An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

Xin Xu^{a)}

State Key Laboratory for Physical Chemistry of Solid Surfaces; Center for Theoretical Chemistry, Department of Chemistry, Xiamen University, Xiamen 361005, China and Materials and Process Simulation Center, Beckman Institute (139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Qingsong Zhang, Richard P. Muller, and William A. Goddard IIIb)

Materials and Process Simulation Center, Beckman Institute (139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

(Received 15 June 2004; accepted 10 September 2004; published online 13 December 2004)

We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with R_e and D_e within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions. © 2005 American Institute of Physics. [DOI: 10.1063/1.1812257]

I. INTRODUCTION

Density-functional theory¹ (DFT) has become the method of choice for first principles quantum chemical calculations of the electronic structure and properties of many molecular and solid systems. With the exact exchange-correlation functional, DFT could take into full account of all complex many-body effects at a computational cost characteristic of mean-field approximations.¹ However, the exact exchange-correlation functional is unknown, making it essential to pursue more and more accurate and reliable approximate functionals.

Various approximations to the exchange-correlation energy have been developed and tested in recent decades.²⁻⁴¹ A foundation of most approaches is the local density approximation (LDA) based on solutions of the uniform electron gas (UEG).²⁻⁴ It is well documented that LDA yields results of good or moderate accuracy for such properties as lattice constants, bulk moduli, equilibrium geometries, and vibrational frequencies.⁵ However, LDA leads to bond energies and cohesive energies far too large, making it "not useful for thermochemistry."⁶

The generalized gradient approximation (GGA) includes the first-order gradient of the density.⁷ The most popular GGA functionals⁷⁻¹⁷ include

- (i) the B88 exchange functional (Becke⁸) which is often combined with the LYP correlation functional, due to Lee-Yang-Parr;^{11,12} and
- (ii) the "nonempirical" exchange-correlation functionals, PW91⁹ and PBE, ¹⁰ due to Perdew and co-workers.

These GGAs significantly reduce the overbinding tendency of LDA, but generally remain inadequate for thermochemistry of molecules. ^{6,21–23}

A big step toward greater accuracy was the introduction of hybrid methods²⁴ that include some amount of "exact exchange" on the basis of the adiabatic connection formula.^{24–26} The most effective hybrid method is B3LYP,²⁷ which is formulated as:

$$\begin{split} E_{\text{xc}}^{\text{B3LYP}} &= a_0 E_x^{\text{exact}} + (1 - a_0) E_x^{\text{Slater}} + a_x \Delta E_x^{\text{B88}} + a_c E_c^{\text{VWN}} \\ &\quad + (1 - a_c) E_c^{\text{LYP}}, \end{split} \tag{1}$$

where a_0 =0.20, a_x =0.72, and a_c =0.19. These parameters were derived by Becke from a linear least-squares fit to 56 atomization energies, 42 ionization potentials and 8 proton affinities. ²⁴ These hybrid methods fail to account for van der Waals interactions. ^{6,29,30}

Numerous efforts have been made to extend GGAs to include these long-range interactions. $^{31-35}$ Within the framework of GGA, Adamo and Barone optimized the exponent of the s^d term and the β constant of the PW91 functional, fitting at the same time the exact exchange energies of isolated atoms and the differential exchange energy of noble gas

a) Author to whom correspondence should be addressed. Electronic mail xinxu@xmu.edu.cn

b) Electronic mail: wag@wag.caltech.edu

dimers (He₂,Ne₂) near their van der Waals minima. ¹⁶ The resulting mPWPW model is superior to the original PWPW functional for these interactions. ¹⁶ Perdew, Burke, and Ernzerhof (PBE¹⁰) presented a simplified GGA claimed to improve six shortcomings over PW91. Although PBE is not specifically designed for van der Waals systems, it does show the best performance among conventional GGAs. ^{36–38} However, PBE does not pass the test of 93 chemical systems designed by Handy and co-workers, who concluded that PBE "cannot be recommended for chemistry." ³⁹

We present here the X3LYP extended functional, which predicts accurate electronic and thermodynamic properties of molecular systems with improved descriptions of the equilibrium properties of hydrogen bonded and van der Waals systems, thus greatly extending the applicability of density-functional theory.

II. FORMULATION OF THE EXTENDED FUNCTIONAL

A. Background

We will assume that the exchange-correlation functional is separable

$$E_{xc} = E_x + E_c. (2)$$

Since the magnitude of the correlation energy is generally less than 10% of the exchange energy, we consider that it is most important that the exchange functional be accurate.⁴¹ Thus in the present work we choose the LYP^{11,12} correlation functional and focus on developing an improved exchange functional.

The exchange energy, E_x , is expressed as

$$E_x = \int \epsilon_x [\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|, \dots] d\mathbf{r}, \tag{3}$$

where ϵ_x is the exchange energy distribution per unit volume.

In LDA²

$$\epsilon_{x}^{\text{LDA}}(\rho) = A_{x}\rho(\mathbf{r})^{4/3},$$
 (4)

where $A_x = -\frac{3}{4}(3/\pi)^{1/3}$. Thus ϵ_x^{LDA} depends on the density only at the point where it is evaluated.

In GGA

$$\epsilon_x^{\text{GGA}}(\rho, |\nabla \rho|) = \epsilon_x^{\text{LDA}} \cdot F(s),$$
 (5)

where F(s) is an enhancement factor and s is the dimensionless gradient defined as⁷

$$s = \frac{|\nabla \rho|}{(24\pi^2)^{1/3} \rho^{4/3}}.$$
 (6)

The well-established B88 exchange functional takes the $\ensuremath{\text{form}^8}$

$$F^{\text{B88}}(s) = \frac{1 + s \cdot a_1 \cdot \sinh^{-1}(s \cdot a_2) + a_3 \cdot s^2}{1 + s \cdot a_1 \cdot \sinh^{-1}(s \cdot a_2)}.$$
 (7)

Another popular exchange functional is PW91⁹

$$F^{\text{PW91}}(s) = \frac{1 + s \cdot a_1 \cdot \sinh^{-1}(s \cdot a_2) + (a_3 + a_4 \cdot e^{-100s^2})s^2}{1 + s \cdot a_1 \cdot \sinh^{-1}(s \cdot a_2) + a_5 \cdot s^d}.$$
(8)

Here $a_2 = (48\pi^2)^{1/3}$, $a_1 = 6\beta \cdot a_2$, $a_3 = -a_2^2/(2^{1/3}A_x) \cdot \beta$, $a_4 = 10/81 - a_3$, $a_5 = -a_2^4 \times 10^{-6}/(2^{1/3}A_x)$, and d = 4. Becke obtained $\beta = 0.0042$ from fitting to Hartree–Fock (HF) exchange energies for the noble gas atoms. Note that if a_4 and a_5 are set to zero, PW91 exchange has the same form as R88

