

and ensures the efficiency in computing PIM shape function;

(2) shape functions generated using polynomial basis func-

tions with at least linear terms ensure that the PIM shape

functions possess at least linearly consistency; (3) the shape

functions are of the Delta function property, which facilitates

easy implementation of essential boundary conditions; and

(4) the shape functions are linearly independent and form a

basis for field function construction.

4.2 Construction for continuous strain field

In the present PIM-CS, a �k shown in Fig. 1 is further divi-

ded into M sub-domains �k,1, �k,2, . . ., �k,M . This is done

by connecting node k to the centroids of the surrounding

triangles, as shown in Fig. 2.

The PIM-CS assumes that strain ε̂ at any points within a

sub-triangular domain �k,i (k = 1, . . . , N , i = 1, . . . , M)

are obtained by simple linear point interpolation:

ε̂(x) = L1(x)εk + L2(x)εP + L3(x)εI (17)

P

J

I

k

q

...

ik ,Ω

iq,Ω

kΩ

qΩ

k ,1
k ,2 Ω

Ω

1, +Ω ik

Fig. 2 Illustration of triangular sub-domains �k,i within domain �k

that is adjacent to �q

where L1, L2, L3 is the area coordinates for �k,i ; εk, εP , εI

are the strains at the vertices of sub-triangular �k,i : node k,

midpointPof a cell-edge and centriod I of �k,i . These strains

are then assumed to be the averaged strains in the smoothing

domains containing the vertices using the strain smoothing

operation [45].

ε ≡ 1

A

∫

�A

ε̃(x)dξ (18)

where ε̃(x) = Ldû(x) is the compatible strain, �A represents

the smoothing domain of a interested point, A is the area of

smoothing domain �A.

The smoothing domain �A is usually a localized sub-

domain in the vicinity of the interested point x, and changes

with point x. Hence, it can be different from that of other

points and can be generally overlapping. The issue now is

how to form the smoothing domain for a given point. In

this work, we follow the compact principle suggested in

the gradient smoothing method (GSM [56,57]): the smoo-

thing domain of a point should be as compact as possible

containing the point. Based on the locations of these points

k, I and P , we form three types of smoothing domains as

shown in Fig. 3. The first type of smoothing domain �k is the

node-associated gradient smoothing domain (nGSD) for the

approximation of strain εk at node k. It is formed by connec-

ting sequentially centroids of triangles with midpoints of rele-

vant cell-edges. The second type of smoothing domain �I is

formed by a background triangular cell for approximating εI

at the centroid of the cell. It is called centroid-associated gra-

dient smoothed domain (cGSD). The third type of smoothing

domain �P is named midpoint-associated gradient smoothed

domain (mGSD) used for the evaluation of the strain εP at

the midpoint of a cell-edge. The mGSD is formed by connec-

ting the end-nodes of the cell-edge with the centroids of the

triangles on the both sides of the cell-edge.

4.3 Strain construction schemes

Using Eq. (18), the strains εk, εP , εI can now be evaluated

as the averaged strains in smoothing domains �k, �P , �I ,

respectively.

(1) The strain εI at centriod of a triangular cell is given by

εI = ⌢
ε I ≡ 1

AI

∫

�I

Ldû(x) d�, (19)

(2) The strain εP is the smoothed strain over the edge-based

smoothed domain �P
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J

k

q

ik ,

iq,Ω

kΩ

1,k
2,k

1, +ik

J

k

q

ik ,

iq,Ω

IΩ

1,kΩ2,k

1, +ik

J

I

k

q

ik ,

iq,Ω

PΩ

1,kΩ2,kΩ

1, +ik

P

J

I

k

q

ik ,

iq,Ω

kPΩ

1,kΩ2,kΩ

1, +ik

nGSD ( kΩ ) cGSD ( IΩ );       mGSD ( PΩ );    kPΩ

Fig. 3 Illustration of types of smoothing domains for the evaluation of the strains at points k, I and P

εP = ⌣
εP ≡ 1

AP

∫

�P

Ldû(x) d�, (20)

(3) The strain εk at a node is the smoothed strain in smoo-

thing domain �k

εk = εk ≡ 1

Ak

∫

�k

Ldû(x) d�, (21)

where AI , AP andAkare the areas of the domain �I ,

�P and �k , respectively.

The strain obtained using Eqs. (17), (19)–(21) is therefore

continuous in the entire problem domain �. To explain this,

consider two adjacent node domains �k and �q as shown in

Fig. 2. The interface edges of these two domains are the edge

I − P − J . As the linear interpolation Eq. (17) is used for

strain evaluation, Eqs. (19) and (20) show that the strains at

edge I − P− J for domain �k are the same as that for domain

�q . The similar situation occurs for the strains at edges k − I

and k − P . Therefore, the strain field is continuous in the

entire problem domain �.

The overall procedure of strain field construction in the

PIM-CS is as follows. The displacement at any point in a tri-

angular cell is first approximated via point interpolation using

Eq. (15). The strains at points k, I and Pare then evalua-

ted using Eqs. (19)–(21). The strain field is next constructed

using again point interpolation using Eq. (17). Therefore, the

strain depends entirely on the assumed displacement field,

no additional degrees of freedoms are introduced, and the

dimension of the discretized system equation in our PIM-CS

model will be exactly the same as the FEM model of the same

mesh.

Note that in the NS-PIM, the assumed strain is constant

in each node-based smoothed domain �k , it thus takes into

account of only the averaged strain in the smoothing domain

of node k. The difference in strain gradient in the individual

triangular sub-domains �k,i is ignored. In the FEM, on the

other hand, the strain in each individual sub-domain is obtai-

ned using ε̃ = Ldũ, which counts fully the compatible strain

field in �k,i but does not consider the overall strain varia-

tions in �k . The PIM-CS considers not only the averaged
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feature in strain field over �k , but also the local effects of

�k,i . Hence, it is expected to have excellent properties.

We state now the following theorem for later use.

Theorem 1 (Equivalence for norms of assumed and compa-

tible strain fields) In the PIM-CS settings detailed in Sect. 4.3,

there exists a non-zero positive constant cac such that

∥
∥ε̂(w)

∥
∥

0
≤ cac ‖ε̃(w)‖0 , (22)

and equivalently there exists a non-zero positive constant cca

such that

‖ε̃(w)‖0 ≤ cca

∥
∥ε̂(w)

∥
∥

0
. (23)

which means that the norm
∥
∥ε̂(w)

∥
∥

0
is equivalent to norm

‖ε̃(w)‖0.

