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Abstract An established strategy for material modeling is provided by energy-based principles such that
evolution equations in terms of ordinary differential equations can be derived. However, there exist a variety
of material models that also need to take into account non-local effects to capture microstructure evolution. In
this case, the evolution of microstructure is described by a partial differential equation. In this contribution,
we present how Hamilton’s principle provides a physically sound strategy for the derivation of transient
field equations for all state variables. Therefore, we begin with a demonstration how Hamilton’s principle
generalizes the principle of stationary action for rigid bodies. Furthermore, we show that the basic idea behind
Hamilton’s principle is not restricted to isothermal mechanical processes. In contrast, we propose an extended
Hamilton principle which is applicable to coupled problems and dissipative microstructure evolution. As
example, we demonstrate how the field equations for all state variables for thermo-mechanically coupled
problems, i.e., displacements, temperature, and internal variables, result from the stationarity of the extended
Hamilton functional. The relation to other principles, as the principle of virtual work and Onsager’s principle,
is given. Finally, exemplary material models demonstrate how to use the extended Hamilton principle for
thermo-mechanically coupled elastic, gradient-enhanced, rate-dependent, and rate-independent materials.

Keywords Coupled processes · Multi-physics · Variational modeling · Local and non-local effects

1 Introduction

Physical bodies are described by a varying number of state variables. For instance, two state variables are
necessary in a thermo-mechanical sense: displacements u and temperature θ . Other problems could be chemo-
mechanical ones with the displacements and the concentration of substances, electro-mechanical ones with the
displacements and the electric field, or combinations of the latter. Particularly for solids, these state variables,
however, do not carry enough information to reflect the total state. The important influence of microstructure
and its time-dependent configuration is not accounted for, i.e., for thermo-mechanically coupled problems, by
the primary state variables u and θ . To overcome this deficiency, additional variables for the “inner state” were
introduced between 1820 and 1850 by Carnot, Joule, and Clausius [9,12,28]. More details on the history are
given in [27]. These variables are nowadays referred to as internal variables whichmight be denoted, arbitrarily,
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by the vector α. Then, the set {u, θ, α} completely describes the physical state of thermo-mechanically cou-
pled problems and dissipative microstructure evolution. Appropriate choices for α mimic the experimentally
observed material configuration. However, a sophisticated challenge of modern mechanics is the develop-
ment of mathematical equations that describe how the microstructural state, given in terms of α, evolves.
Consequently, these equations are referred to as evolution equations and form the material model. Herein, a
material-specific choice of α defines answers to questions as is it a plastic strain, a volume fraction, a hardening
or damage variable, or others.

Along with the choice which set of internal variables shall be used in the material model, the identification
of constraints from experimentally observed material behavior is a crucial step during the derivation of a
related mathematical description of the material behavior. Then, the consideration of the constraints in terms
of mathematical formulas often turns out to be a non-trivial issue. It is thus convenient to derive material
models from a potential which might comprise several benefits: ensurance of thermodynamic consistency
and simplified consideration of constraints by using appropriate Lagrange parameters. One potential-based
principle of material modeling is the principle of maximum dissipation. Here, the dissipation, being a function
of the thermodynamic driving forces p, is maximized to derive the evolution equations. The assumption
that (microstructural) processes maximize the dissipation is physically sound and, consequently, material
models that are derived by using this approach agree to the fundamental laws of physics. A similar potential-
based principle is given by the so-called principle of the minimum of the dissipation potential. In contrast
to the principle of maximum dissipation, the potential is here a function of the thermodynamic flux α̇ such
that minimizing the dissipation potential directly results in the evolution equations. A subsequent Legendre
transformation of the associated dissipation function allows to identify the related yield function � if rate-
independent processes are modeled.

It is obvious that a model for a specific material should be able to describe the related processes with
sufficient accuracy and, of course, must not contradict fundamental physical observations and their related
laws. These requirements still provide a huge variety to construct a specific material model. For instance, the
relation

α̇ ∝ p (1)

is often used for rate-dependent processes. This proportionality between the thermodynamic driving force p,
which can be derived from the free energy density � by

p := −∂�

∂α
, (2)

and the thermodynamic flux α̇ routes back to Onsager and is consequently known as Onsager’s principle. In
case of rate-independent processes, materials are modeled by defining a suitable yield function �, and the
evolution of the internal variable is assumed to be obtained from a thermodynamic extremal principle, e.g.,
principle of maximum dissipation or principle of the minimum of the dissipation potential, yielding

α̇ ∝ ∂�

∂ p
(3)

This procedure has proven to be beneficial when quasi-static processes evolve.Whereas for appropriate choices
for � and using Onsager’s principle, it can be shown that such material models are thermodynamically sound
by construction, the verification of the latter is usually a part of the derivation of a material model if other
modeling techniques are employed. Here, the Coleman–Noll procedure is used for the identification of the
driving forces and thermodynamic consistency is proved by checking the dissipation inequality

p · α̇ ≥ 0 . (4)

However, a drawback of these potential-based approaches is that they are not suitable for the derivation of field
equations for the internal variable. To be more precise, the inclusion of gradient terms is not possible since the
principle ofmaximumdissipation and the principle of theminimumof the dissipation potential are both defined
locally for a material point. A solution to this drawback is given by Hamilton’s principle: it is formulated as
variational problem for the entire physical body. Thus, field equations, i.e., partial differential equations in
time and space, can be derived from related stationarity conditions. Hamilton’s principle is strongly related to
the principle of stationary action and comprises the principle of virtual work and the principle of the minimum
of the dissipation potential, which all turn out to be special cases of Hamilton’s principle.
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In this contribution, we aim at highlighting the relation of Hamilton’s principle to the fundamental laws
of thermodynamics and other extremal principles of continuum mechanics. We begin with a short overview
on the history of material modeling and give a brief introduction to thermodynamics. Later, we recall the
principle of stationary action and demonstrate its relation to the 1st law of thermodynamics. This serves as
basis to present how a generalization of the principle of stationary action, which is originally restricted to rigid
particles, can be used to describe non-conservative deformable solids. Particularly, we show that an extended
Hamilton principle thus might be used for the derivation of material models including field equations for all
state variables in thermo-mechanically coupled problems given by {u, θ, α}. Finally, we show basic examples
of thermo-mechanically coupled material models based on the extended Hamilton principle.

2 Brief outline of the history of material modeling

Material modeling comprises the usage of internal variables and strategies to derive governing equations for
describing their evolution. A prominent modeling strategy is the application of variational methods which were
invented far earlier than the concept of internal variables, see [27]. The idea of some quantity that is maximized
or minimized by physical processes roots back to Aristotle or even before, cf. [5]. It is strongly related to the
principle of stationary action which was embedded into a rigorous mathematical concept in the late 1700s by
Leibniz, Euler, Maupertuis, Lagrange, and others, see [50]. The invention of variational calculus allowed to
solve the problem of brachistochrone as well as light refraction, the motion of a conservative oscillator, and
many more. A related approach is the well-known principle of Castigliano and Menabrea [11,40]. A historical
review is presented in [8]. Hamilton generalized the principle of stationary action in [25,26]. More details
on Hamilton’s principle are given by Bedford [4] and Bailey [2] who presents a clear distinction of different
energy-based extremal principles.