The PBE exchange functional takes the form¹⁰

$$F^{\text{PBE}}(s) = \frac{1 + 0.49253s^2}{1 + 0.27302s^2}.$$
 (9)

The $F^{\text{B88}}(s)$, F^{PW91} , and $F^{\text{PBE}}(s)$ functions are plotted in Fig. 1. These three functions are similar for small s, but differ significantly for large s, which is the region believed to be important for describing van der Waals systems.⁴¹

It has been shown that as r approaches infinity, $\rho(r)$ approaches $\exp(-\alpha r)$ so that

$$\lim_{r \to \infty} \epsilon_x = -\frac{\rho(r)}{2r} \text{ (Condition 1)}.$$
 (10)

 $F^{\rm B88}(s)$ assures this correct asymptotic behavior of the exchange energy density.⁸

Levy and Perdew showed that some scaling properties can be satisfied if the asymptotic form of the functional for large s is $s^{-\alpha}$, where $\alpha \ge 1/2$ (Condition 2).⁴² Another condition is the Lieb-Oxford bound (Condition 3),⁴³ which in its global version states that⁴³

$$E_x \ge E_{xc} \ge -1.679 \int \rho(r)^{4/3} dr.$$
 (11)

The local Lieb-Oxford bound suggests that F(s) should be bound from above at large s.

B88 violates Conditions 2 and 3. It is the $a_5 \cdot s^4$ term in $F^{\text{PW91}}(s)$ that leads the PW91 exchange functional to obey the Levy scaling inequalities and the Lieb–Oxford bound. However, PW91 violates Condition 1.

Condition 1 and Conditions 2 and 3 cannot be simultaneously satisfied by functionals of the GGA form. Thus the large s behavior cannot be uniquely fixed with these mathematical conditions. It has been argued that the Lieb–Oxford bound is more important than other conditions for a weakly bound system. ⁴⁴ In fact, PBE sacrifices Condition 2 to avoid the F(s) turnover of PW91, which is suspected to cause spurious wiggles in the potential for large s. ¹⁰

B. Gaussian-type density decay

According to the Fermi–Amaldi model, ^{18,19} the exchange energy $E_x(\rho)$ may be approximated by the classical Coulomb repulsion $J(\rho)$ via:

$$E_{x}(r) = -\frac{J(\rho)}{N},\tag{12}$$

$$J(\rho) = \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|r-r'|} d\mathbf{r} d\mathbf{r}', \tag{13}$$

where N is the total number of electrons of the system concerned.

The exchange potential $V_x(\mathbf{r})$ associated with Eq. (12) is

$$V_x(\mathbf{r}) = \frac{\delta E_x(\rho)}{\delta \rho(r)} = -\frac{1}{N} \int \frac{\rho(r')}{|r - r'|} d\mathbf{r}' = -\frac{V_c(\mathbf{r})}{N}, \quad (14)$$

where $V_c(\mathbf{r})$ is the Coulomb potential and N has been kept fixed in deriving (14).

To get $E_x(\rho)$ from $V_x(r)$, one may use

$$E_x(\rho) = \frac{1}{2} \int \rho(r) V_x(r) d\mathbf{r}. \tag{15}$$

As most DFT calculations on finite molecules use Gaussian basis functions, we therefore, consider that the long-range behavior of the electron density may have the form of a Gaussian function²⁰

$$\lim_{r \to \infty} \rho(r) = 2 \left(\frac{2Z}{\pi} \right)^{3/2} e^{-2Zr^2}.$$
 (16)

Inserting (16) into (14), one finds

$$V_x^{\text{Gauss}}(r) = -\frac{\text{erf}(\sqrt{2Z}r)}{r}.$$
 (17)

Since $\lim_{r\to\infty} (\operatorname{erf}(\sqrt{2Z}r)) = 1$, it is clear from Eqs. (3), (15), and

(17) that Condition 1 is fulfilled for a Gaussian-type density. Combining Eqs. (3)–(5) with Eq. (15) gives

$$F(r) = \frac{V_x(r)}{2A_x \rho^{1/3}(r)}. (18)$$

Thus we arrive at

$$F^{\text{Gauss}}(r) = \frac{(2\pi^5)^{1/6} \operatorname{erf}(\sqrt{2Z}r)}{3^{4/3} e^{-2Zr^2/3} \sqrt{Z}r}$$
(19)

by inserting Eqs. (16) and (17) into Eq. (18).

Using Eq. (16), we can rewrite Eq. (6) as

$$s(r) = \frac{\left(\frac{2}{9\pi}\right)^{1/6} \sqrt{Z}r}{e^{-2Zr^2/3}}.$$
 (20)

Equations (19) and (20) determine the $F^{\text{Gauss}}(s)$ for a Gaussian-type asymptotic density, which for $s \ge 1.5$ (Fig. 1) lies between $F^{\text{B88}}(s)$ and $F^{\text{PW91}}(s)$, but closer to $F^{\text{B88}}(s)$. Note that as $s \to 0$, $F^{\text{Gauss}}(s) \to (2^5 \pi/3^4)^{1/3} = 1.074$ 66, instead of 1.0 as required to obey the limit within the local density approximation (LDA). This may not be necessary for a finite system. Thus Handy *et al.* recently developed a local exchange functional, OPTX, by fitting to the unrestricted HF energies of the first- and the second-row atoms and found the LDA term to be 1.051 51 rather than 1.0. 17,40

III. X3LYP FUNCTIONAL

Based on the $F^{\text{Gauss}}(s)$ behavior for $s \ge 1.5$, as shown in Fig. 1, we propose the extended exchange functional

$$F^{X}(s) = 1 + a_{x1}(F^{B88}(s) - 1) + a_{x2}(F^{PW91}(s) - 1).$$
 (21)

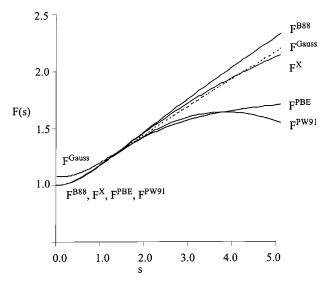


FIG. 1. Enhancement factors, $F^{\text{B88}}(s)$, $F^{\text{PW91}}(s)$, $F^{\text{PBE}}(s)$, $F^{\text{Gauss}}(s)$, and $F^{\text{X}}(s)$, for a set of GGA functionals. F^{Gauss} is shown with a dashed line.

Here we choose to obey the LDA limit as $s \rightarrow 0$, as usually done in the framework of GGA. It is not necessary to restrict the F^X to be a linear combination of B88 and PW91; however, we found that this form allows sufficient flexibility, and we considered that using these well known functions would make it easier to incorporate X3LYP into existing DFT codes.