Proof For simplicity in expressions, we first denote the

strains at vertices of the sub-domain �k, i as:

ε̂1 = εk, ε̂2 = ⌣
εP , ε̂3 = ⌢

ε I (24)

Using Eq. (17), the strain in each of sub-domains �k,i can

now be written in a more concise form of

ε̂(x) =
3
∑

γ=1

Lγ (x)ε̂γ . (25)

From Eq. (17) and Eq. (36), we have

∥
∥ε̂(w)

∥
∥

2

0
=

N
∑

k=1

M
∑

i=1

∫

�k, i

3
∑

β=1

[Lβ ε̂
T
β(w)]

3
∑

γ=1

[Lγ ε̂γ (w)] d�

=
N
∑

k=1

M
∑

i=1

3
∑

β, γ=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε̂
T
β(w) ε̂γ (w)

∫

�k, i

Lβ Lγ d�

︸ ︷︷ ︸

ηβγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
N
∑

k=1

M
∑

i=1

3
∑

β, γ=1

[ηβγ ε̂
T
β(w) ε̂γ (w)] (26)

where ηβγ =
∫

�k, i
Lβ Lγ d� > 0. Substituting Eq. (18)

into (26) yields

∥
∥ε̂(w)

∥
∥

2

0

=

∣
∣
∣
∣
∣
∣
∣

N
∑

k=1

M
∑

i=1

3
∑

β,γ=1

ηβγ

⎡

⎢
⎣

1

Aγ

1

Aβ

∫

�γ

ε̃
T(w)dξ

∫

�β

ε̃(w)dξ

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

.

(27)

Applying for the triangular and Cauchy-Schwartz inequali-

ties, we have

∥
∥ε̂(w)

∥
∥

2

0
≤

N
∑

k=1

M
∑

i=1

3
∑

β,γ=1

ηβγ

×

⎡

⎢
⎣

1

Aγ

1

Aβ

∫

�γ

‖ε̃(w)‖0dξ ·
∫

�β

‖ε̃(w) ‖0 dξ

⎤

⎥
⎦

≤
N
∑

k=1

M
∑

i=1

3
∑

β,γ=1

ηβγ

[

‖ε̃(w)‖0 ‖ε̃(w)‖0

]

≤ ηmax
N
∑

k=1

M
∑

i=1

[

‖ ε̃(w)‖0 ‖ε̃(w)‖0

]

= ηmax ‖ε̃(w)‖2
0 (28)

where ηmax = max
k, i

(ηβγ ). Letting cac = √
ηmax we hence

have Eq. (22).

On the other hand, if
∥
∥ε̂(w)

∥
∥

0
= 0, then ε̂(w) must be

zero in all the sub-domain �k, i , which indicates that all the

εk, εP , εI in all �k, i have to be zero, because of the linearly

independence of L1, L2, and L3 for each �k, i . Therefore, the

total strain sampling points in the problem domain become

Ns = Nc+Ne+Nn , and the independent number of (energy)

equations becomes 3Ns (one equation per strain component),

that is far larger than total number of nodal degree of free-

doms (DOFs) for any possible meshing of the domain, that is

2Nn (two displacement DOFs per node). Due to the indepen-

dence of the strain matrix obtained from the linearly inde-

pendent PIM shape functions, the only possibility for all these

εk, εP , εI being zero in the entire problem domain is that

all the nodal displacements must be zero [29], and thus the

compatible strain ε̃ must be zero everywhere, which result

in ‖ε̃(w)‖0 = 0. This means that
∥
∥ε̂(w)

∥
∥

0
= 0 will sur-

ely lead to ‖ε̃(w)‖0 = 0. Furthermore, if
∥
∥ε̂(w)

∥
∥

0
> 0,

then ε̂(w) will be non-zero in at least one sub-domain �k, i .

Using Eq. (18), we know that any non-zero smoothed strain

implies an existence of non-zero compatible strains in at least

one of the triangular cells connected to �k, i , which results

in ‖ε̃(w)‖0 > 0. Therefore, there always exists a non-zero

positive content cca such that Eq. (23) holds. This completes

the proof of Theorem 1. ⊓⊔

5 Variational principle for PIM-CS

Displacement-based FEM models are formulated based on

the standard Galerkin weak form that demands the assu-

med displacement field with full compatibility. The element

behaves generally overly stiff, especially when a triangu-

lar mesh is used. To formulating PIM-CS, we need first to

123



Comput Mech (2009) 43:651–673 657

construct a general parameterized mixed functional for our

variational formulation.

5.1 A general parameterized mixed energy functional

A general parameterized mixed energy functional is defined

as

�̂(v) =
∫

�

[αUEG + (1−α)UH R−vTb]d�−
∫

Ŵt

vTTdŴ,

(29)

where the following two energy functionals are mixed

together.

UEG = 1

2
ε̂

T
(v)Dε̂(v), (30)

UH R = −1

2
ε̂

T
(v)Dε̂(v) + ε̂

T
(v)Dε̃(v), (31)

and α is an adjustable parameter that controls the mixture and

is generalized here to a finite real number: α ∈ (−∞,+∞).

This generalization gives us much needed more rooms for

exploring possible PIM-CS models of excellent properties.

Substituting Eqs. (17), (19)–(21) into (29), and invoking

the stationary condition of Eq. (29), lead to the discretized

system equations in the following matrix form.

K̂d̂ = f̂, (32)

where

f̂ = −
∫

�

Φ
Tbd� +

∫

Ŵt

Φ
TTdŴ (33)

and K̂ is the stiffness matrix and will be given in details later.

5.2 Special PIM-CS schemes: x-Galerkin formulation

We can now obtain different schemes by adjusting α:

Scheme 1: when α = 0, Eq. (29) is the energy functional

used in the standard Hellinger- Reissner varia-

tional principle [58].

Scheme 2: when α = 1, Eq. (29) becomes the following

new energy functional

�Ext (v) =
∫

�

1

2
ε̂

T
(v)Dε̂(v)� −

∫

�

vTbd� −
∫

Ŵt

vTTdŴ,

(34)

which is termed as the extended Galerkin (x-Galerkin) func-

tional in this paper. We will see later some superior pro-

perties of the x-Galerkin model built using this functional.

For now, we need to examine the viability of the x-Galerkin

formulation.

Note that the orthogonal condition
∫

�

ε̂
T
(v)Dε̂(v)d� =

∫

�

ε̂
T
(v)Dε̃(v)d� (35)

is not generally satisfied by the assumed strain fields in the

present PIM-CS. When the x-Galerkin functional is used, this

model is not in general variationally consistent. This is the

major difference between the x-Galerkin weak form and the

so-called generalized smoothed Galerkin weak form given in

Eq. (11). The latter is always variationally consistent if the

solution is sought in a Hilbert space as proven by Liu et al.