The usage of internal variables in current sense routes back to the concept of “variables of inner state”
as pioneered by Carnot [9], Joule [28], and Clausius [12]. Afterwards, the concept was put in a sound ther-
modynamic framework by Helmholtz [56], Thomson [54], Maxwell [39], Gibbs [20], and Duhem [17] (see
[27] and [38] for a detailed historical presentation). In 1931, Onsager used the thermodynamic approach of
thermodynamic fluxes α̇ and thermodynamic forces p. Starting from the (reduced) Clausius–Duhem inequality

p · α̇ ≥ 0 , (5)

he postulated a proportionality which served as fundamental ansatz for material modeling since it fulfills
thermodynamic consistency a priori [46,47]. Roughly at the same time, the concept of thermodynamic fluxes
and forceswas conveyed to continuummechanics byBridgman [7] andEckart [18].A time-dependent evolution
was investigated in the general work by Ziegler [57]. The thermodynamics of irreversible processes was put
in the 1960s into a more rigorous mathematical framework by Truesdell [55] and Coleman and Noll [13–15]
who established so-called rational thermodynamics. A further elaboration by Rice [51] and Lubliner [33]
founded in the 1970s the concept of internal variables in its current form. The concept of maximum dissipation
as fundamental strategy for the derivation of evolution equations was given by Lubliner in 1984 [34] and
Simo in 1988 [52]. A concept for complex microstructures was proposed by Ortiz and Repetto in their work
on non-convex energy minimization [48] which built upon the mathematical basis of Ball and James [3].
An alternative for the principle of maximum dissipation was introduced by the principle of the minimum
of the dissipation potential, published in various forms, e.g., by Martin, Maier, Halphen, Maugin and Hackl
[21,24,35–37]. A comparison between the two approaches was given in [22]. Strategies to couple the local
material behavior to non-local fields can be given by the introduction of penalty terms, see, e.g., [16], or by
postulating evolution equations that are added as constraints to the functional by using Lagrange parameters,
see, e.g., the works by Hackl and Fischer [19,23]. It is also worth mentioning that instead of a time-continuous
presentation, time-incremental variational methods for material modeling have been established. Examples are
given in a more numerical setting by Simo [53]. A more analytical setting is discussed by Mielke for the case
of finite elasto-plasticity in [43] based on dissipation distances and by Miehe who generalized this approach
to gradient-extended standard dissipative materials [42]. More details are also provided in the textbook by
Mielke in 2015 [44].
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3 Thermodynamic basis

In this section, we recapitulate shortly the fundamentals of thermodynamics to define our notation and set the
basis for the description of the generalization of Hamilton’s principle. Here, we restrict ourselves to thermo-
mechanically coupled processes.

3.1 The first law of thermodynamics

The first law of thermodynamics postulates the balance of energy which states that the rate of the total energy
of the body equals the power due to mechanical and thermal loads. This can be recast in the equation

Ė + K̇ = Pmech + P therm (6)

where the internal energy is given by E and the kinetic energy by K; the mechanical power is given by Pmech

and the thermal power by P therm, cf. [1]. The same axiom is given, equivalently, after integrating (6) over time
by

E + K = W + Q + cint (7)

with the mechanical work W , the thermal work Q, and some integration constant cint. The internal energy
of the full body E consists of the total free energy

∫
ω

� dv and the heat
∫
ω
hin dv, i.e., energy contributions

which are neither related to external work nor mass transport. The heat is thus the amount of energy stored
in the thermal movement of the atoms and measured by hin = ρθ s̄ with the absolute temperature θ and the
mass-specific entropy s̄ = s/ρ. The entropy can accordingly be interpreted as temperature-specific energy
which, according to the 2nd law of thermodynamics, indicates the part of the internal energy that is not directly
accessible by mechanical processes. The internal energy is then given by

E =
∫

ω

ρ �̄ dv +
∫

ω

ρ θ s̄ dv =
∫

�

ρ �̄ J dV +
∫

�

ρ θ s̄ J dV . (8)

Here, �̄ denotes the mass-specific free energy density and ρ the mass density. The material domain in the
current configuration is termed as ω, whereas the material domain in the reference configuration is indicated
by�. The transformation of the volume element in the current configuration to its equivalence in the reference
configuration is performed by dv = J dV with J := detF and the deformation gradient F := I + ∂u/∂X
with the identity tensor of second order I , see [1]. The spatial coordinate in the current configuration is denoted
as x and in the reference configuration as x(t = 0) = x(0) =: X . The free energy can be expressed by

∫

ω

� dv = E −
∫

ω

θs dv, (9)

while the kinetic energy is given by

K =
∫

ω

1

2
ρ ||u̇||2 dv (10)

with the velocity u̇. External forces can be divided into surface and body forces, indicated by the traction
vector t	 at the boundary of the body ∂ω and the mass-specific body force b̄

	
. Then, the mechanical work W

is given by

W =
∫

∂ω

t	 · u da +
∫

ω

ρ b̄
	 · u dv, (11)

whereas the mechanical power reads

Pmech =
∫

∂ω

t	 · u̇ da +
∫

ω

ρ b̄
	 · u̇ dv =

∫

ω

σ : D dv +
∫

ω

ρ
D

Dt
||u̇||2 dv , (12)

see [1]. Here, σ denotes the Cauchy stress; the stretch rate tensor D := (L + LT )/2 is the symmetric part
of the spatial velocity gradient L := ∂v/∂x. It is worth mentioning that we use pure Neumann boundary
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conditions, i.e., ∂ω = 
σ and 
u = ∅ where 
σ denotes the boundary with prescribed tractions and 
u
denotes the boundary with prescribed displacements. However, the complete derivation which follows holds
true when also Dirichlet boundary conditions are used. We skip the straightforward inclusion of Dirichlet
boundary conditions here for a more convenient presentation. The material time derivative is defined as

D

Dt
:= ∂

∂t
+ v · ∂

∂x
. (13)

Thermal power is transferred into the system by the heat flux vector q and generated within the system by the
external heat source ρh̄. Let us define that the rate of the total energy of the body is increased when the heat
flux vector is pointing into the body. Then, the thermal power is given by

P therm = −
∫

∂ω

q · n da +
∫

ω

ρ h̄ dv = −
∫

ω

∇x · q dv +
∫

ω

ρ h̄ dv

= −
∫

�

∇X · q(0) dV +
∫

�

ρ(0) h̄ dV (14)

where∇x ·• ≡ div• indicates the divergence in the current configuration. The superscript•(0) refers to quantities
evaluated in the reference configuration and ρ(0) = J ρ. The divergence in the reference configuration is
indicated by ∇X · • ≡ DIV•. Thus, the amount of thermal exchange of the body with its surrounding Q is
given by time integration of P therm which yields

Q = −
∫

�

∫
∇X · q(0) dt dV +

∫

�

∫
ρ(0) h̄ dt dV . (15)

Inserting the definitions for the internal energy E , the kinetic energy K, for the mechanical power Pmech and
the thermal power P therm into the balance of energy (6), we obtain the local form in the current configuration

ρ ˙̄� + ρ ˙(θs) = σ : D − ∇x · q + ρ h̄ (16)

and in the reference configuration

ρ(0) ˙̄� + ρ(0) ˙(θs) = P : Ḟ − ∇X · q(0) + ρ(0) h̄ , (17)

see [1], which have to hold for arbitrary processes. Here, the 1st Piola–Kirchhoff stress tensor has been used
which is related to the Cauchy stress tensor by P = σ · cofF with the cofactor tensor cofF := J F−T

which transforms vectorial area elements from the reference configuration, termed as da(0), to the current
configuration, termed as da, via da = cofF ·da(0). Analogously, the heat flux vectors in reference and current
configuration are related by q(0) = q · cofF. It is worth mentioning that (16) and (17) give the energy balance
for thermo-mechanically coupled problems. In case of other coupled problems, i.e., for chemical or electrical
coupling, the energy balance has to be modified accordingly. For instance, the formulation of the free energy
and the interaction to the surrounding in terms of work or power have to be adapted.

For rigid particles in the isothermal case, the notation

U + K = W (18)

is usually introduced. Here, U denotes the potential energy, which is associated with the free energy of
continuous deformable solids, and K denotes the kinetic energy. The mechanical work is given by W =
W in + W ex with the contributions W in and W ex due to internal and external forces, respectively.

3.2 The second law of thermodynamics

The second law of thermodynamics accounts for the observation that the flow direction of heat is not universal:
two bodies of different temperatures will compensate their thermal difference by lowering the temperature
of the body with initially higher temperature to increase the temperature of the body with initially lower
temperature. This process is irreversible since a “segregation” of temperature does not take place.