Following the form of the B3LYP functional, we formulate X3LYP, as

$$\begin{split} E_{xc}^{\text{X3LYP}} &= a_{x0} E_X^{\text{exact}} + (1 - a_{x0}) E_x^{\text{Slater}} + a_x \Delta E_x^{\text{extended}} \\ &\quad + a_c E_c^{\text{VWN}} + (1 - a_c) E_c^{\text{LYP}} \,. \end{split} \tag{22}$$

The parameters $\{a_{x0}, a_x, a_c\}$ in Eq. (22) and $\{a_{x1}, a_{x2}\}$ in Eq. (21) are determined through least-square fitting of the chemical properties for a small set of atoms and molecules listed in Table I:

(i) Group (1) in Table I contains total energies of the first 10 atoms (H to Ne), including 8 cations, and 5 anions. This includes the first ionization potentials (IPs) and electron affinities (EAs). The exact total energies of these atoms and ions are taken from Refs. 45 and 46;

TABLE I. Sets of atoms and molecules used to determine the parameters in X3LYP.

- (1) Total energies:
 - (a) Atoms: H, He, Li, Be, B, C, N, O F, Ne
 - (b) Cations: Li⁺, Be⁺, B⁺, C⁺, N⁺, O⁺, F⁺, Ne⁺
 - (c) Anions: H⁻, B⁻, C⁻, O⁻, F⁻
- (2) Ionization potentials
 - Na, Mg, Al, Si, P, S, Cl, Ar
- (3) Electron affinities Al, Si, P, S, Cl
- (4) Atomization energies
 - H₂, He₂, Li₂, Be₂, C₂, N₂, O₂, F₂, Ne₂, Na₂, Mg₂, Si₂, P₂, S₂, Cl₂, CN, CO, CS, NO, SO, ClO, SiO, ClF, PF, AlF, SiF, CCl, SiCl, NaCl, CH, NH, OH, HF, CO₂, O₃, SO₃, OCS, CS₂

- (ii) group (2) contains 8 IPs of the second-row atoms²³
- (iii) group (3) contains 5 EAs of the second-row atoms;²³
- (iv) group (4) contains 33 diatomic and 5 triatomic molecules from the first and second rows, selected to include a variety of bonding situations including openand closed-shell molecules; molecules with single, double, and triple bonds; ionic systems, and systems which require multiple configurations. In particular, we include He₂ and Ne₂ to represent van der Waals systems.

The atomization energies are computed at the experimental geometries.⁴⁷ The experimental atomization energies are taken from Refs. 22 and 47–50.

The parameters are optimized by minimizing

$$\nabla = \sum_{i=1}^{n} \left(\frac{E_i}{E_i^{\text{ref}}} - 1 \right)^2 w_i, \tag{23}$$

self-consistently by solving the Kohn–Sham orbital equations. Here E_i is the calculated energy and $E_i^{\rm ref}$ is the corresponding reference energy^{23,45–50} in subsets (1)–(4). All energies are in a.u. The relative weights w_i are adjusted to give a reasonable balance of different contributions. For atomic energies, we use unit weight, except that of H, for which we use a value of 1×10^3 . For IPs and EAs, we set w_i =10. For covalent bindings, the weights are around 50. For weak bindings of Be₂, Mg₂, He₂, and Ne₂, large weights of 7×10^2 , 1×10^4 , 2×10^7 , and 3×10^7 , respectively, are used. All fitting calculations were performed using the aug-cc-pVTZ basis sets. ^{51,52} The final results for the parameters of X3LYP are

$$\{a_{x0}, a_x, a_c\} = \{0.218, 0.709, 0.129\},\$$

 $\{a_{x1}, a_{x2}\} = \{0.764457, 0.235543\}.$ (24)

Since codes for DFT calculations on solids often use plane wave basis sets that make it expensive to include exact exchange, we also optimized the parameters for the XLYP functional in which the exact exchange term, as well as the VWN term, is deleted. Thus

$$E_{xc}^{\text{XLYP}} = E_{x}^{\text{Slater}} + a_{x1} \Delta E_{x}^{\text{B88}} + a_{x2} \Delta E_{x}^{\text{PW91}} + E_{c}^{\text{LYP}},$$
 (25)

where $\{a_{x1}, a_{x2}\} = \{0.722, 0.347\}.$

The $F^X(s)$ from Eq. (24) is plotted in Fig. 1, where we see that it is quite close to $F^{Gauss}(s)$ for larger s.

To validate the accuracy of X3LYP for thermochemistry, we use the extended G2 set of molecules for which there are quite accurate experimental data available. This set contains:

- (i) the heats of formation of 148 molecules;
- (ii) 42 ionization potentials;
- (iii) 25 electron affinities;
- (iv) 8 proton affinities.

These 148 molecules include inorganic compounds and organic compounds; radicals, saturated hydrocarbons, and un-

saturated (aromatic) rings. Thus the heats of formation of these molecules provide a good test of the functionals for the thermochemistry of the covalent systems.

We also include 10 total atomic energies of the first row atoms ^{45,46}

In addition, we included He_2 , Ne_2 , and Ar_2 to assess the accuracy of the van der Waals systems. Here we also demanded that exclusion of the LYP correlation function would lead to a repulsive potential curve, similar to HF. This is to eliminate cancellation of errors between the correlation functional and the exchange functional.

We did not include $(H_2O)_2$ in the training set for X3LYP but we use it to validate the accuracy of X3LYP for hydrogen bonded interactions.

For the validation against the G2 set, we use the same second-order Moller–Plesset (MP2) molecular geometries as in G2 theory, 22,23,48 and we use the same scaled HF vibrational frequencies for zero-point energies and finite-temperature corrections. Here we employ the 6-311 + G(3df,2p) basis sets. 22,23,48 This choice of geometries and basis sets allows our results to be compared directly with previously published data obtained with other functionals. 22,53

For He_2 and Ne_2 , we used the aug-cc-pVTZ basis sets. For $(H_2O)_2$ we used the aug-cc-pVTZ(-f) basis sets. These bonding energies are BSSE-corrected.

All calculations were performed with JAGUAR 4.0,⁵⁴ but we did *not* use the pseudospectral method, making it easier to compare with literature data. The ultrafine DFT grids of Jaguar were used in all calculations.

IV. RESULTS AND DISCUSSION

A. Heats of formation

Table II lists the experimental heats of formation (298 K) for the extended G2 set of 148 molecules. ^{22,48} The mean-absolute-deviations (MADs) from experiment (theory-exptl.) for B3LYP, ²² PBE1PBE (PBE0)⁵³ and X3LYP are presented. The performance of other functionals like PWPW, PWLYP, PW3PW, PW1PW (PW0), and PW3LYP, which have not previously been fully tested over the G2 set, is given in the supplemental material (Table S1). A detailed assessment for the newly developed OLYP⁴⁰ and O3LYP¹⁷ functionals will be published elsewhere.