[30]. Therefore, we have to prove the convergence for our new

x-Galerkin model. Note that the proofs given in this paper

is only for functions in H spaces, as the proofs for functions

in G spaces are much more involved and need much more

detailed analysis, as shown in [55].

5.3 Convergence proof of the x-Galerkin formulation

Let w = (w1, w2)
T and v = (v1, v2)

T be vector functions of

two component functions. The inner product and the asso-

ciate norm of vectors is defined as

(w, v)0 =
∫

�

wTv d�, ‖v‖0 = [(v, v)0]1/2 (36)

and

(w, v)1 = (∇w,∇v)0 + (w, v)0, ‖v‖1 = [(v, v)1]
1/2 (37)

where

∇v =
[

∂v1/∂x1 ∂v1/∂x2

∂v2/∂x1 ∂v2/∂x2

]

, (38)

and

(∇w, ∇v)0 =
2
∑

i=1

2
∑

j=1

[
∂wi

∂x j

∂vi

∂x j

]

. (39)

Therefore, the weak formulation of Eq. (1) through (6) is

to find a w ∈ Vh ⊂ V where V =
{

v ∈ H1(�): v|Ŵu
= 0
}

and H1(�) is a Hilbert space, such that

a(w, v) = (b, v)0 +
∫

Ŵt

vTT dŴ, ∀v ∈ Vh, (40)

where Vh is a subspace of finite dimension in a Hilbert space.

The bilinear form a is defined as

a(w, v) =
∫

�

ε̂
T
(w) D ε̂(v) d� (41)

in which ε̂ is defined by Eq. (17).
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Theorem 2 (existence and uniqueness Theorem) Let � be a

domain with piecewise smoothing boundary, and suppose Ŵu

has positive two-dimensional measure. Then the variational

problem (40) of linear elasticity for stable solids has exactly

one solution.

Proof It is seen that the bilinear form (41) is symmetric for

the symmetry of the elastic constants. From Eq. (41) we have

a(w, w) =
∫

�

ε̂
T
(w) Dε̂(w) d�

=
∫

�

ε̂
T
(w) UT

ΛU
︸ ︷︷ ︸

D

ε̂(w) d�

=
∫

�

[Uε̂(w)]T
Λ[Uε̂(w)] d�

≤ λmax

∫

�

[Uε̂(w)]T[Uε̂(w)] d�

= λmax

∫

�

ε̂
T
(w) UTU ε(w) d�

= λmax

∥
∥ε̂(w)

∥
∥

2

0
≤ λmaxcac ‖ε̃(w)‖2

0 (42)

where λmax is the maximum of eigenvalues for elasticity

constant matrix D.

In deriving of Eq. (42), we have used (1) the solid is stable

and hence the elasticity constant matrix is symmetric posi-

tive definite and can always be decomposed into orthogonal

matrix U and diagonal matrix Λ of positive eigenvalues; (2)

norm preserving property of orthogonal matrix U; (3) the

strain norm equivalence: Eq. (22).

On the other hand, using Eq. (4) we have

‖ε̃(v)‖2
0 =(ε̃, ε̃)0 =

[
∂v1

∂x1

]2

+
[
∂v2

∂x2

]2

+
[
∂v1

∂x2
+∂v2

∂x1

]2

, (43)

|v|21 ≡‖∇v‖2
0 =
[
∂v1

∂x1

]2

+
[
∂v2

∂x2

]

+
[
∂v1

∂x2

]2

+
[
∂v2

∂x1

]2

, (44)

where |v|1 represents the semi-norm of vector v. Eq. (43) and

Eq. (44) gives

1

2
‖ε̃(v)‖2

0 ≤ |v|21 ≤ 2 ‖ε̃(v)‖2
0 , (45)

which indicates that the semi norm |v| of the compatible

strains is equivalent to norm ‖ε̃(v)‖0. Therefore, there exists

a constant cε such that |v|1 = cε ‖ε̃(v)‖0.

In addition, from Eq. (37), we can obtain that

‖v‖1 = |v|1 + ‖v‖0 . (46)

Therefore, we have

|v|1 = cε ‖ε̃(v)‖0 ≤ ‖v‖1 , (47)

or

‖ε̃(v)‖0 ≤ 1

cε

‖v‖1 . (48)

Hence, from Eq. (42) and Eq. (48) we have

|a(w, v)| ≤ cU ‖w‖1 ‖v‖1 , (49)

where cU = λmaxcac/c2
ε is a constant independent of w and v.

Eq. (49) indicates the bilinear weak form a(w, v) is boun-

ded and hence the x-Galerkin formulation using a(w, v) will

be stable.

On the other hand, in a similar way for deriving Eq. (42),

we have

a(w, w) ≥ λmincca ‖ε̃(w)‖2
0 , (50)

where λmin is the smallest eigenvalue of elasticity constant

matrix D.

Note that the Korn’s inequality [3] shows that there exist

a constant cK > 0 such that

‖ε̃(w)‖0 ≥ cK ‖w‖1 . (51)

Hence, Eq. (50) and (51) arrive at

a(w, w) ≥ cL ‖w‖2
1 (52)

where cL = λminccac2
K is a constant independent of displa-

cement w.

Note that the above proof is similar to that in [55]. By

the Lax-Milgram Theorem [3,4], we complete the proof of

Theorem 1. ⊓⊔

When the dimension of the cells approaches to zero, the

smoothing strain at a point will approach to compatible strain

at that point, and hence the entire constructed strain field will

approach to that of the exact strain field. With the existence

and uniqueness provided by Theorem 1, we can now have

the following Corollary.

Corollary 1 (Convergence) The solution obtained from the

PIM-CS based on the x-Galerkin weak form is convergent to

the exact solutions of original strong form when the dimen-

sion of the cells approaches zero.

Equations (49) and (52) give cL ‖w‖2
1 ≤ |a(w, w)| ≤

cU ‖w‖2
1 which indicates that the strain energy from PIM-CS

solution is bounded from both sides. Therefore, the conver-

gence properties of the x-Galerkin model are determined by

those two constants which depend on the choices of smoo-

thing domains.

Corollary 2 Theorem 1 and its proof procedure show that

the smoothing domain for a point can be chosen as desired for

various purposes, and it is not limited only to the smoothing

domains detailed in Sect. 4.2. Thoughtfully chosen smoo-

thing domains can give solutions with the high accuracy and

convergence rates. The key is that strain energy norm for the

assumed strain field must be equivalent to that of the compa-

tible strain field.
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5.4 Bound property of strain energy potential for the

PIM-CS

Now that we have confirmed both Scheme 1 (α = 0) and

Scheme 2 (α = 1) given in Sect. 4.3 will produce solutions

that converge to the exact solution of the original strong form.