1936 P. Junker, D. Balzani

The unidirectional flow of heat is recast in mathematical terms by the condition that the heat-related energy
may only increase. This energy was identified to be the entropy such that Clausius’ theorem reads

D

Dt

∫

ω

ρ s̄ dv ≥ 0 . (19)

The entropy s may change in time due to entropy flux qs, entropy source ρ h̄s, and entropy production �s.
It is worth mentioning that precisely the entropy production �s accounts for dissipative processes which are
always path-dependent. Thus, the amount of entropy produced, termed as Ds, is not given by time integration
of the production term �s, i.e.,

Ds(t1) − Ds(t0) �=
∫ t1

t0
�s dt . (20)

The balance of entropy can be written as

D

Dt

∫

ω

ρ s̄ dv = −
∫

∂ω

qs · n da +
∫

ω

ρ h̄s dv +
∫

ω

�s dv (21)

where entropy flux and entropy source are given by qs = q/θ and h̄s = h̄/θ , respectively, see, e.g., [1]. Then,
(21) locally demands, in the current configuration,

ρ ˙̄s = −∇x ·
(q

θ

)
+ ρ

h̄

θ
+ �s = 1

θ2
q · ∇xθ − 1

θ
∇x · q + ρ

h̄

θ
+ �s (22)

and

ρ(0) ˙̄s = −∇X ·
(q(0)

θ

)
+ ρ(0) h̄

θ
+ �s = 1

θ2
q(0) · ∇Xθ − 1

θ
∇X · q(0) + ρ(0) h̄

θ
+ �s (23)

in the reference configuration.
The observation that mechanical energy can be transformed completely into heat but the reverse trans-

formation of heat into mechanical energy can only be performed partly, gives rise to define the dissipated
energy: it measures the amount of heat that cannot be transformed (back) into mechanical energy, thus into the
free energy density. The process of transformation of mechanical energy into non-recoverable thermal energy,
which is referred to as dissipation, can be described by restricting �s ≥ 0. An idealized, reversible process
in which no dissipation takes place is identified by �s = 0; a more general case of irreversible processes is
identified by �s > 0.

Making use of �s ≥ 0, we reformulate (22) as follows:

ρ ˙̄s + ∇x · qs − ρ h̄s = �s ≥ 0

⇒ ρ ˙̄s + ∇x · qs − ρ h̄s ≥ 0

⇒ ρ ˙̄s ≥ −∇x · qs + ρ h̄s (24)

where (24) is the well-known Clausius–Duhem inequality [1].
Combination of the balance of entropy according to (22) and (23), respectively, with the energy balance

in current or reference configuration in (16) and (17) gives rise to the modified form of the second law of
thermodynamics in the current configuration as

θ�s = σ : D − ρ ˙̄� − ρ θ̇ s̄ − 1

θ
q · ∇xθ ≥ 0 (25)

and in the reference configuration as

θ�s = P : Ḟ − ρ(0) ˙̄� − ρ(0) θ̇ s̄ − 1

θ
q(0) · ∇Xθ ≥ 0 , (26)

respectively. Application of the Coleman–Noll procedure, which is equivalent to the standard argument of
dissipative media, results in the constitutive equations for the stresses

P = 2ρ(0) F · ∂�̄

∂C
(27)
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and entropy

s̄ = −∂�̄

∂θ
. (28)

Furthermore, the relation

− 1

θ
q(0) · ∇Xθ ≥ 0 (29)

needs to be satisfied which can be directly fulfilled by Fourier’s law

q(0) = −λ∇Xθ (30)

with the heat conductivityλ > 0. Finally, the second lawof thermodynamics reduces to the so-called dissipation
inequality

θ�s = p · α̇ > 0 (31)

which needs to be satisfied. Here, we used the definition of the thermodynamic driving force p as

p := −ρ(0) ∂�̄

∂α
. (32)

It is important to mention that θ�s is not defined by p · α̇ in (31): the entropy production remains an additional
quantity that needs to be modeled. Since the case of reversible processes in solids with �s = 0 was associated
with a non-evolving microstructure, i.e., α̇ = 0, it is obvious that for the present case of irreversible processes
the entropy production is related to the evolution of microstructure. Thus, in analogy to the assumption for
mechanical power in (12), it is convenient to postulate

�s = ps · α̇ (33)

for the entropy production with the non-conservative forces ps that have to be specified for a specific material.
Provided that α̇ is known, it is worth mentioning that the non-conservative forces ps have to be modeled rather
than �s. Consequently, (31) transforms to the

Evolution equation for the internal variables α

ps = 1

θ
p . (34)

This equation indicates that the thermodynamic driving force p and the non-conservative force ps are
in balance. It serves as condition to describe the non-conservative evolution of microstructure provided
that ps has been chosen appropriately to the observed material behavior. It is worth mentioning that
this local investigation yields an ordinary differential equation (ODE) as evolution equation for α.

Note that in case of other couplings than thermo-mechanics the relations have to be adapted accordingly.

4 The principle of stationary action

Here, the basics of the principle of stationary action for rigid particles is shortly recapitulated to set the basis
for its generalization leading to Hamilton’s principle.
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4.1 The action functional for rigid particles

Routing back to the pioneering works ofMaupertuis and Euler, a variational approach tomodeling the dynamic
behavior of physical systems was established by the axiom that the momentum integrated along the path a
rigid particle follows tends to be stationary. This can be recast in formulas as

A :=
∫ u1

u0
l · du → stat

u
(35)

with the momentum vector

l = m u̇ (36)

for a rigid particle with mass m and velocity u̇ = du/dt . Here, the quantity A is referred to as action.
Accounting for the time dependence of the spatial coordinate, i.e., u = u(t) such that du = u̇ dt , the action
can be reformulated as

A =
∫ t1

t0
m||u̇||2 dt . (37)

Making use of the kinetic energy

K = 1

2
m||u̇||2 , (38)

it can be concluded that the action turns into

A =
∫

τ

(K + K ) dt (39)

with the arbitrary time interval τ = t1 − t0.

4.2 The principle of stationary action for conservative processes

The action can be brought to a form that is much more familiar in the context of modern mechanics. To this
end, energy conservation as

∫

τ

U dt +
∫

τ

K dt = 0 (40)

is used to express “one” kinetic energy inA = ∫
τ
(K + K ) dt in (39) by

∫
τ
Kdt = − ∫

τ
Udt . Thus, the action

transforms to

A =
∫

τ

(K −U ) dt . (41)

In contrast to the kinetic energy, the potential energy depends on the placement of the rigid particle given by
the deformation u. The velocity is, per se, not an additional quantity but can be computed from u such that the
principle of stationary action is specified to

A =
∫

τ

L dt → stat
u

(42)

with the Lagrange function L := K −U . The necessary condition for A being stationary is

δA =
∫

τ

[
∂L

∂ u̇
· δu̇ + ∂L

∂u
· δu

]

dt = 0 ∀ δu . (43)

Application of integration by parts and postulating δu|t0 = δu|t1 = 0 yields the so-called Lagrange equations
of 2nd kind, reading

d

dt

∂L

∂ u̇
− ∂L

∂u
= 0 , (44)

which provides an equivalent formulation of Newton’s law

f cons = m ü (45)

with the conservative forces f cons.
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4.3 The principle of stationary action for non-conservative processes

In many practical problems, the restriction to conservative particles is an inadmissible simplification of the
physical reality. Therefore, non-conservative effects should also be taken into account in the principle of
stationary action. The necessary manipulation, however, is small: instead of using energy conservation, the
energy theorem

U + K = W in + W ex (46)

is used with the work due to non-conservative internal and external forces, denoted by W in and W ex, respec-
tively. The work due to non-conservative internal forces is given byW in = − f in ·u since the non-conservative
internal force f in points in opposite direction to the displacements u. The work due to non-conservative
external forces f ex is given by W ex = f ex · u. Consequently, the action functional transforms to

A =
∫

τ

(
K −U + W in + W ex) dt =

∫

τ

(
L + W in + W ex) dt → stat

u
. (47)

The variation yields

δA =
∫

τ

[
∂L

∂ u̇
· δu̇ + ∂L

∂u
· δu + ∂W in

∂u
· δu + ∂W ex

∂u
· δu

]

dt = 0 ∀ δu (48)

such that the Euler equation constitutes after integration by parts as

d

dt

∂L

∂ u̇
− ∂L

∂u
= ∂W in

∂u
+ ∂W ex

∂u
(49)

when we postulate vanishing variations at the arbitrarily chosen time points t0 and t1 which defined the interval,
i.e., δu(t0) = δu(t1) = 0. The relation (49) provides an equivalent formulation of Newton’s law

f = m ü (50)

with the (conservative and non-conservative) resultant forces f .