As done elsewhere, ¹⁰ we use the notation PBE to signify the PBE exchange functional combined with the PBE correlation functional, and we use PBE1PBE to denote the one-parameter hybrid scheme. ^{38,53} As the hybrid coefficient was deduced from the perturbation theory arguments, PBE1PBE is considered a parameter-free hybrid model, and often labeled as PBE0. ³⁸ Similarly, we use the notations PW1PW (PW0)¹⁶ or mPW1PW (mPW0). ¹⁶

The best result is for X3LYP with MAD=2.8 kcal/mol. Next best is B3LYP with MAD=3.1 kcal/mol, while PBE0 (PBE1PBE) leads to MAD=4.8 kcal/mol. In contrast, LDA overbinds strongly, leading to MAD=90.9 kcal/mol!

In PBE, hydrogen atoms have a self-correlation energy (3.6 kcal/mol per H), which leads to a spurious lowering of the energy of H.^{53} Thus the heat of formation of H_2 in PBE

TABLE II. Experimental heats of formation (kcal/mol at 298 K) for the G2 test set (148 molecules) and the deviations (theory-exptl.) obtained from B3LYP, PBE0, and X3LYP.

No.	Molecule	Exp.a	B3LYP	PBE0	X3LYP
1	H ₂	.00	-1.0	6	-0.431
2	LiH	33.30	-0.4	6	-0.178
3	ВеН	81.70	-8.2	-8	-7.936
4	CH (3 P.)	142.50	-1.7	1	-1.497
5	$CH_2(^3B_1)$	93.70	-2.1	-5 2	-1.954
6 7	$CH_2 (^1A_1)$ CH_3	102.75 35.00	-0.2 -3.3	$-2 \\ -2$	-0.005 -3.222
8	CH ₃ CH ₄	-17.90	-3.5 -1.6	-2 2	-3.222 -1.515
9	NH	85.20	-4.6	$-\frac{2}{3}$	-4.380
10	NH ₂	45.10	-6.5	-2^{-3}	-6.188
11	NH ₃	-10.97	-3.5	2	-3.117
12	OH	9.40	-1.8	1	-1.683
13	H_2O	-57.80	1.3	6	1.648
14	ΗF	-65.14	1.6	5	1.837
15	SiH_2 (1A_1)	65.20	-2.1	7	-1.976
16	SiH_2 (3B_1)	86.20	-2.3	-1	-2.097
17	SiH ₃	47.90	-3.2	3	-2.949
18	SiH_4	8.20	-1.9	8	-1.720
19	PH_2	33.10	-6.0	0	-5.812
20	PH_3	1.30	-3.3	3	-3.055
21	H ₂ S	-4.90	0.3	2	0.486
22	HC1	-22.06	1.0	2	1.005
23	Li ₂	51.60	3.5	7	3.007
24	LiF	-80.10	0.5	7	0.472
25	C_2H_2	54.19 12.54	2.5 -0.6	$\begin{array}{c} 0 \\ -2 \end{array}$	2.524
26 27	$H_2C = CH_2$ $H_3C - CH_3$	-20.08	-0.6 -0.6	-2 -1	-0.828 -1.069
28	CN	104.90	2.2	0	2.972
29	HCN	31.50	0.0	2	0.622
30	CO	-26.42	3.9	6	4.168
31	HCO	10.00	-2.2	-2	-1.944
32	$H_2C=O$	-25.96	-0.4	3	-0.177
33	CH ₃ -OH	-48.00	-0.1	3	-0.279
34	N_2	.00	1.4	4	2.502
35	H_2N-NH_2	22.79	-6.3	-1	-5.850
36	NO	21.58	-3.0	-1	-2.013
37	O_2	.00	-2.0	-4	-2.753
38	НО-ОН	-32.53	1.8	6	2.257
39	F ₂	.00	2.6	5	3.138
40	CO ₂	-94.05	0.2	-1	0.633
41	Na ₂	33.96	-0.2	3 3	-0.857 5.384
42	Si ₂	139.87	5.4	5	
43 44	$egin{array}{c} P_2 \ S_2 \end{array}$	34.31 30.74	1.4 -1.2	-8	1.622 -1.302
45	Cl_2	.00	2.9	-2	2.760
46	NaCl	-43.56	4.6	5	4.301
47	SiO	-24.64	5.5	9	5.772
48	CS	66.90	4.9	4	5.175
49	SO	1.20	-0.7	-3	-0.304
50	ClO	24.19	-1.6	-4	-1.383
51	ClF	-13.24	1.1	2	1.099
52	H ₃ Si-SiH ₃	19.10	-0.2	10	-0.345
53	CH ₃ Cl	-19.56	0.8	-1	0.478
54	H_3C-SH	-5.50	1.2	0	0.956
55	HOC1	-17.80	1.5	2	1.619
56	SO ₂	-70.95	10.0	4	10.515
57	BF ₃	-271.41	3.9	3	2.824
58	BCl ₃	-96.30	6.3	-7	5.120
59	AlF ₃	-289.03	11.9	14	11.253
60	AlCl ₃	-139.72 -223.04	10.2	2	9.137
61 62	CF ₄ CCl ₄	-223.04 -22.94	4.5 14.0	0 -6	2.845 12.291
63	CCI_4 C=C=S	-22.94 -33.08	-0.5	-6 -3	-0.181
64	CS_2	-33.08 27.95	0.2	-3 -5	0.512
65	COF ₂	-152.70	9.1	$-3 \\ -2$	8.520

TABLE II. (Continued.)