Both UEG and UH R defined in Eqs. (30) and (31) are thus

bounded: U min
EG ≤ UEG ≤ U max

EG and U min
H R ≤ UH R ≤ U max

H R ,

which implies that

Umin ≤ αUEG+(1−α)UH R ≤ Umax, when 0≤α≤1, (53)

where Umin = min(U min
EG , U min

H R ) and Umax = max(U max
EG ,

U max
H R ). Therefore, we can now assert that the solution of

PIM-CS based on Eq. (29) is convergent if 0 ≤ α ≤ 1.

However, when we generalize α to a finite real number, we

need to establish the following theorem.

Theorem 3 (Generalization of α) For any finite real number

α ∈ (−∞,+∞) the PIM-CS solution based on extended

parameterized functional (29) converges to the exact solu-

tion of original strong form, when the dimensions of all the

background cells approach to zero.

Proof Equation (29) can be re-written as

�̂(v) =
∫

�

{
1

2
ε̂

T
(v)Dε̂(v) + (1 − α)

[

ε̂
T
(v)Dε̃(v)

− ε̂
T
(v)Dε̂(v)

]

− vTb
}

d� −
∫

Ŵt

vTTdŴ (54)

When the dimensions of all the background cells approach

to zero, the locally smoothed strains at these vertices of each

of the triangular subdomains �k,i will approach to the com-

patible strain ε̃ and thus
∫

�

[ε̂T
(v)Dε̃(v) − ε̂

T
(v)Dε̂(v)]d� → 0. (55)

At this limit, Eq. (55) becomes simply the proven

x-Galerkin formulation. This completes the proof of

Theorem 2. ⊓⊔

Theorem 3 ensures that PIM-CS solution will converge

for any finite real number α ∈ (−∞,+∞). In other words,

the convergence of PIM-CS is independent of α. However,

the convergence rate and bound properties are effected by

the choice of α, and therefore we do not usually want to use

a too big α. An ideal α is that can give us the exact solution

in energy norm, but it can be expensive to obtain. An often

preferred α is that can produce a solution very close to the

exact solution, or gives us a “tight” solution bounds, which

is further stated in the following theorem.

Theorem 4 (Bound properties) For any assumed linear dis-

placement field v in a Hilbert space, the strains at any point

within �k,i are obtained using Eq. (17); and Eq. (29) is used

to produce the discretized system equation. Then, there exists

an α0 ∈ [− 3
2
,− 1

2
] and an α1 ∈ [ 3

2
, 5

2
] such that

(1) U (v) ≤ Û (v) ≤ Ũ (v), when α ∈ [α0, α1];
(2) Û (v) = U (v), when α = α1;

(3) Û (v) = Ũ (v), when α = α0;

where Û (v) is the strain energy obtained using the PIM-CS

assumed strain field:

Û (v) =
N
∑

k=1

M
∑

i=1

⎧

⎪
⎨

⎪
⎩

1

2

∫

�k,i

ε̂
T
k,i (v)Dε̂k,i (v)d�

+ (1−α)

∫

�k,i

ε̂
T
k,i (v)D

[

ε̃k,i (v)−ε̂k,i (v)
]

d�

⎫

⎪
⎬

⎪
⎭

, (56)

Ũ (v) is the strain energy of the compatible strain field of the

FEM model:

Ũ (v) =
N
∑

k=1

M
∑

i=1

1

2

∫

�k,i

ε̃
T
k,i (v)Dε̃k,i (v)d� (57)

and U (v) is the strain energy of the smoothed strain field of

the NS-PIM model:

U (v) =
N
∑

k=1

1

2

∫

�k

ε
T
k (v)Dεk(v)d� (58)

Proof When the linear interpolation for the displacement

field is used, the compatible strain Ldv is constant in each

of the background triangles. Hence, the strain εI in Eq. (19)

is in fact the compatible strain, because the smoothing over

a constant field will have no effect. Furthermore, the strains
⌣
εP from (20) in sub-triangular domain �k,i can be written

as

⌣
εk P, i = 1

Ak P, i

∫

�k P, i

Ldû(x) d�, (59)

in which �k P,i = �k,2i−1 + �k,2i , i = 1, 2, . . . , M/2 (see

Figs. 2, 3).

To evaluate the strain energy in the entire problem domain,

we define

ωk, i ≡
∫

�k,i
ε̂

T
k, i (v)Dε̂k, i (v) d�,

πk, i ≡
∫

�k, i
ε̂

T
k, i (v)Dε̃k, i (v)d�.

(60)

Note that the strain at any point within the sub-domain

�k,i can be written as

ε̂k, i = L1(x)εk + L2(x)
⌣
εk P, i + L3(x)ε̃k, i , (61)

where εk ,
⌣
εk P, i and ε̃k, i are defined by Eqs. (19)–(21).
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Using Eq. (61), we have

ωk, i =
∫

�k, i

3
∑

β=1

[Lβ(x)ek,β ]TD

3
∑

γ=1

[Lγ (x)ek,γ ] d�

=
3
∑

β,γ=1

eT
k,βDek,γ

∫

�k, i

Lβ(x)Lγ (x)d� (62)

and

ωk,i+1 =
∫

�k, i+1

3
∑

β=1

[Lβ(x)κk,β ]TD

3
∑

γ=1

[Lγ (x)κk,γ ] d�

=
3
∑

β,γ=1

κT
k,βDκk,γ

∫

�k, i+1

Lβ(x)Lγ (x)d� (63)

where ek,1 = εk , ek,2 = ⌣
εk P, i , ek,3 = ⌢

εk, i , κk,1 = εk ,

κk,2 =⌣
εk P, i+1 and κk,3 =⌢

εk, i+1.

Using the formula [2,59]

∫

A

L
p
1 L

q
2 Lr

3dA = p!q!r !
(p + q + r + 2)!2A, (64)

we have

M−1
∑

i=1,3,...

[

ωk, i + ωk, i+1

]

=
M−1
∑

i=1,3,...

3
∑

β,γ=1

⎡

⎢
⎣eT

k,βDek,γ

∫

�k, i

Lβ(x)Lγ (x)d�

(65)

+ κT
k,βDκk,γ

∫

�k, i+1

Lβ(x)Lγ (x)d�

⎤

⎥
⎦

= 1

6

[

3�(v) + 2
⌣

�(v) + �̃(v)
]

where �(v) = Akε
T
k Dεk ,

⌣

�(v) =
∑M/2

i=1

Ak P, i
⌣
ε

T

k P, i D
⌣
εk P, i , and �̃(v) =

∑M
i=1 Ak, i ε̃

T
k, i Dε̃k, i .