5 Hamilton’s principle

5.1 The action functional for continuous deformable bodies

In analogy to rigid particles, the action functional can be assigned for each material point in continuous
deformable bodies as

dA :=
∫ u1

u0
dm(0) u̇ · du =

∫ u1

u0
ρ(0) u̇ · du dV (51)

such that the action functional of the total body is given by

A =
∫

A
dA =

∫

�

∫ u1

u0
ρ(0) u̇ · du dV . (52)

In analogy to the treatment of the action for rigid particles, we transform the increment by du = u̇dt . This
yields

A =
∫

�

∫

τ

ρ(0) ||u̇||2 dt dV =
∫

τ

∫

�

ρ(0) ||u̇||2 dV dt =
∫

τ

(K + K ) dt . (53)
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5.2 The classical Hamilton functional for conservative continua

Classically, Hamilton’s functional equals the action functional A when the reduced energy theorem K =
−E + W + cint is inserted into the second term in

∫
τ
(K + K) dt in (53), yielding

Hclassical :=
∫

τ

(K − E + W + cint) dt . (54)

The integration constant cint does not affect the following results and can be set arbitrarily to zero. The reduced
energy theorem neglects thermal contributions by droppingQ such that it is restricted to isothermal processes.
Consequently, the free energy in (8) reduces to E = ∫

�
ρ(0)�̄ dV .Making use of the formula for themechanical

work W in (11), we obtain for Hamilton’s functional in its classical sense

Hclassical =
∫

τ

(
K −

∫

�

ρ(0) �̄ dV +
∫

∂�

t	 (0) · u dA +
∫

�

b	 (0) · u dV
)
dt . (55)

We introduce the total potential to be defined as

G :=
∫

�

ρ(0) �̄ dV −
∫

∂�

t	 (0) · u dA −
∫

�

b	 (0) · u dV . (56)

The first integral
∫
�

ρ(0) �̄ dV =: �in is the internal potential which depends on the current physical state
expressed in terms of distortions, (constant) temperature and the (frozen) microstructure. The last two integrals
− ∫

∂�
t	 (0) · u dA − ∫

�
b	 (0) · u dV =: �ex represent the potential due to external forces which depends on

the current boundary conditions. Consequently, by inserting (56) into (55), we obtain

Hclassical =
∫

τ

(
K − G

)
dt . (57)

Assuming stationarity for Hclassical with respect to the only remaining variable, which are the displacements
u, Hamilton’s functional corresponds to the representation of the action in (41) for conservative continuous
deformable bodies. Note the similarity to the principle of the minimum of the total potential energy: however,
whereas the Hamilton principle only demands stationarity of (57), the principle of minimum potential energy
requires minimizers. In practice, this leads to the same conditions as only the first variation is analyzed for
both cases. Making use of the potentials �in and �ex, (57) can be represented by

Hclassical =
∫

τ

(
K − �in − �ex

)
dt . (58)

5.3 The classical Hamilton principle

Comparably to the axiom of stationary action for rigid particles, Hamilton’s principle in its classical sense
reads

Hclassical → stat
u

⇔ δuHclassical = 0 ∀ δu . (59)

Computation of the Gâteaux derivative results in
∫

τ

( ∫

�

ρ(0) u̇ · δu̇ dV −
∫

�

ρ(0) ∂�̄

∂C
: δC dV +

∫

∂�

t	 (0) · δu dA −
∫

�

b	 (0) · δu dV
)
dt = 0 (60)

and after integration by parts

−
∫

�

ρ(0) ü · δu dV +
∫

�

(
∇X · PT + b	 (0)

)
· δu dV +

∫

∂�

(
n(0) · PT − t	 (0)

)
· δu dA = 0 (61)

which yields the balance of linear momentum and Cauchy’s theorem as boundary condition. Consequently,
the classical Hamilton’s principle can be interpreted as a generalization of the principle of stationary action.
Conversely, the principle of stationary action constitutes a special case of the classical Hamilton principle
when deformations are neglected (rigid bodies).
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5.4 The extended Hamilton functional for non-conservative continua

The restriction to isothermal processes of Hamilton’s functional in its classical form according to (57) also
prevents to account directly for dissipation due to microstructure evolution. Consequently, we propose to
replace one K by the entire energy, thus K = −E + W + Q + cint. This yields

H =
∫

τ

(
K − E + W + Q + cint

)
dt (62)

where consideration of the thermal work Q indicates the extension of the classical Hamilton functional. For
other coupled problems, the replacement of one kinetic energy termhas to be adapted according to the respective
form of energy conservation, i.e., taking into account Poynting’s theorem which includes Joule heating [49],
for instance. Inserting the formulas for internal energy E , mechanical workW and thermal workQ introduced
in Eqs. (8), (11), and (15), and setting cint = 0, we obtain for Hamilton’s functional

H =
∫

τ

(
K −

∫

�

ρ(0) �̄ dV −
∫

�

ρ(0) θ s̄ dV +
∫

∂�

t	 (0) · u dA

+
∫

�

b	 (0) · u dV −
∫

∂�

∫
q(0) · n(0) dt dA +

∫

�

∫
ρ(0) h̄ dt dV

)
dt . (63)

By inserting (56) into (63), we receive for Hamilton’s functional

H =
∫

τ

(
K − G −

∫

�

ρ(0) θ s̄ dV −
∫

∂�

∫
q(0) · n(0) dt dA +

∫

�

∫
ρ(0) h̄ dt dV

)
dt . (64)

In contrast to the classical form of Hamilton’s functional according to (57), the extended form in (64) also
accounts for non-isothermal contributions which covers both conservative and non-conservative processes that
are accompanied by changes of the state variable θ . This extension, as we will show in the following, allows
to derive field equations for all physical state variables including temperature and internal variables.

For the following derivations, it is beneficial to reformulateH. To this end, let us make use of the entropy
equivalence according to (23) as

ρ(0) θ ˙̄s = 1

θ
q(0) · ∇Xθ − ∇X · q(0) + ρ(0) h̄ + θ�s . (65)

Integration by parts yields
∫

ρ(0) θ ˙̄s dt = ρ(0) θ s̄ −
∫

ρ(0) θ̇ s̄ dt (66)

=
∫

1

θ
q(0) · ∇Xθ dt −

∫
∇X · q(0) dt +

∫
ρ(0) h̄ dt +

∫
θ�s dt

⇔ −ρ(0) θ s̄ −
∫

∇X · q(0) dt +
∫

ρ(0) h̄ dt = −
∫

ρ(0) θ̇ s̄ dt −
∫

1

θ
q(0) · ∇Xθ dt −

∫
θ�s dt

when mass conservation ρ̇(0) = 0 is considered. As already mentioned above, the antiderivative
∫

θ�s dt
does not exist as rational mathematical formula: application of the fundamental theorem of calculus would
suppress the path-dependence of the entropy production. Consequently, the antiderivative has to be modeled
appropriately if necessary. Finally, inserting (66) into (64) yields the

Extended Hamilton functional

H =
∫

τ

(
K − G −

∫

�

∫
ρ(0) θ̇ s̄ dt dV −

∫

�

∫
1

θ
q(0) · ∇Xθ dt dV −

∫

�

∫
θ�s dt dV

)
dt (67)

which is valid for thermo-mechanically coupled problems and dissipative microstructure evolution.

It is worth mentioning that the presentation of Hamilton’s functional in (67) includes antiderivatives with
respect to time, i.e.,

∫ • dt , which constitutes a generalization of Hamilton’s functional in the classical sense,
where only isothermal processes have been accounted for. Consequently, the unspecific time integrals are not
present in the classical form. However, they resemble methods using time-incremental variations, see, e.g.,
[41,42,53].
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5.5 The extended Hamilton principle for non-conservative continua

The extended Hamilton principle for non-conservative continua postulates that Hamilton’s functional in (67)
tends to be stationary for the state variables. Usually, the stationarity conditions with respect to displacements
and internal variables are investigated. However, we propose that the stationarity conditions with respect to
all state variables shall be investigated. This, obviously, comprises the stationarity condition with respect to
temperature. Then, the stationarity is recast in formulas as

H → stat
u,θ,α

⇔ δH = δuH + δθH + δαH = 0 ∀ δu, δθ, δα . (68)

Since the variations of u, θ , and α are independent, the necessary conditions for stationarity constitute as
⎧
⎪⎨

⎪⎩

δuH = 0 ∀ δu
δθH = 0 ∀ δθ

δαH = 0 ∀ δα

. (69)

This set of equations describes, in a unified way, the evolution of the thermomechanical state of solids, given
in terms of {u, θ, α}. Let us evaluate the stationarity conditions by computing the Gâteaux derivatives with
respect to u, θ , and α. They read

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δuH =
∫

τ

(
δuK − δuG

)
dt = 0 ∀ δu ,

δθH =
∫

τ

(
− δθG −

∫

�

∫
δθ (ρ

(0) θ̇ s̄) dt dV

−
∫

�

∫
δθ

(1

θ
q(0) · ∇Xθ

)
dt dV −

∫

�

∫
δθ

(
θ�s) dt dV

)
dt = 0 ∀ δθ ,

δαH =
∫

τ

(
− δαG −

∫

�

∫
δα

(
θ�s) dt dV

)
dt = 0 ∀ δα .