No.	Molecule	Exp. ^a	B3LYP	PBE0	X3LYP
67	SiCl ₄	-158.40	18.8	3	17.034
68	N_2O	19.61	-2.9	-3	-1.162
69	CINO	12.36	-2.0	0	-0.737
70 71	NF ₃	-31.57 -229.07	-4.0 7.1	$-2 \\ 5$	-4.049 6.175
72	PF_3 O_3	34.10	8.6	7	7.350
73	F ₂ O	5.86	0.4	4	1.074
74	ClF ₃	-37.97	-1.9	-3	-1.907
75	C_2F_4	-157.40	-3.2	-8	-4.567
76	C_2Cl_4	-2.97	11.3	-12	9.618
77	CF ₃ CN	-118.40	3.7	-2	2.735
78 79	C ₃ H ₄ (propyne) C ₃ H ₄ (allene)	44.20 45.50	1.9 -1.9	-5 -8	1.448 -2.408
80	C ₃ H ₄ (anche) C ₃ H ₄ (cyclopropene)	66.20	3.2	-10	2.793
81	C ₃ H ₆ (propylene)	4.78	0.6	-5	-0.160
82	C ₃ H ₆ (cyclopropane)	12.70	2.2	-9	1.340
83	C ₃ H ₈ (propane)	-25.00	1.5	-3	0.335
84	C ₄ H ₆ (butadiene)	26.30	1.5	-9	0.454
85	C_4H_6 (2-butyne)	34.80	2.4	-9	1.527
86	C ₄ H ₆ (methylene cyclopropane)	47.90	0.0	-14 -16	-1.105
87 88	C ₄ H ₆ (bicyclobutane) C ₄ H ₆ (cyclobutene)	51.90 37.40	7.1 6.1	-16 -12	5.849 4.711
89	C ₄ H ₈ (cyclobutane)	6.80	5.2	-10	3.559
90	C_4H_8 (isobutene)	-4.00	3.1	-7	1.593
91	C ₄ H ₁₀ (trans butane)	-30.00	3.7	-5	1.895
92	C ₄ H ₁₀ (isobutane)	-32.07	4.8	-4	2.984
93	C ₅ H ₈ (spiropentane)	44.30	5.4	-19	3.748
94	C ₆ H ₆ (benzene)	19.74	4.5	-24	2.175
95 96	H ₂ CF ₂ HCF ₃	-107.71 -166.60	0.0 2.2	1 1	-0.622 1.117
97	H ₂ CCl ₂	-22.83	4.6	-4	3.868
98	HCCl ₃	-24.66	9.0	-6	7.786
99	H ₃ C-NH ₂ (methylamine)	-5.50	-3.2	0	-3.260
100	CH ₃ -CN (methyl cyanide)	18.00	-0.6	-2	-0.426
101	CH ₃ -NO ₂ (nitromethane)	-17.80	-2.4	-2	-1.800
102 103	$CH_3-O-N=O$ (methyl nitrite) CH_3-SiH_3 (methyl silane)	-15.90 -7.00	-1.3 1.0	0 6	-0.805 0.637
103	HCOOH (formic acid)	-90.50	0.9	1	0.037
105	HCOOCH ₃ (methyl formate)	-85.00	0.2	0	-0.441
106	CH ₃ CONH ₂ (acetamide)	-57.00	-1.6	-6	-2.320
107	CH ₂ -NH-CH ₂ (aziridine)	30.20	-1.0	-8	-1.395
108	NCCN (cyanogen)	73.30	0.4	-3	1.344
109	(CH ₃) ₂ NH (dimethylamine)	-4.40	-2.0	-2	-2.699
110 111	$CH_3-CH_2-NH_2$ (trans ethylamine) $H_2C=C=O$ (ketene)	-11.30 -11.35	$-2.2 \\ -2.4$	-3 -6	-2.947 -2.456
112	CH_2 -O- CH_2 (oxirane)	-12.57	1.4	-4	0.969
113	CH ₃ CHO (acetaldehyde)	-39.70	0.3	-1	-0.136
114	O=CH-CH=O (glyoxal)	-50.70	1.6	0	1.332
115	CH ₃ CH ₂ OH (ethanol)	-56.21	1.9	0	1.068
116	CH ₃ -O-CH ₃ (dimethylether)	-44.00	0.0	1	-0.739
117	CH ₂ -S-CH ₂ (thiooxirane)	19.60	3.1	-7	2.574
118 119	CH ₃ CH ₃ SO (dimethyl sulfoxide) CH ₃ -CH ₂ -SH (ethanethiol)	-36.20 -11.10	6.5 3.6	$-2 \\ -2$	5.540 2.793
120	CH_3 $-S$ $-CH_3$ (dimethyl sulphide)	-8.90	2.8	$-\frac{2}{2}$	1.868
121	H ₂ C=CHF	-33.20	-1.5	-3	-2.048
122	CH ₃ -CH ₂ -Cl (ethyl chloride)	-26.80	2.7	-3	1.859
123	H ₂ C=CHCl (vinyl chloride)	8.90	-1.6	-5	-2.224
124	H ₂ C=CHCN (acrylonitrile)	43.20	2.0	-6	1.883
125	CH ₃ -CO-CH ₃ (acetone)	-51.93	2.0	-4 2	0.947
126 127	CH ₃ COOH (acetic acid) CH ₃ COF (acetyl fluoride)	-103.40 -105.70	2.6 1.5	$-2 \\ -3$	1.790 0.822
127	CH ₃ COF (acetyl infolide) CH ₃ COCl (acetyl chloride)	-103.70 -58.00	2.5	-5 -5	1.805
129	CH ₃ CH ₂ CH ₂ Cl (propyl chloride)	-31.52	4.6	-5	3.136
130	(CH ₃) ₂ CH–OH (isopropanol)	-65.20	4.5	-1	2.990
131	C_2H_5 -O-CH ₃ (methyl ethyl ether)	-51.70	1.5	-1	0.153
132	(CH ₃) ₃ N (trimethylamine)	-5.70	-0.2	-3	-1.675
133	C_4H_4O (furan)	-8.30	4.2	-15	2.653

TABLE II. (Continued.)

No.	Molecule	Exp. ^a	B3LYP	PBE0	X3LYP
134	C ₄ H ₄ S (thiophene)	27.50	7.9	-17	6.162
135	C ₄ H ₄ NH (pyrrole)	25.90	0.8	-19	-0.737
136	C_5H_5N (pyridine)	33.60	0.2	-22	-1.580
137	SH	34.18	-1.4	0	-1.253
138	CCH	135.10	3.4	-4	3.510
139	$C_2H_3(^2A')$	71.60	-3.3	-7	-3.400
140	$CH_3CO(^2A')$	-2.40	-2.1	-6	-2.376
141	$H_2COH(^2A)$	-4.08	-2.4	-3	-2.495
142	$CH_3O(^2A')$	4.10	-3.7	-3	-3.811
143	$CH_3CH_2O(^2A'')$	-3.70	-1.4	-5	0.486
144	$CH_3S(^2A')$	29.80	-1.7	-3	-1.989
145	$C_2H_5(^2A')$	28.90	-2.8	-6	-3.239
146	$(CH_3)_2CH(^2A')$	21.50	-1.8	-9	-2.773
147	(CH ₃) ₃ C	12.30	1.1	-12	-0.575
148	NO_2	7.91	-5.2	-5	-3.492
MAD^b	2		3.1 ^c	4.8^{d}	2.804 ^e

^aExperimental data taken from Refs. 22 and 48.

is under estimated by 6 kcal/mol, while H_2 is overbound in B3LYP and X3LYP by 1.0 and 0.4 kcal/mol, respectively. Concerning the importance of hydrogen in chemistry, it is unfortunate that PBE0 has a deviation of 6 kcal/mol for the heat of formation of H_2O , while B3LYP and X3LYP lead to errors of 1.3 and 1.6 kcal/mol, respectively.