Similarly, we have

M−1
∑

i=1,3,...

(πk, i + πk, i+1) = 1

3

[

�(v) +
⌣

�(v) + �̃(v)
]

. (66)

Substituting Eqs. (65), (66) into (56) yields,

Ûk(v) = 1

12

[

(2α+1)�(v)+2
⌣

�(v)+(3−2α)�̃(v)
]

. (67)

In addition, the positivity of D gives
∫

�k

(εk − ε̃k, i )
TD(εk − ε̃k, i )d�

=
M
∑

i=1

∫

�k, i

(εk − ε̃k, i )
TD(εk − ε̃k, i )d�

=
M
∑

i=1

[

Ak, iε
T
k Dεk − 2Ak, iε

T
k Dε̃k, i + Ak, i ε̃

T
k, i Dε̃k, i

]

= −Akε
T
k Dεk +

M
∑

i=1

Ak, i ε̃
T
k, i Dε̃k, i ≥ 0 (68)

and thus

M
∑

i=1

Ak, i ε̃
T
k, i Dε̃k, i ≥ Akε

T
k Dεk . (69)

Similarly, we have

M
∑

i=1

Ak,i ε̃
T
k,i Dε̃k,i ≥

M/2
∑

i=1

Ak P,i
⌣
ε

T

k P,i D
⌣
εk P,i ≥ Akε

T
k Dεk, (70)

or

�̃ ≥
⌣

� ≥ �. (71)

It follows from Eq. (67) that

N
∑

k=1

[

Ûk(v) − 1

2

M
∑

i=1

Ak, i ε̃
T
k, i Dε̃k, i

]

= 1

12

N
∑

k=1

[

(2α + 1)�(v)−(2α+3)�̃(v)+2
⌣

�(v)
]

(72)

Substituting (71) into (72) gives Û (v) ≤ Ũ (v) when α ≥
− 1

2
, and Û (v) ≥ Ũ (v) whenα ≤ − 3

2
. Hence, there exist

an α0 ∈ [− 3
2
,− 1

2
] such that Û (v) = Ũ (v) when α = α0,

which implies that the strain energy obtained from PIM-CS

is exactly the same as that of the FEM model.

Similarly, From Eq. (67) we also have

N
∑

k=1

[

Ûk(v) − 1

2
Akε

T
k Dεk

]

= 1

12

N
∑

k=1

[

(2α−5)�(v)+2
⌣

�(v)+(3−2α)�̃(v)
]

(73)

Substituting Eq. (71) into (73) gives Û (v) ≥ U (v)when

α ≤ 3
2

, and Û (v) ≤ U (v) whenα ≥ 5
2

. Therefore, there

exist an α1 ∈ [ 3
2
, 5

2
] such that Û (v) = U (v) when α = α1,

which implies that the strain energy obtained from PIM-CS

is exactly the same as that of the NS-PIM model. This com-

pletes the proof. ⊓⊔
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Theorem 3 shows that the strain energy obtained from the

PIM-CS model is exactly the same as that from NS-PIM and

FEM when α = α1 and α = α0, respectively. This leads to

the following Corollary.

Corollary 3 The PIM-CS produces the lower bound solution

in energy norm when α is near α0, and the upper bound

solution when α is near α1.

Substituting Eq. (67) into (29), and then the stationary

condition of (29) gives

K̂ = 1

12

N
∑

k=1

⎡

⎣(2α+1)AkB
T

k DBk+2

M/2
∑

i=1

Ak P,i

⌣

B
T

k P,i D
⌣

Bk P,i

+ (3 − 2α)

M
∑

i=1

Ak, i B̃
T
k, i DB̃k, i

]

, (74)

which results in the following Corollary:

Corollary 4 The stiffness matrix K̂ obtained from PIM-CS

is symmetric.

Corollary 5 When the conditions of Theorem 3 are satisfied

and the same mesh is used, the strain energy obtained using

the PIM-CS is no-less than that from the FEM solution based

on the standard Galerkin weak form, and no-larger than the

strain energy from the NS-PIM solution, namely: 1
2

d̃TK̃d̃ ≤
1
2

d̂TK̂d̂ ≤ 1
2

d
T

K d.

The proof of Corollary 5 is similar to that in [30,49], thus

is omitted.

Remark 1 It is clear from the proof process of Theorem 3

that when PIM shape functions with polynomial bases are

used, exact integration is readily available and no numerical

integration is needed.

The above theoretical analysis and discussions show that

the PIM-CS has the following features: (1) the distribution

of the strain ε̂ (thus stress σ̂ ) in PIM-CS is continuous in

the entire domain �; (2) PIM-CS can produce linear dis-

placement field exactly using a sufficient large interval for

α, and hence can pass the standard path test; (3) when 3-

node triangular mesh that can be generated automatically is

used, and no numerical integration is needed; (4) the stiff-

ness matrix for the PIM-CS is symmetric and of the same

size of the FEM model using the same mesh; (5) PIM-CS

can provide the upper bound and lower bound solution of

exact solution by adjusting parameter α; (6) there exists a

value of α ∈ (α0, α1) such that PIM-CS solution is ultra

accurate and of superconvergence.

6 Superconvergence of the PIM-CS

In the error analysis for FEM based on the minimum total

potential principle, the determination of the upper bound of

‖u−uh‖m is usually reduced to the estimation of‖u−�hu‖m

[60]. Based on the approximation theory, we have

‖u − �hu‖m ≤ Chn+1−m ‖u‖n+1 (75)

In general this estimate can not be improved even if the solu-

tion u possesses a higher smoothness. Therefore,

‖u − �hu‖m = O(hn+1−m) (76)

is the optimal order error estimate.

By “optimal” we mean that the rate of convergence cannot

be improved, and the rates are also called theoretical rates.

For linear FEM, the optimal theoretical rate is 2.0 for the

displacement norm, and 1.0 for the strain energy norm. It is

known, that this fact does not exclude the possibility that the

approximation of the derivatives may be of higher order accu-

racy at some special points, called superconvergence points.

This means that one can find points in the elements, where the

rate of convergence for the strain energy is more than 1.0 and

less than 2.0, and this is confirmed in FEM models [1,60].

However, for the displacement, the theoretical value of 2.0

still cannot be improved when the compatible strain field is

used to compute the stiffness matrix (fully compatible).