(70)

We postpone the detailed evaluation of (70) to Sect. 6 and present directly the results, which are the

Field equations for the thermo-mechanical state variables u, θ, α

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

(
∇X · PT + b	 (0)

)
· δu dV =

∫

�

ρ(0) ü · δu dV
∫

∂�

(
n(0) · PT − t	 (0)

)
· δu dA = 0

(71)

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

(

κ θ̇+∇X · q(0) + 28)

[
∂�(0)

∂α
+ θ

∂

∂θ

∂�(0)

∂α

]

· α̇ − 2θ
∂S
∂θ

: Ċ
)

δθ dV = 0
∫

∂�

n(0) · q(0) δθ dA = 0

(72)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�

(∂�(0)

∂α
− ∇X · ∂�(0)

∂∇Xα
+ ∂�diss

∂α̇

)
· δα dV = 0

∫

∂�

n(0) · ∂�(0)

∂∇Xα
· δα dA = 0

(73)

It is worth mentioning that the balance of linear momentum in (71) is identical to the one which
results from Hamilton’s principle in its classical form, which is equivalent to the stationarity of the
total potential in the quasi-static case, i.e. ü ≈ 0. However, the stationarity of the extended Hamilton
functional yields also the heat equation in (72). Here, two heat sources are present without any further
assumptions: i) the heat production due to microstructure evolution; and ii) the thermo-elastic coupling
term 2θ ∂S

∂θ
: Ċ . Note that the classical form of the heat conduction equation results if the dependence

on temperature of both, the thermodynamic driving force and the 2nd Piola Kirchhoff stress tensor
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S can be neglected. Furthermore, the stationarity condition with respect to the internal variables in
(73) constitutes a partial differential equation (PDE) which accounts both for local and non-local
effects and, thus, is a more general form than the ODE as the evolution equation in (34). The system
of equations is closed when

• the free energy density per undeformed unit volume �(0),
• the heat flux vector q(0),
• and the dissipation function �diss

have been modeled by suitable constitutive equations.

Let us investigate the consequences of the field equations for the thermo-mechanical state variables.

5.5.1 Displacements

We start with (71). The first line is identified as the principle of virtual work that is widely used in mechanics
and serves as fundamental equation for defining boundary value problems in solid mechanics; furthermore,
the Euler–Lagrange equation as

∇X · PT + b	 (0) = ρ(0) ü ∀ X ∈ � (74)

can be identified as the local form of the balance of linear momentum in the reference configuration. The
second line is identified as Cauchy’s theorem

n(0) · PT =P · n(0) = F · S · n(0) = t	 (0) ∀ X ∈ ∂� (75)

which serves as Neumann boundary condition for the displacements. The 2nd Piola–Kirchhoff stress tensor is
denoted by S = 2ρ(0) ∂�̄/∂C.

5.5.2 Temperature

If we use, for instance, Fourier’s law q̇(0) = −λ∇Xθ with the thermal conductivity λ and make use of the
definition for the thermodynamic driving forces p = −ρ(0)∂�̄(0)/∂α =: −∂�(0)/∂α according to (32), we
thus obtain for (72)

κθ̇ = p · α̇+λ∇X · ∇Xθ ∀ X ∈ � (76)

when we neglect thermo-elastic coupling and a possible dependence of the driving forces on temperature,
i.e., ∂S

∂θ
: Ċ ≈ 0 and ∂ p

∂θ
≈ 0. This field equation is nothing but the heat equation: temperature evolves in

time and space, while thermodynamic driving force times thermodynamic flux, i.e., p · α̇, serves as local
process-specific heat source due to microstructural evolution.

The boundary condition

n(0) · ∇Xθ = 0 ∀ X ∈ ∂� (77)

of vanishing temperature gradient at the surface corresponds to an adiabatic system. Other conditions, i.e.,
non-vanishing Neumann boundary conditions, can be easily considered: a nonzero heat flux at the surface can
be accounted for by replacing

H → Hthermal BC with Hthermal BC = H +
∫

τ

∫

∂�

∫
γ̃ 	 (0)θ dt dA dt (78)

and the temperature-specific heat at the surface γ̃ 	 (0). Then, δθHthermal BC = 0 comprises the modified surface
condition

∫

∂�

∫ (
θ γ̃ 	 (0) − λn(0) · ∇Xθ

)
δθ dt dA = 0 (79)
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for inhomogeneous thermal boundary conditions and consequently

λn(0) · ∇Xθ = γ 	 (0) . (80)

The heat at the surface γ 	 (0) is given in terms of the temperature-specific heat γ̃ 	 (0) through γ 	 (0) = γ̃ 	 (0)θ .
Similarly, the extension

H → Hinner heat source with Hinner heat source = H −
∫

τ

∫

�

∫
ρ(0) h̃	 (0)θ dt dV dt (81)

results in the heat equation

κθ̇ = p · α̇+λ∇X · ∇Xθ + ρ(0) h̄	 (82)

with the heat source h̄	 = θ h̃	 (0). For isothermal processes, this equation reduces correctly to, cf. (118) and
(87),

ρ(0) θ s̄ =
∫

pdiss · α̇ dt=
∫

p · α̇ dt =
∫

−∂�

∂α
· α̇ dt =:

∫
−�̇α dt (83)

with the dissipative part of the rate of the free energy density �̇α .

5.5.3 Internal variables

From (73), we find the strong form of the field equation for the internal variables, given as

∂�diss

∂α̇
= p + ∇X · ∂�(0)

∂∇Xα
∀ X ∈ � . (84)

It is worth mentioning that (84) constitutes as a PDE for the internal variables. To this end, the dissipation
function �diss needs to be modeled. More details are given in Sect. 5.5.5. The Neumann boundary condition
is given as

n(0) · ∂�(0)

∂∇Xα
= 0 ∀ X ∈ ∂� . (85)

We present the relation of the stationarity of the extended Hamilton principle to the principle of the
minimum of the dissipation potential in Sect. 5.5.4 and give the most important modeling approaches for�diss

in Sect. 5.5.5. Finally, in Sect. 5.5.6, we show that material models obtained by the extendedHamilton principle
are thermodynamically sound by construction and present the strong form of the stationarity conditions for
the case of linearized kinematics.

5.5.4 Simple materials

Let us investigate the consequences of the stationarity with respect to the internal variables in more detail.
Thus, we start by considering a so-called simple material, i.e., �(0) �= �(0)(∇Xα) ⇒ ∂�(0)/∂∇Xα = 0, the
evolution equation reduces to

∂�diss

∂α̇
+ ∂�(0)

∂α
= 0 (86)

which we can write in an alternative form as

pdiss = p (87)

with the non-conservative force pdiss = ∂�diss/∂α̇, cf. (123), and p = −∂�(0)/∂α. We recognize that (87) is
thewell-knownBiot’s equation [6,45]whichwas postulated as fundamental equation to describemicrostructure
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evolution. Interestingly, assuming stationarity of Hamilton’s functional with respect to the internal variables
results in the very same equation. From (34), we furthermore obtain the relation

ps = 1

θ
pdiss (88)

which indicates that ps is the temperature-specific non-conservative force.
After integration with respect to α̇, a potential form of (86) reads

L := �̇(0) + �diss → stat
α̇

(89)

when the integration constant is set to ∂�(0)

∂C : Ċ + ∂�(0)

∂θ
θ̇ . Consequently, for simple materials, the extended

Hamilton principle demands stationarity of the so-called dissipation potential L which is known as principle
of the minimum of the dissipation potential [21]. It is worth mentioning that this principle could be extended
to non-isothermal processes [29], but there, the heat equation was—as usual—derived from the balance of
energy. In case of using Hamilton’s principle, in contrast, the heat equation follows as stationarity condition
of a variational problem.