For the subset of inorganic hydrides $(X_nH_m, X=H, Li, N, O, F, Si, P, S, Cl; n=1, 2; m=1-6)$, MADs are 1.84 (B3LYP), 4.42 (PBE0), and 1.78 kcal/mol (X3LYP). The maximum errors occur at N_2H_4 for B3LYP (6.3)²² and X3LYP (5.9); while the maximum error is 10 kcal/mol (Si₂H₆) for PBE0.⁵³

The performance of PBE0 for larger hydrocarbons (Nos. 78–94 in Table II) is also less satisfactory. The MAD of this subset is 9.9 kcal/mol, with the maximum error of 24 kcal/mol for benzene. B3LYP performs much better. The MAD of this subset is 3.2 kcal/mol. The maximum error (7.1 kcal/mol) occurs at bicyclobutane. For benzene, B3LYP deviates from experiment by 4.5 kcal/mol. X3LYP is the best for this subset. The MAD of this subset is 2.2 kcal/mol, with maximum error of 5.8 kcal/mol at bicyclobutane. For benzene, X3LYP leads to deviation of 2.2 kcal/mol from the experimental result.

For a subset of substituted hydrocarbons (e.g., Nos. 95–136 in Table II), the performance of B3LYP, PBE0, and X3LYP are comparable except for the molecules from No. 133 to 136. PBE0 is particularly poor for furan, thiophene, pyrrole, and pyridine. The MADs of the substituted hydrocarbon subset are 2.11 (B3LYP²²), 4.11 (PBE0⁵³), and 1.85 (X3LYP). The maximum deviations are 9.2 and 7.9 at methylamine for B3LYP²² and X3LYP, respectively, and 22 at pyridine for PBE0.⁵³

For a subset of radicals (e.g., Nos. 138–148 in Table II), results from X3LYP and B3LYP are close, leading to MAD =3.00 and 2.89 with the maximum error being -8.2 and -7.9 kcal/mol at BeH for B3LYP and X3LYP, respectively.

MAD (3.93) for PBE0 is larger with the maximum error of 12 kcal/mol at $(CH_3)_3C$.

Although X3LYP and B3LYP are generally more accurate than PBE0, there are cases where PBE0 is better. For example, X3LYP and B3LYP are poor for SO_2 (~10 kcal/mol error for both), AlCl₃ [10.2 (B3LYP); 9.1 (X3LYP)], and SiCl₄ [18.8 (B3LYP); 17.0 (X3LYP)]. Errors for PBE0 of these systems are significantly smaller, being 4 (SO_2), 2 (AlCl₃), and 3 kcal/mol ($SiCl_4$).

Table III presents a statistical evaluation of 18 different flavors of GGAs for the calculations of the heats of formation of the extended G2 set. From Table III it is clear that the MAD=90.9 kcal/mol for LDA (SVWN) is too high to be useful for thermochemistry.

GGAs greatly reduce the errors. OLYP leads to the smallest MAD (4.66 kcal/mol), being the best GGA up-to-date. The BLYP and BPW91 functionals give MAD=7.09 and 7.85, respectively. PWPW (MAD=17.8) and PWLYP (12.9) are less satisfactory, showing a larger tendency of overbinding. Thus for thermochemistry the PW91 exchange functional is poorer than B88 exchange functional and the PW91 correlation functional is poorer than the LYP correlation functional. The performance of PBE (MAD=17.1)⁵³ is very similar to PW91, unacceptable for thermochemistry. XLYP leads to MAD=7.56, similar to that of BLYP.

Table III shows that for thermochemistry the hybrid methods give an overall improvement compared to pure GGAs. Thus the performance of PBE is significantly improved going from pure PBE (MAD=17.1) to one-parameter hybrid PBE0 (4.8).⁵³ Keeping in mind that PBE and PBE0 are parameter-free, their overall performances are impressive. It is interesting to notice that the three-parameter hybrid PW3PW (MAD=10.3) is actually much worse than the one-parameter hybrid PW1PW (PW0) (MAD=5.2), lending support to the Perdew theoretical hybrid scheme.^{38,53}

KMLYP was specially designed for activation barriers

^bMean-absolute-deviation.

^cData taken from Ref. 22 obtained with Gaussian. Jaguar leads to MAD=3.14 kcal/mol.

^dData taken from Ref. 53 obtained with Gaussian. Jaguar leads to MAD=4.93 kcal/mol.

eData obtained with Jaguar.

TABLE III. Mean absolute deviations (MAD, theory-exptl.) for heats of formation at 298 K, in kcal/mol, obtained from various flavors of DFT methods against the extended G2 set (148 molecules).^a

	Max +b	Max − ^c	MAD
HF	+344.3 (C ₅ H ₅ N, pyridine)	-0.6 (BeH)	149.2
MP2 (full) ^d	$+96.0 (C_5H_5N, pyridine)$	$-8.3 \text{ (BF}_3)$	35.4
LDA (SVWN)e	+0.4 (Li ₂)	-228.7 (C ₆ H ₆ , benzene)	90.9
BLYPe	+24.8 (SiCl ₄)	-28.4 (NO2)	7.09
BPW91 ^e	$+15.7 (SiF_4)$	$-32.2 \text{ (NO}_2)$	7.85
BP86e	$+6.3 \text{ (SiF}_4)$	-49.7 (C ₅ H ₅ N, pyridine)	20.2
PBE (PBEPBE) ^f	$+11.0 (Si_2H_6)$	-52.0 (C ₅ H ₅ N, pyridine)	17.1
PWPW (GGA II)	$+6.4 (Si_2H_6)$	$-52.8 (C_4F_4)$	17.8
mPWPW	$+8.5 (Si_2H_6)$	$-47.3 (C_2F_4)$	15.1
PWLYP	+12.7 (SiCl ₄)	$-39.0 \text{ (NF}_3)$	12.9
OLYP	$+26.1 \text{ (SiF}_4)$	$-22.0 \text{ (NO}_2)$	4.66
$XLYP^g$	+28.1 (SiCl ₄)	$-25.5 \text{ (NO}_2)$	7.56
B3LYP ^e	$+20.1 \text{ (SiF}_4)$	-8.2 (BeH)	3.1
B3PW91 ^e	$+21.8 \text{ (SiF}_4)$	$-12.0 (C_2F_4)$	3.51
B3P86 ^e	$+7.8 \text{ (SiF}_4)$	-49.2 (C ₅ H ₈ , spiropentane)	18.0
PBE0 (PBE1PBE) ^f	$+15.0 \text{ (SiF}_4)$	-24.0 (C ₆ H ₆ , benzene)	4.8
PW3PW ^h	$+10.1 \text{ (SiF}_4)$	-33.9 (C ₅ H ₅ N, pyridine)	10.3
PW1PW (PW0)i	$+17.9 (SiF_4)$	-20.5 (C ₆ H ₆ , benzene)	5.24
mPW1PW (mPW0) ^j	$+20.7 (SiF_4)$	-14.8 (C_6H_6 , benzene)	3.88
PW3LYP ^k	+10.4 (SiCl ₄)	-21.8 (C ₅ H ₅ N, pyridine)	7.86
$KMLYP^{l}$	+43.6 (O ₃ , ozone)	-64.1 (C ₅ H ₈ , spiropentane)	20.4
O3LYP ^m	+25.9 (SiF ₄)	$-9.4 (NO_2)$	4.13
X3LYP ⁿ	+18.5 (SiF ₄)	-7.9 (BeH)	2.80