We will show in Sect. 7 that the SC-PIM has a special

superconvergent property that behaves very differently from

the fully compatible FEM models. The SC-PIM is equip-

ped with an adjustable parameter α. Both the displacement

field û(α) and strain field ε̂ = (û(α);α) are the functions

of α. Therefore, an adjustment on α can obviously influence

the accuracy and convergence of solutions in both displace-

ment and strain energy norms. When α is properly tuned,

the SC-PIM can produce a convergence rate that far exceeds

the so-called theoretical optimal values for in both measures

of displacement and strain energy norms: a truly supercon-

vergence. Furthermore, from Theorem 3 we know that the

solution of the PIM-CS for a α near to α0 ∈ [−3/2,−1/2] is

a lower bound of the exact solution in energy norm; while for

that one near to α1 ∈ [3/2, 5/2], it is an upper bound. Thus,

there exists a value of αexact ∈ (α0, α1) at which the strain

energy is the exact solution. This implies that we should be

able to obtain the “exact” solution using a PIM-CS model of

finite dimension! This opens an opportunities for establishing

extremely fast convergence models producing ultra accurate

solutions, even liner displacement fields are used.

In practice, however, it is difficult to find the αexact for

a general problem. However, when an α ≈ αexact can be

found, the superconvergence property can be found for solu-

tions in both the strain energy and the displacement. In the

next section, we will show numerical examples that such an
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α ≈ αexact ∈ (α0, α1) can be found for PIM-CS to achieve

ultra accurate and superconvergent solutions.

7 Numerical examples

In this section, a number of numerical examples will be exa-

mined using the PIM-CS with both linear and quadratic inter-

polations, referred as linear PIM-CS and quadratic PIM-CS.

To investigate quantitatively the numerical results, the error

indicators in both displacement and energy norms are defined

as follows,

Ed =

√
√
√
√

∑n
i=1

(

uref
i − unum

i

)2

∑n
i=1

(

uref
i

)2
, (77)

Ee =
√

|Unum − Uref |
Uref

(78)

where the superscript ref denotes the reference or analytical

solution, num denotes a numerical solution obtained using a

numerical method. To demonstrate the energy bound proper-

ties of the PIM-CS numerically, strain energy will be calcu-

lated using Eq. (56).

7.1 Standard path test

For a numerical method working for solid mechanics pro-

blems, the sufficient requirement for convergence is to pass

the standard path test [1]. Therefore, the first example is the

standard path test using the present PIM-CS. A rectangular

patch of 10 × 50 is considered, and the displacements are

prescribed on all outside boundaries by the following linear

function.

{

ux = 0.6x

u y = 0.6y
(79)

The patch is represented using nodes shown in Fig. 4 and error

Ed obtained using linear PIM-CS for some α are illustrated

in Table 1. It shows that all these errors are less than 1.0 ×
10−13 even for α = ±30. This example verifies numerically

Theorem 2 and indicates that the PIM-CS for an arbitrary

10 15 20 25 30 35 40 45 500 5
-5

0

5

Fig. 4 Node distributions for the standard patch test

α can pass the standard path test, and is at least linearly

conforming.

7.2 Cantilever 2D solid

A 2D cantilever solid with length L = 50m and height

D = 10m is now studied. The solid is subjected to a para-

bolic traction at the right end as shown in Fig. 5. Analytical

solutions can be found in [61]. The cantilever is studied as a

plane stress problem with E = 3.0×107 Pa, P = −1, 000 N

and v = 0.3.

We first numerically investigate the continuity of stress

solution obtained using the linear PIM-CS. Figures 6, 7, 8

show the stress distribution of σxx in a perspective view and

projected view on the x − σxx plane. These figures are gene-

rated without any post-processing or post-smoothing ope-

rations. It is found that the stress σxx using the PIM-CS is

continuous in the entire problem domain, and is very close

to the exact solution.

The strain field ε̂ is continuous in entire problem domain. It

is, however, not smooth on the interfaces of the sub-domains

�k,i as shown in Fig. 7. The stress field from FEM solution

is not continuous on the interfaces of the background cells

which results in some jumps as shown in Fig. 8. Figure 9

shows that difference of stress distribution σxx between the

different methods. It is seen that the stress distribution from

PIM-CS is very close to the exact solution.

Stress solutions for σxy obtained using FEM, NS-PIM, and

PIM-CS are shown in Figs. 10, 11, 12, 13. It is seen again

that PIM-CS produces continuous stress in the entire pro-

blem domain with high accuracy. The convergence in strain

energy obtained using linear PIM-CS is computed and plot-

ted in Fig. 14. It is clear that PIM-CS produces upper and

lower bound solutions of the exact solution. Furthermore,

the strain energy of these PIM-CS models is in between the

compatible FEM and the NS-PIM solutions. These findings

verify numerically Theorem 4.

Using Eq. (77) and Eq. (78), errors in displacement and

energy norms are computed and plotted in Figs. 15 and 16.

When α = 0.855, the convergence rate of 3.08 in displace-

ment norm is found, which is much higher than the theoretical

value of 2.0 for linear FEM. The convergence rate in energy

norm is found as high as 1.88 when α = 0.855, as shown

in Fig. 16, which is much higher than the theoretical value

of 1.0 for linear FEM. These numerical results indicate that

PIM-CS is superconvergent not only in energy norm but also

in displacement norm for a properly chosen α.

In order to investigate the effect of mesh irregularity on

the solution, we examine the convergence of PIM-CS using

very irregular meshes shown in Fig. 17. The convergent rates

in displacement and energy norm are plotted in Figs. 18 and

19, respectively. It is seen that the PIM-CS can still produce

highly accurate and even superconvergent solution for very
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Table 1 Standard patch test

results obtained using linear

PIM-CS with different α

α(Ed ) Displacement error (Ed ) α Displacement error

−30 0.22170755 × 10−13 30 0.89707588 × 10−13

−5 0.84925581 × 10−14 5 0.16721789 × 10−13

− 3
2

0.30384429 × 10−14 5
2

0.26000885 × 10−13

− 1
2

0.37677106 × 10−14 3
2

0.87468524 × 10−15

0 0.15347691 × 10−14 1 0.21982730 × 10−14

Randomly chosen −15.8723 0.29775149 × 10−13 Randomly chosen 9.8233 0.54424715 × 10−13

L

x

y

D

P

Fig. 5 A 2D cantilever solid subjected to a parabolic traction on the

right edge

irregular meshes, showing the robustness of PIM-CS to mesh

irregularity.

We note that the linear PIM-CS based on the x-Galerkin

weak form (α = 1) can produce very accurate solution,

which is one-order higher than that from linear FEM and

linear NS-PIM. Furthermore, the convergence rates are much

higher than the theoretical values for linear FEM: the exten-

ded Galerkin model is of superconvergence.