5.5.5 Specification of the dissipation function and the non-conservative force

Along with the free energy density �(0) and the heat flux vector q(0), the dissipation function �diss, or
alternatively the non-conservative force pdiss, has to be defined to close the system of equations. Here, two
approaches cover the majority of material behavior:

pdiss = pdissRD := η α̇ and pdiss = pdissRI := r
α̇

||α̇|| . (90)

Rate-dependent microstructure evolution is covered by pdissRD where η is the viscosity. Hereby, viscous
microstructure evolution can be modeled as, for instance, in visco-elasticity. In contrast, rate-independent
microstructure evolution is covered by pdissRI as it appears in modeling of, e.g., elasto-plastic material behavior.
The related dissipation functions are

�diss
RD = 1

2
η ||α̇||2 and �diss

RI = r ||α̇|| . (91)

By using the definition (33) and the relation (88) which gives �s = ps · α̇ = pdiss · α̇/θ , we can relate the
dissipation functions to the entropy production as

�s
RD = 2

θ
�diss

RD and �s
RI = 1

θ
�diss

RI . (92)

In case of rate-independent evolution, an associated indicator function, i.e., a yield function, is missing.
Again, two variants are possible. One variant is a so-called non-associated material law, i.e.,

α̇ �∝ ∂�

∂ p
. (93)

In this case, the yield function has to be defined independently. The other variant is an associated material
law. Here, the yield function is not modeled, but it results from modeling the dissipation function �diss. It
can be identified by mathematically analyzing the Legendre transformation of �diss

RI which exchanges the
thermodynamic flux α̇ by the total thermodynamic driving force ptotal := p+ ∇X · ∂�/∂∇Xα. Thus, making
use of the dissipation function for rate-independent evolution, (73) transforms to

r
α̇

||α̇|| � ptotal (0) ⇔ α̇ � ||α̇||
r

ptotal (0) . (94)

Equation (86) indicates that the derivative of the dissipation function equals the thermodynamic driving force.
This allows to apply a Legendre transformation to exchange the rate of internal variables α̇ by its conjugated
variable which is given by ptotal. This Legendre transformation yields the indicator function

�diss LT
RI = sup

α̇

{
ptotal · α̇ − �diss

RI

}



1946 P. Junker, D. Balzani

= sup
α̇

{ ||α̇||
r

(
|| ptotal||2 − r2

)}

=
{

∞ for || ptotal|| > r
0 for || ptotal|| ≤ r

(95)

when (94) has been inserted. Hence, the yield function, also known, e.g., from plasticity, is identified as

� := || ptotal|| − r ≤ 0 . (96)

Consequently, the parameter r serves as energetic threshold value for microstructural evolution.
Combination of the rate-dependent and rate-independent non-conservative forces by

pdiss = pdissVP := η α̇ + r
α̇

||α̇|| (97)

with the related dissipation function

�diss
VP = 1

2
η ||α̇||2 + r ||α̇|| (98)

results in a visco-plasticmaterial behavior, i.e., a viscousmicrostructure evolution takes place once the energetic
threshold r has been reached. The evolution equation resulting form Hamilton’s principle in this case reads

α̇ = 1

η
�+

ptotal

|| ptotal|| (99)

where �+ := (� + |�|)/2 denotes the Macaulay bracket.

5.5.6 Final remarks

For the presented approaches for the non-conservative forces, Onsager’s principle of proportionality between
thermodynamic fluxes and thermodynamic forces is obtained. It is thus obvious that for all cases, rate-
dependent, rate-independent, and visco-plastic microstructure evolution, thermodynamic consistency is ful-
filled: by inserting the respective evolution equations into the dissipation inequality (31), we find for all cases

g ptotal · ptotal = g || ptotal (0)||2 ≥ 0 (100)

where g ≥ 0 since

g =

⎧
⎪⎨

⎪⎩

η−1 for rate-dependent processes
r−1||α̇|| for rate-independent processes
η−1�+|| ptotal (0)||−1 for visco-plastic material behavior

. (101)

Consequently, material models derived using Hamilton’s principle agree by construction with the fundamental
thermodynamic laws if appropriate modeling approaches for the dissipation function�diss, i.e., or alternatively
for non-conservative force pdiss, are made.

The local form of the stationarity conditions for the case of linearized kinematics is given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · σ + b	 = ρ ü

κ θ̇ = θ
∂σ

∂θ
: ε̇ +

[

p + θ
∂ p
∂θ

]

· α̇+λ∇ · ∇θ

∂�diss

∂α̇
= p + ∇ · ∂�

∂∇α

∀ x ∈ � (102)

with the constitutive relation σ = ∂�/∂ε, the strain tensor ε = (∇u+u∇)/2, the heat flux vector q = −λ∇θ ,
the thermodynamic force p = −∂�/∂α, and the boundary conditions

⎧
⎪⎨

⎪⎩

n · σ = t	

λn · ∇θ = γ 	

n · ∇α = 0
∀ x ∈ ∂� . (103)

The general use of classical approaches and Hamilton’s principle is depicted in Figs. 1 and 2, respectively.
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Fig. 1 General use of classical approaches: the free energy density �(0), the heat flux vector q(0), and the dissipation function
�diss, sometimes also called dissipation potential or, although being mathematically imprecise, dissipation functional, have to be
specified along with possible constraints (instead of modeling q(0), appropriate extensions of �diss are also possible, cf. [23]).
Alternatively to �diss, the modeling of the yield function � is possible. Then, balance of linear momentum, which constitutes
as strong form of the minimum of the total potential for quasi-static processes, i.e., ü ≈ 0, and the energy balance, yielding the
strong form for the heat conduction equation, have to be evaluated. Furthermore, material modeling has to be performed. Possible
strategies for the derivation of material models are the principle of maximum dissipation (PMD), the principle of the minimum
of the dissipation potential (PMDP), and others. The entire procedure, however, does not provide (direct) access to transient field
equations for the internal variables α. Furthermore, coupling is not inherently ensured

Fig. 2 General use of the extended Hamilton principle: the free energy density �(0), the heat flux vector q(0), and the dissipation
function �diss have to be specified along with possible constraints. Evaluation of the extended Hamilton principle δH = 0 yields
the set of transient field equations for all state variables
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6 Derivation of the stationarity conditions

We show in this section that the field equations (71,72,73) follow after detailed evaluation of the stationarity
conditions in (70). To this end, we consider the functional dependency �̄ := �̄(C(∇Xu), θ, α, ∇Xα) for all
derivations which follow.

6.1 Stationarity with respect to the displacements

The stationarity condition with respect to u in (70)1 is given by

δuH =
∫

τ

( ∫

�

ρ(0) u̇ · δu̇ dV −
∫

�

ρ(0) ∂�̄

∂C
: δC dV +

∫

∂�

t	 (0) · δu dA +
∫

�

b	 (0) · δu dV
)
dt = 0 . (104)

The first and the second integral can be evaluated by integration by parts, yielding
∫

τ

∫

�

ρ(0) u̇ · δu̇ dV =
∫

�

ρ(0) u̇ · δu
∣
∣
∣
t1

t0
dV −

∫

τ

∫

�

ρ(0) ü · δu dV (105)

and
∫

�

ρ(0) ∂�̄

∂C
: δC dV =

∫

�

S : 1
2
δC dV =

∫

�

P : δF dV =
∫

�

PT : ∇Xδu dV

=
∫

∂�

n(0) · PT · δu dA −
∫

�

∇X · PT · δu dV . (106)

As done for the principle of stationary action, we assume that the displacement at the arbitrary time points
t0 and t1 that define the interval over which Hamilton’s functional is evaluated is fixated and thus vanishing
variations are present, i.e., δu|t1t0 = 0. Thus, we find

δuH =
∫

�

(
− ρ(0) ü + ∇X · PT + b	 (0)

)
· δu dV −

∫

∂�

(
n(0) · PT − t	 (0)

)
· δu dA . (107)

Surface and volume are independent for which the conditions have to hold for surface and volume integrals
separately. Consequently, we find for δuH = 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�

(
∇X · PT + b	 (0)

)
· δu dV =

∫

�

ρ(0) ü · δu dV

∫

∂�

(
n(0) · PT − t	 (0)

)
· δu dA = 0

(108)

which is exactly (71).