^aThe basis sets used in all calculations are 6-311+G(3df,2p). All geometries are optimized at MP2(Full)/6-31G* (Refs. 22, 23, 48, 57). Scaled HF/6-31G(d) frequencies are used for zero-point energies and thermo-corrections (Refs. 22, 23, 48, and 57). The present calculations are performed with Jaguar (Ref. 54). Other data are taken from the corresponding literature.

(kinetics) by omitting the GGA contribution to the exchange energy and emphasizing the role of exact exchange [the mixing coefficient for $E_x(HF)$ is 0.557 in KMLYP vs. 0.20 in B3LYP].⁵⁵ KMLYP is reported to achieve activation barriers that are more accurate than B3LYP. We find that the MAD (20.4) of KMLYP is quite high for thermochemistry, however, these errors can be greatly reduced using "high-level corrections" in which energy corrections are included for each bond pair.55

O3LYP uses much less exact exchange (0.1161) than most hybrid functions, leading to similar MADs for O3LYP (4.1) and OLYP (4.7).

Overall, X3LYP (MAD=2.8), B3LYP (3.1²²), B3PW91 (3.5²²), mPW1PW (3.9), O3LYP (4.1), OLYP (4.7), and PBE0 (4.8⁵³) show the best performance for thermochemistry.

G2 theory leads to a MAD of only 1.58 kcal/mol.^{22,23,48,56,57} G2 theory is a composite, based on the 6-311G** basis set but with several basis set extensions. Electron correlation is treated by Moller-Plesset (MP) perturbation theory and by quadratic configuration interaction [QCISD(T)]. However we must emphasize that G2 theory is not ab initio. It includes an empirical "high-level corrections" for each covalent bond, assuming additivity. Removing these empirical corrections leads to much poorer thermochemistry. Thus based on the data in Refs. 56 and 57, we deduce that for the heats of formation of the first 56 molecules in Table II the MP4/6-311G** calculations lead to MAD=21.8 kcal/mol while QCISD(T)/6-311G** leads to MAD=16.8 kcal/mol. This can be compared to the results from DFT on the same systems with the same basis set (6-311G**): MAD=4.2 kcal/mol for B3LYP, 5.5 PBE0 and 4.9 X3LYP. Thus the current generation of DFT functionals lead to results significantly better than the standard ab initio methods, if empirical corrections are excluded from the ab initio. Since the empirical corrections in G2 theory are pointwise, there is no information on the forces corresponding to

^bMaximum positive deviations.

^cMaximum negative deviations.

^dData taken from Refs. 56 and 57. Basis set used is 6-31G*.

eData taken from Ref. 22.

^fData taken from Ref. 53. PBE0 (also called PBE1PBE) is according to the formula: $0.25 E_x$ (HF) $+0.75 E_x$ (Slater) $+0.75 \Delta E_x$ (PBE) $+1.0 E_c$ (PW91,local) $+1.0 \Delta E_c$ (PBE,nonlocal).

^g1.0 E_x (Slater) + 0.722 ΔE_x (B88) + 0.347 ΔE_x (PW91) + 1.0 E_c (LYP).

 $^{^{}h}0.20 E_{x}(HF) + 0.80 E_{x}(Slater) + 0.72 \Delta E_{x}(PW91) + 1.0 E_{c}(PW91,local) + 0.81 \Delta E_{c}(PW91,nonlocal)$.

 $^{{}^{1}0.25} E_{x}(HF) + 0.75 E_{x}(Slater) + 0.75 \Delta E_{x}(PW91) + 1.0 E_{c}(PW91,local) + 1.0 \Delta E_{c}(PW91,nonlocal)$.

 $^{^{\}rm j}$ 0.25 E_x (HF) + 0.75 E_x (Slater) + 0.75 ΔE_x (mPW) + 1.0 E_c (PW91,local) + 1.0 ΔE_c (PW91,nonlocal).

 $^{^{}k}0.20 E_{x}(HF) + 0.80 E_{x}(Slater) + 0.72 \Delta E_{x}(PW91) + 0.19 E_{c}(VWN) + 0.81 E_{c}(LYP).$

 $^{^{1}0.557} E_{x}(HF) + 0.443 E_{x}(Slater) + 0.552 E_{c}(VWN) + 0.448 E_{c}(LYP)$.

 $^{^{\}text{m}}0.1161 E_{x}(\text{HF}) + 0.9262 E_{x}(\text{Slater}) + 0.8133 \Delta E_{x}(\text{OPTX}) + 0.19 E_{c}(\text{VWN5}) + 0.81 E_{c}(\text{LYP}).$

 $^{^{}n}0.218 E_{y}(HF) + 0.782 E_{y}(Slater) + 0.542 \Delta E_{y}(B88) + 0.167 \Delta E_{y}(PW91) + 0.129 E_{c}(VWN) + 0.871 E_{c}(LYP).$

TABLE IV. Mean absolute deviations (MAD, theory-exptl.) for ionization potentials at 0 K, in eV, obtained from various flavors of DFT methods against the G2 test set (42 systems).