7.3 Infinite 2D solid with a circular hole

An infinite 2D solid with a central circular hole (a = 1m) and

subjected to a unidirectional tensile (Tx = 10 N/m) is stu-

died. Owing to its two-fold symmetry, one quarter is modeled

with b = 5m (as shown in Fig. 20). Symmetry conditions are

imposed on the left and bottom edges of the quarter model,

and the inner boundary of the hole is traction free. For this

benchmark problem, the analytical solution can be found in

[61].

To study the convergence of the PIM-CS solution, the

strain energy obtained using linear PIM-CS is first com-

puted and plotted in Fig. 21. It is found that PIM-CS can

produce upper and lower bounds of the exact solution for

different α. Furthermore, the strain energy for these models

lies in between those of the compatible FEM and the NS-

PIM solutions. These findings verify numerically again

Theorem 3.

Using Eqs. (77) and (78), errors in displacement and energy

norms are computed and plotted in Figs. 22 and 23. It can

be found that the convergence rates in displacement norm is

about 2.4 when α = 0.85, and 2.19 in energy norm when

α = 1.1, which are much higher than the theoretical values.

Superconvergence occurs at α = 0.85 in displacement norm,

and at α = 1.1 in energy norm.

The linear PIM-CS based on the x-Galerkin weak form

(α = 1) can also produce very high accurate solution, which

is one-order higher accurate than that of linear FEM and

NS-PIM solutions. A superconvergence rate of 1.42 in energy

norm is also found.

Fig. 6 Distribution of stress σxx of the exact solution
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Fig. 7 Distribution of stress σxx of the PIM-CS solution. These figures are generated without any post-smoothing operations. It is clear that the

PIM-CS solution is continuous in the entire problem domain, but not very smooth

Fig. 8 Distribution of stress σxx of the FEM solution. These figures are generated without any post-processing or post-smoothing operations. It is

clear that the stress from FEM solution is discontinuous and has jumps

7.4 Square solid subjected to uniform pressure and body

force

A 2D square solid with body force of bT = {0,−1} is now

studied, as shown in Fig. 24. The solids are constrained on the

left, the right, and the bottom edges, and subjected to uniform

pressure along the top edge. The problem is considered as

plane stress with v = 0.3 and E = 3.0 × 107 Pa.

The convergence property and energy bound for linear

PIM-CS are also investigated in similar ways as in the pre-

vious examples. As the analytical solution is not available

for this problem, the reference solution of strain energy is

obtained using the FEM with a very fine mesh. The com-

puted strain energy and convergence rate in energy norm

are plotted in Figs. 25 and 26, respectively. It is seen again

that the linear PIM-CS produced very accurate solution and

superconvergent solution in energy norm with a convergent

rate of 1.4 when α = 1 and 1.89 when α = 1.05, respectively.

7.5 An L-shaped component

An elastic L-shaped component subjected to a pressure load

is shown in Fig. 27. Plane stress condition is assumed and

the reference solution of strain energy is obtained using FEM

with a very fine mesh. The convergence and energy bound for

linear PIM-CS are investigated in similar ways as in the pre-

vious examples. The computed strain energy and convergent

rate in energy norm for different α are plotted in Figs. 28
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Fig. 9 Contour plots of stress σxx obtained using different numerical methods. It is clear that the PIM-CS solution is very close to the exact one

Fig. 10 Stress σxy distribution of the exact solution

and 29, respectively. It is found that the accuracy of linear

PIM-CS is very high in energy norm when α = 1, which

about 10 times more accurate than that of linear FEM using

the same mesh. Furthermore, the superconvergence is also

found: convergent rates in energy norm is 1.35 when α = 1;

and 1.85 when α = 0.95.
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Fig. 11 Stress σxy distribution of the PIM-CS solution. The stress σxx obtained using PIM-CS is continuous in the entire problem domain

Fig. 12 Stress σxy distribution of the FEM solution. It is discontinuous and has jumps

7.6 Crack problem: a plate with an edge crack

A plate with an edge crack is now studied, whose geometry

is shown in Fig. 30. The exact stress solution of stress near

the crack tip is given in [62]. The computed strain energy

and convergence in energy norm for different α are plotted

in Figs. 31 and 32, respectively. It is found again that the

linear PIM-CS produces superconvergent solutions in energy

norm: convergence rate is 1.64 when α = 1 and 1.98 when

α = 1.06. When x-Galerkin weak form (α = 1) is used,

the accuracy of the linear PIM-CS solution is very high in

energy norm. It is about 10 times more accurate than that of

the linear FEM using the same mesh.

7.7 PIM-CS with high order polynomials interpolation

We now examine the 2D cantilever beam using quadratic

PIM-CS that uses quadratic polynomial interpolation for dis-

placement field. In this case, we need to choose 6 nodes for

the interpolation for the point of interest based on the same

triangular cells. This can be done easily by simply choose

the three vertices of the triangle hosting the point of inter-

est, and the three vertices of the three neighboring triangles

sharing the edges with the hosing triangle that are opposite

to the shared edges. The details of construction of quadratic

PIM shape function based on triangular cells can be found

in [40].
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Fig. 13 Contour plots of stress σxy obtained using different numerical methods. The PIM-CS solution is very close to the exact solution
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Fig. 14 Upper and lower bound solutions of the PIM-CS for 2D beam.

When α = 1, the x-Galerkin weak form is used

To study the convergence of the quadratic PIM-CS solu-

tion, the strain energy is computed using different α and the

results are plotted in Fig. 33. It is found that the solution of
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 4-node FEM (2.03)

α =1 (1.73)

α =0.855 (3.08)

Fig. 15 Convergence of the PIM-CS solution in displacement norm

for different α. The x-Galerkin weak form is used when α = 1. Super-

convergence is observed when α = 0.855

quadratic PIM-CS is more accurate than that of linear PIM-

CS. The quadratic PIM-CS produces also upper bound solu-

tions of the exact solution when α = 1.25, and lower bound
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Fig. 16 Convergence of the PIM-CS solution in energy norm for dif-

ferent α. The x-Galerkin weak form is used when α = 1. Superconver-

gence is observed when α = 0.855

Fig. 17 Illustration of irregular mesh used to examine how the regu-

larity of the point distribution influences the quality of the results
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Fig. 18 Convergence of the PIM-CS solution in displacement norm

using the irregular mesh. Superconvergence is still observed when

α = 0.83, and very high accurate solution can be obtained when the

x-Galerkin weak form (α = 1) is used

solutions when α = 0.5. Using Eqs. (77) and (78), errors

in displacement and energy norms are calculated and plotted

against the average nodal spacing (h) in Figs. 34 and 35. From

these figures, it is seen that when α = 0.5 and α = 0.71, the

accuracy and convergence rates in both displacement norm

and energy norm are very high, which shows that the qua-

dratic PIM-CS is of superconvergence.
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Fig. 19 Convergence of the PIM-CS solution in energy norm using

the irregular mesh. Superconvergence is observed when α = 0.83, and

very accurate solution can also be obtained using the x-Galerkin weak

form (α = 1)

7.8 Discussions and comparisons on FEM, NS-PIM

and PIM-CS

We present a comparison discussion for FEM, NS-PIM and

PIM_CS models.