6.2 Stationarity with respect to temperature

The stationarity condition δθH in (70)2 is computed as

δθH = −
∫

�

ρ(0) ∂�̄

∂θ
δθ dV −

∫

�

∫
ρ(0) s̄ δθ̇ dt dV

+
∫

�

∫
1

θ2
q(0) · ∇Xθ δθ dt dV −

∫

�

∫
1

θ
q(0) · ∇Xδθ dt dV −

∫

�

∫
�sδθ dt dV = 0 (109)

where we evaluated the variation for fixated heat flux vector and entropy production implying δθ q̇(0) = 0 and
∂�s/∂θ = 0.



An extended Hamilton principle as unifying theory 1949

Remark: the purpose of entropy is the consideration of path-dependence by “constraining” the physical
processes to evolve only in an irreversible manner. This is expressed in terms of the entropy balance and
the dissipation inequality, cf. (24). The current value of entropy can be either computed by evaluation of the
constitutive equation (28) once the state variables u, θ and α are known or from the process the material and
its microstructure have gone through (22). However, since we make use of the state variables u, θ and α, the
entropy is always a consequence of the dissipative processes. To be more precise, entropy does not adjust itself
such that some energetic quantity would be stationary (in contrast to the strains which minimize the free energy
in a simple elastic and iso-thermal setting). Consequently, although possessing a functional dependency on the
temperature, we freeze the entropy for the computation of the variation ofH with respect to temperature, i.e.,
δθ s̄ = 0.

Remark: the entropyproduction�s = ps·α̇, cf. (33),might have a functional dependencyon the temperature
through ps = ps(θ). However, this functional dependency is not taken into account for the computation of
the stationarity: the non-conservative forces ps do not adjust themselves to turn H stationary with respect
to temperature. In contrast, they depend on the processes that evolve in the material. Therefore, the non-
conservative forces are determined by the material properties, e.g., rate-dependent or rate-independent, and
have to be modeled in analogy to the mechanical forces which neither adjust themselves to let H become
stationary (with respect to u).

It is convenient to eliminate all derivatives of δθ , i.e., ∇Xδθ and δθ̇ , by performing integration by parts in
space and time, respectively. We thus compute

−
∫

�

∫
ρ(0) s̄ δθ̇ dt dV = −

∫

�

ρ(0) s̄ δθ dV +
∫

�

∫
ρ(0) ˙̄s δθ dt dV , (110)

where we used mass conservation as ρ̇(0) = 0, and

−
∫

�

1

θ
q(0) · ∇Xδθ dV = −

∫

∂�

1

θ
n(0) · q(0) δθ dA +

∫

�

∇X ·
(q(0)

θ

)
δθ dV

= −
∫

∂�

1

θ
n(0) · q(0) δθ dA

−
∫

�

1

θ2
q(0) · ∇Xθ δθ dV +

∫

�

1

θ
∇X · q(0) δθ dV . (111)

Inserting these results into (109) yields

δθH = −
∫

�

ρ(0) ∂�̄

∂θ
δθ dV −

∫

�

ρ(0) s̄ δθ dV +
∫

�

∫
ρ(0) ˙̄s δθ dt dV

−
∫

∂�

∫
1

θ
n(0) · q(0) δθ dA dt +

∫

�

∫
1

θ
∇X · q(0) δθ dt dV −

∫

�

∫
�sδθ dt dV . (112)

Making use of the constitutive law for entropy (28), i.e., s̄ = −∂�̄/∂θ , the stationarity condition simplifies to

δθH = −
∫

∂�

∫
1

θ
n(0) · q(0) δθ dA dt +

∫

�

∫ (
ρ(0) ˙̄s + 1

θ
∇X · q(0) − �s

)
δθ dt dV . (113)

Let us introduce �(0) = ρ(0) �̄ and s(0) = ρ(0) s̄. Then, the rate of entropy is given by

ṡ(0) = − d

dt

∂�(0)

∂θ
= − ∂

∂θ

[
∂�(0)

∂C
: Ċ + ∂�(0)

∂θ
θ̇ + ∂�(0)

∂α
· α̇

]

(114)

when the constitutive equation s(0) = −∂�(0)/∂θ in (28) is used. Considering the definition of the 2nd
Piola–Kirchhoff stress tensor S and the heat capacity κ := −θ∂2�(0)/∂θ2, cf. [1], the rate of entropy can be
expressed as

θ ṡ(0) = −2θ
∂S
∂θ

: Ċ + κ θ̇ − θ
∂ p
∂θ

· α̇ . (115)
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Furthermore, we recall the definition for the entropy production according to (33) �s = ps · α̇ which, after
consideration of (34) and (87), equals �s = pdiss · α̇/θ= p · α̇/θ . Then, (113) transforms to

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

∫
1

θ

(

κθ̇ + ∇X · q(0)−2θ
∂S
∂θ

: Ċ −
[

p + θ
∂ p
∂θ

]

· α̇

)

δθ dt dV = 0 ∀X ∈ �
∫

∂�

∫
1

θ
n(0) · q(0) δθ dt dA = 0 ∀X ∈ ∂�

(116)

from which (72) immediately follows.
An important special case are isothermal processes forwhich∇Xθ = 0 and δθ �= δθ(t) hold. Consequently,

we can write for (109)

−
∫

�

ρ(0) ∂�̄

∂θ
δθ dV −

∫

�

∫
�s dt δθ dV = 0 (117)

and thus

ρ(0)s̄ = s(0) =
∫

�s dt . (118)

6.3 Stationarity with respect to internal variables

We consider non-local effects of the microstructure and, hence, of the internal variable. Consequently, the
free energy is assumed to be modeled as gradient-enhanced quantity with respect to α such that the related
stationarity condition in (70)3 takes the form

δαH = −
∫

�

ρ(0) ∂�̄

∂α
· δα dV −

∫

�

ρ(0) ∂�̄

∂∇Xα
: ∇Xδα dV −

∫

�

∫
δα(θ�s) dt dV = 0 . (119)

Integration by parts of the second term results in

∫

�

ρ(0) ∂�̄

∂∇Xα
: ∇Xδα dV =

∫

∂�

ρ(0) n(0) · ∂�̄

∂∇Xα
· δα dA −

∫

�

ρ(0) ∇X · ∂�̄

∂∇Xα
· δα dV (120)

We recognize that the third term in (119) is the only one that includes the antiderivative with respect to time.
It is thus convenient to introduce

∫
θ�s dt =: D . (121)

The quantity D possesses the physical unit of a volume-specific energy, and thus, it is referred to as dissipated
energy. Modeling D independently to θ�s violates the fundamental theorem of calculus as intended: hereby,
a physically motivated path-dependence is ensured. Consequently, the stationarity condition with respect to
microstructure is given by

δαH = −
∫

�

(
ρ(0) ∂�̄

∂α
− ρ(0) ∇X · ∂�̄

∂∇Xα
+ ∂D

∂α

)
· δα dV −

∫

∂�

ρ(0) n(0) · ∂�̄

∂∇Xα
· δα dA . (122)

Finally, the stationarity with respect tomicrostructure remains to be analyzed. To this end, the dissipated energy
D needs to be specified. We assume a form similar to the mechanical work and postulate

D := pdiss · α . (123)

Thus, dissipated energy is generated, while the non-conservative force pdiss acts “along the microstructure” α.
From the perspective of application this implies that the non-conservative force has to be modeled rather than
the dissipated energy itself. However, D can be computed once the internal variable is known from solving
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(73). The choice of pdiss has to be in accordance with the microstructure evolution, i.e., it has to cover rate-
independent and rate-dependent aspects. Usually, the non-conservative force pdiss is assumed to be derivable
from a dissipation function �diss by

pdiss =: ∂�diss

∂α̇
(124)

which simplifies the modeling of microstructure evolution: in contrast to pdiss, the dissipation function �diss

is a scalar-valued quantity. Consequently, the dissipated energy D in (123) transforms to

D = ∂�diss

∂α̇
· α . (125)

With the definition for the dissipated energy D in (125) and assuming, in analogy to ∂�s/∂θ = 0, that
∂ pdiss/∂α = 0, the stationarity condition with respect to microstructure transforms to

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

(∂�(0)

∂α
− ∇X · ∂�(0)

∂∇Xα
+ ∂�diss

∂α̇

)
· δα dV = 0

∫

∂�

n(0) · ∂�(0)

∂∇Xα
· δα dA = 0

(126)

when (124) has been inserted. Then, (126) equals (73).

7 Examples of the extended Hamilton principle in material modeling

In this section, we show that application of the extended Hamilton principle yields physically reasonable
governing equation. It will be obvious that no “novel” governing equations are obtained; in contrast, we
receive the same material models as already established in the literature. However, they result here from the
stationarity conditions of the extended Hamilton principle.

7.1 Thermo-elastic materials for small deformations

As first example, we apply the formulas to thermo-elastic materials for small deformations. Here, no internal
variable is needed such that α ≡ 0. The free energy density is given by

� = 1

2
(ε − αthθ I) : C : (ε − αthθ I) (127)

with the thermal expansion coefficient αth and the elasticity tensorC. Evaluation of the stationarity conditions
of the extended Hamilton functional then yields

{
∇ · σ + b	 = ρ ü
κ θ̇ = −αth θ tr[C : ε̇] + λ∇ · ∇θ

∀ X ∈ � (128)

with the boundary conditions

{
n · σ = t	

n · ∇θ = 0
∀ X ∈ ∂� (129)

and tr[C : ε̇] = I : C : ε̇.
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7.2 Visco-elastic materials for small deformations

In case of visco-elastic materials with linearized kinematics, the internal variable is the viscous part of the total
strain which is denoted by εv. Here and in the following, we neglect thermo-elastic coupling since the heat
production due to dissipative processes is usually much higher. The free energy density is given by

�mech = 1

2
(ε − εv) : C : (ε − εv) . (130)

For the rate-dependent microstructure evolution, we use

�diss v = η

2
||ε̇v||2 . (131)

The constraint of volume preservation is given in terms of the rates of the viscous strains by

trε̇v = 0 (132)

which is accounted for by expanding the extended Hamilton functional as

Hv = H +
∫

τ

∫

∂�

∫
γ̃ 	θ dt dA dt +

∫

τ

∫

�

g trε̇v dV dt (133)

with a Lagrange parameter g. Note that the second term accounts for prescribed heat flux at the surface.
Application of the extended Hamilton principle, following Fourier’s law and inserting the constraint (132),

yields the following set of equations:
⎧
⎪⎪⎨

⎪⎪⎩

∇ · σ + b	 = ρ ü
κ θ̇ = devσ : ε̇v+λ∇ · ∇θ

ε̇v = 1

η
devσ

∀ X ∈ � (134)

with the boundary conditions
{
n · σ = t	

λn · ∇θ = γ 	 ∀ X ∈ ∂� . (135)

It is worth mentioning that the stress deviator

devσ = σ − I trσ (136)

is a result of the stationarity condition due to the constraint and was not defined in advance.

7.3 Finite elasto-plasticity

In case offinite elasto-plasticity,we follow the standardkinematics by introducing an intermediate configuration
and the multiplicative split

F = Fe · Fp (137)

into an elastic and plastic part of the deformation gradient Fe and Fp, respectively, see [31,32]. The internal
variable is in this case the amount of plastic deformation which we measure by the so-called plastic variable

F̃p := Fp−1 (138)

see, e.g., [10]. The free energy density is given by �̄ = �̄(Fe) = �̄(F, F̃p). Consequently, the 1st Piola–
Kirchhoff stress tensor reads

P = ρ(0) ∂�̄

∂F
= 2ρ(0)F · ∂�̄

∂C
= ρ(0) ∂�̄

∂Fe · F̃pT . (139)
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The thermodynamic driving force is

p = −ρ(0) ∂�̄

∂ F̃p
= −ρ(0) ∂�̄

∂Fe : ∂Fe

∂ F̃p
= −ρ(0)FT · ∂�̄

∂Fe . (140)

The dissipation function is modeled by

�diss p = rp||Fp · ˙̃Fp|| (141)

The motivation for including the plastic deformation gradient Fp will be discussed later. The rate of the plastic
variable is given by

˙̃Fp = −F̃p · Ḟp · F̃p . (142)

Then, the extended Hamilton functional is used as

Hp = H +
∫

τ

∫

∂�

∫
γ̃ 	θ dt dA dt . (143)

The stationarity conditions of Hamilton’s functional demand
⎧
⎪⎪⎨

⎪⎪⎩

∇X · 19)PT + b	 (0) = ρ(0) ü
κ θ̇ = M : Lp+λ∇X · ∇Xθ

Lp � ||Fp · ˙̃Fp||
rp

M =: k M
∀ X ∈ � (144)

where Lp := Ḟ
p · F̃p is the plastic velocity gradient and M := ρ(0) FeT ·∂�̄/∂Fe is the Mandel stress tensor.

Again, we used Fourier’s law for modeling q(0). The boundary conditions follow to be
{
P · n(0) = t	 (0)

λn(0) · ∇Xθ = γ 	 ∀ X ∈ ∂� . (145)

The quantity k is the consistency parameter. Performing a Legendre transformation of the dissipation function
results in the yield function and associated Karush–Kuhn–Tucker conditions

k ≥ 0 , �p := ||M|| − rp ≤ 0 , k �p = 0 . (146)

The parameter r is thus identified as the norm of the yield stress. Comparable plasticity models can be
found, e.g., in [10,21]. Inspection of the evolution equation reveals that with the used choice for �diss p, i.e.,
consideration of Fp, all dependencies on the plastic deformation vanish and thus that the model is invariant
under all plastic deformations.

7.4 Gradient-enhanced damage modeling for small deformations

The internal variable is the scalar-valued damage variable d which enters the damage function f (d) = e−d .
The gradient-enhanced free energy density is given by

�mech = f �mech
0 + 1

2
β||∇ f ||2 with �mech

0 = 1

2
ε : C : ε (147)

and the regularization parameter β := �2 E > 0 which has the physical unit Newton. Here, E denotes the
Young’s modulus and � is the internal length. The dissipation function is chosen to be rate-independent, thus

�diss d = rd|ḋ| . (148)

The extended Hamilton functional is

Hd = H +
∫

τ

∫

∂�

∫
γ̃ 	θ dt dV dt (149)
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such that the stationarity conditions result in

⎧
⎪⎪⎨

⎪⎪⎩

∇ · σ + b	 = ρ ü
κ θ̇ = f �mech

0 ḋ+λ∇ · ∇θ

rd
ḋ

|ḋ| � f �mech
0 − β f∇ · ∇ f

∀ x ∈ � (150)

with the boundary conditions

⎧
⎪⎨

⎪⎩

n · σ = t	

λn · ∇θ = γ 	

βn · ∇ f = 0
∀ X ∈ ∂� . (151)

Analyzing the Legendre transformation of the dissipation function �diss d results in the Karush–Kuhn–Tucker
conditions

ḋ ≥ 0 , �d := f �0 − β f ∇ · ∇ f − rd ≤ 0 , ḋ �d = 0 (152)

with the energetic threshold value for damage initiation and evolution rd. An isothermal version of the model
was presented in [30].

8 Conclusions

In this paper, using the example of thermo-mechanically coupled processes, we showed that Hamilton’s
principle can be extended to provide a unifying theory for coupled problems and dissipative microstructure
evolution. To this end, we presented a brief overview on the history of material modeling and recalled the
fundamentals of thermodynamics. We continued with the principle of stationary action as governing axiom
for an energy-based description of the behavior of rigid particles. Starting from the principle of stationary
action for non-conservative rigid particles, we presented a generalization which is valid for deformable solids.
Combination of the balance of energy and the action functional for continuous bodies resulted in an extended
Hamilton functional. By postulating stationarity of Hamilton’s functional with respect to all state variables,
we obtained Euler–Lagrange equations for the displacements, temperature, and internal variables. The Euler–
Lagrange equations covered all governing equations for solids, including the balance of linear momentum,
Cauchy’s theorem, the principle of virtual work, heat equation, surface heat flux, Biot’s equation, evolution
equations with and without non-local contributions, and the principle of the minimum of the dissipation
potential. Consequently, we showed that Hamilton’s principle unifies the thermo-mechanical field equations
from a variational perspective. For demonstration purposes, we presented the thermo-mechanically coupled
governing equations resulting from the extended Hamilton principle for four exemplary materials: linearized
thermo-elasticity, linearized visco-elasticity, finite plasticity, and rate-independent, gradient-enhanced brittle
damage modeling. For other couplings such as, e.g., electro-mechanical or chemo-mechanical problems, the
analogous analysis remains as open problem for future research.
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