Remark 2 The strain field of the PIM-CS is a linear interpo-

lation of locally smoothed strain at points. Not only the avera-

ged strain but also the local variation effects of the strain field

are taken into account in the PIM-CS. The PIM-CS model

using exactly the same triangular mesh can behave “softer”

than FEM and “stiffer” than NS-PIM; both accuracy and

convergence rate are much higher than those of FEM and

NS-PIM; furthermore the stress is continuous in the entire

problem domain.

Remark 3 It is clear from Sect. 4 that not only displacement

field but also strain field can be constructed using the point

interpolation method. This is the first time to use the point

interpolation method for strain field construction in meshfree

methods. This similar was done in the a−FEM [32].

Remark 4 The stiffness matrix obtained using PIM-CS is

symmetric with the same dimensions as that of FEM when

the same mesh is used.

Remark 5 Both the FEM based on the standard Galerkin

weak form and the NS-PIM based on the generalized smoo-

thed Galerkin weak form [30] are variationally consistent, if

the solution is sought in a Hilbert space. However, PIM-CS

is in general not vairationally consistent, even if the solution

is sought in a Hilbert space. This shows an important fact

that variational consistence is not a necessary condition to
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Fig. 20 Infinite 2D solid with a

hole subjected to a tensile force

and its quarter model
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Fig. 21 Lower and upper bound solutions of the PIM-CS for 2D solid

with hole. When α = 1, the x-Galerkin weak form is used
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Fig. 22 Convergence of the PIM-CS in displacement norm for 2D solid

with hole. The x-Galerkin weak form is used when α = 1. Supercon-

vergence is observed when α = 0.85

derive a numerical method. Many numerical results [32,49]

and the numerical results obtained in this paper show that a

variationally inconsistent model can work very effectively,

and can have unique properties.
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Fig. 23 Convergence of the PIM-CS in energy norm for 2 D sold with

hole. The x-Galerkin weak form is used when α = 1. Superconvergence

is observed when α = 1.0 and 1.1
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Fig. 24 A square solid with body force subjected to a uniform pressure

Remark 6 PIM-CS is equipped with a real adjustable para-

meter α, and hence can bound the solutions from the both

sides of the exact solution. Therefore, PIM-CS is capable of
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Fig. 25 Upper and lower bound solution of the PIM-CS for different

α. When α = 1, the x-Galerkin weak form is used
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Fig. 26 Convergence of the PIM-CS in energy norm for different α.

The x-Galerkin weak form is used when α = 1. Superconvergence is

observed when α = 1.0 and α = 1.05

obtaining the exact solution using a finite number of triangu-

lar meshes.

Remark 7 The numerical results show that PIM-CS is of

superconvergence for a properly selected α. However, α is in

general problem-dependent and it needs taking a number of

trials to find a good α for a practical problem.

Remark 8 When α = 1, the PIM-CS becomes a x-Galerkin

model. From all these numerical examples it is clearly seen

that in an x-Galerkin model, the accuracy and the conver-

gence rate are very high in both displacement and energy

norms. It is about 10 times more accurate than that of stan-

dard Galerkin mode (FEM) using the same mesh. Therefore,

for avoiding the difficulty to find the “good” α, we can sim-

ply use the x-Galerkin weak form (α = 1) to obtain ultra

accurate solutions.
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Fig. 27 L-shaped plate subjected to uniform tensile stress
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Fig. 28 Upper and lower bound solution in energy norm of PIM-CS

used in the L-shaped component problem. When α = 1, the x-Galerkin

weak form is used

8 Conclusions

In this work, a point interpolation method with continuous

strain field is developed using the PIM shape functions for

constructing both the displacement and the strain fields. A

general parameterized mixed functional is proposed for esta-

blishing models with superconvergent solutions. We proved

theoretically (1) when the same mesh is used, the strain

energy obtained from the PIM-CS is in between those from

the compatible FEM and the NS-PIM models; (2) the exact

solution is bounded by those of PIM-CS with α = α1 ∈
[ 3

2
, 5

2
] from above and α = α0 ∈ [− 3

2
,− 1

2
] from below; (3)

There is an α at which the PIM-CS give the exact solution
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Fig. 29 Convergence of PIM-CS solution in energy norm for different

α used in the L-shaped component problem. Superconvergence is obser-

ved when α = 0.95, and the x-Galerkin weak form (α = 1) produces

solution of very high accuracy (about 10 times more accurate than that

of FEM) and superconvergence
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Fig. 30 Geometry of a cracked plate
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Fig. 31 Upper and lower bound solution in energy norm of PIM-CS

for different α used in the crack problem. When α = 1 the x-Galerkin

weak form is used
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Fig. 32 Convergence of PIM-CS solution in energy norm for different

α used in the crack problem. Superconvergence is observed when α =
1.0 and α = 1.06, and the x-Galerkin weak form (α = 1) produces

solution of very high accuracy (about 10 times more accurate than that

of FEM) and superconvergence
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Fig. 33 Upper and lower bounds solution of strain energy for different

α used in PIM-CS with quadratic interpolation, in comparison with the

solutions of linear interpolation using 3-node background cells (NS-

PIM-3 and FEM-3)

in energy norm; (4) the x-Galerkin weak form is not varia-

tionally consistent, but proven to be stable and convergent to

the exact solution.

Intensive numerical studies have verified the theorems,

convergence, bounds property of strain energy, continuity of

strain, and superconvergence of the PIM-CS:

(1) The PIM-CS is convergent for any α ∈ [α0, α1] with

continuous strain/stress field in the entire domain.

(2) PIM-CS uses triangular background cells can produce

even more accurate solution than the quadrilateral ele-

ments of FEM;
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Fig. 34 Convergence of PIM-CS solution in displacement norm for

different α used in PIM-CS with quadratic interpolation
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Fig. 35 Convergence of PIM-CS solution in energy norm for different

α used in PIM-CS with quadratic interpolation

(3) For a properly chosen α, PIM-CS can produce upper

bound, lower bound and superconvergent solutions, as

desired.

(4) The new x-Galerkin weak form (α = 1) produces solu-

tions of very high accuracy, which is about one order

more accurate than that of the FEM solution using the

same linear triangular elements.
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