	Max +a	Max − ^b	MAD
SVWN ^c	+1.31 (Ne→Ne ⁺)	$-0.10 \ (H \rightarrow H^{+})$	0.666
$BLYP^{c}$	$+0.51 (O \rightarrow O^{+})$	$-0.44(Cl_2 \rightarrow Cl_2^+)$	0.183
BPW91 ^c	$+0.44 (O_2 \rightarrow O_2^+)$	$-0.38(\text{Be}{\rightarrow}\text{Be}^+)$	0.163
BP86 ^c	$+1.07 (O \rightarrow O^{+})$	NA	0.593
PBE^d	$+0.46 (O \rightarrow O^{+})$	$-0.34(Cl_2 \rightarrow Cl_2^+)$	0.160
PWPW	$+0.48 (O_2 \rightarrow O_2^+)$	$-0.29(Cl_2 \rightarrow Cl_2^+)$	0.164
mPWPW	$+0.48 (O_2 \rightarrow O_2^+)$	$-0.30(Cl_2 \rightarrow Cl_2^+)$	0.163
PWLYP	$+0.57 (O \rightarrow O^{+})$	$-0.39(Cl_2 \rightarrow Cl_2^+)$	0.170
OLYP	$+0.91 (C_2H_4 \rightarrow C_2H_4^+)$	$-0.44(Cl_2 \rightarrow Cl_2^+)$	0.185
XLYP	$+0.52 (O \rightarrow O^{+})$	$-0.43(Cl_2 \rightarrow Cl_2^+)$	0.179
B3LYP ^c	$+0.80 (O_2 \rightarrow O_2^+)$	$-0.20(\text{Be} \rightarrow \text{Be}^+)$	0.163
B3PW91 ^c	$+0.74 (O_2 \rightarrow O_2^+)$	$-0.32(Be \rightarrow Be^+)$	0.163
B3P86 ^c	$+1.29 (O_2 \rightarrow O_2^+)$	NA	0.638
$PBE0^d$	$+0.69 (O_2 \rightarrow O_2^+)$	$-0.34(\text{Be}{\rightarrow}\text{Be}^+)$	0.162
PW3PW	$+0.77 (O_2 \rightarrow O_2^+)$	$-0.23(\text{Be}{\rightarrow}\text{Be}^+)$	0.166
PW1PW	$+0.70 (O_2 \rightarrow O_2^+)$	$-0.30(\text{Be}{\rightarrow}\text{Be}^+)$	0.162
mPW1PW	$+0.77 (O_2 \rightarrow O_2^+)$	$-0.32(Be \rightarrow Be^+)$	0.163
PW3LYP	$+0.84 (O_2 \rightarrow O_2^+)$	$-0.12(Be \rightarrow Be^+)$	0.180
KMLYP	$+1.47 (O_2 \rightarrow O_2^+)$	$-0.04(\text{Be}{\rightarrow}\text{Be}^+)$	0.376
O3LYP	$+0.58 (SiH_4 \rightarrow SiH_4^+)$	$-0.30 (O_2 \rightarrow O_2^+)$	0.139
X3LYP	$+0.78 (O_2 \rightarrow O_2^+)$	$-0.25 (P_2 \rightarrow P_2^+)$	0.154

^aMaximum positive deviations.

this correction and hence one cannot include the corrections in the potential surface (barrier heights, etc).

B. Ionization potentials (IPs)

Table IV and Table S2 list experimental IPs and theoretical deviations from experiment for the 18 atoms up to Ar and the 24 molecules in the G2 data set.^{23,48} The MADs for the total 42 systems are 0.163 eV (B3LYP), 0.162 (PBE0), and 0.154 (X3LYP). The only case better than X3LYP is O3LYP with error of 0.139 eV.

Very accurate experimental IPs for atoms are known to provide a good test of the functionals for describing positively charged systems. For atomic systems, MADs for B3LYP, PBE0⁵³ and X3LYP are 0.204, 0.151, and 0.178 eV, respectively. For molecular systems, MADs for B3LYP, PBE0, and X3LYP are 0.132, 0.172, 0.136 eV, respectively.

The IP of O_2 is a problem for all three functionals (errors of 0.80, 0.69, and 0.78 eV, respectively), possibly because the MP2 geometry for O_2 is very bad (R_{OO} =1.246 Å rather than 1.207 Å).

Generally, cations are more inhomogeneous than the neutral system. Thus it is not surprising that GGAs (except BP86) dramatically improve the predictions of IPs over LDA (SVWN) (MAD=0.67 eV, Table IV). However inclusion of exact exchange has little benefit.

C. Electron affinities (EAs)

There has been some debate in the literature concerning whether DFT methods are suitable for calculating EAs. 53,58-60 The "self-interaction error" artificially shifts the

Kohn–Sham orbital energies upwards, often leading to an unstable (positive) highest occupied orbital energy of an anion. On the other hand, use of finite basis sets with functions localized at the anion provide an artificial stabilization. In any case the numerical results demonstrate that DFT calculations predict EAs with an accuracy comparable to conventional *ab initio* calculations.^{23,53,58}

Table V and Table S3 summarize the experimental EAs and the theoretical deviations from experiment for 7 atoms and 18 molecules. ^{23,48} Over these 25 systems the best performance is for X3LYP (MAD=0.087 eV), but B3LYP (0.11 eV) and PBE0 (0.13 eV) are comparable.

As expected, LDA (SVWN) overbinds (by MAD=0.75 eV) the extra electron (relative to the neutral system) and most GGAs (except BP86) remove most of this error, leading to MAD from 0.11 to 0.14 eV. Although HF exchange is self-interaction error free, inclusion of exact exchange leads to errors of 0.08–0.14 eV, indicating no improvement in the performance over the corresponding pure DFT methods [e.g., 0.107 (BLYP) versus 0.108 eV (B3LYP); 0.111 (PBE) versus 0.126 eV (PBE0)].

For atomic systems, the MADs for B3LYP, PBE0, and X3LYP are 0.106, 0.090, and 0.080 eV, respectively, but PBE0 performs significantly better for the second low atoms. For the molecular systems, B3LYP, PBE0, and X3LYP lead to MADs of 0.111, 0.146, 0.096 eV, respectively. The EA of Cl₂ is problematic for both B3LYP and X3LYP.

D. Proton affinities (PAs)

Protonation makes the molecules more inhomogeneous. Thus it is anticipated that PAs may be systematically underestimated by LDA. Table VI shows that the MAD for the prediction of PA by LDA (SVWN) is \sim 6.3 kcal/mol with a maximum negative deviation of -10.1 kcal/mol. GGAs reduce the LDA errors effectively, although PA are still underestimated in PWLYP and PW3LYP as shown by the lack of positive deviations with these methods. B3PW91 and B3P86 show the best performance, with MADs being 0.73 and 0.71 kcal/mol, respectively.

Over these 8 systems the MADs are 1.6 (B3LYP),²³ 1.7 (X3LYP), and 2.4 kcal/mol (PBE0).⁵³ These error statistics are impressive, but the sample space (8 data) may be too small to draw a definitive conclusion.

E. Total energies

Total energies for the first 10 atoms are summarized in Table VII. Comparing to the experimental values, 45,46 we see that LDA (SVWN) makes huge errors (MAD, 0.245 a.u. =6.67 eV=153.7 kcal/mol). GGAs remove a large part of this error. For the pure DFT methods, BLYP and BPW91 perform best (MAD 0.007 and 0.006 a.u., respectively); while BP86 and PBE behave worst (MAD 0.112 and 0.046 a.u., respectively). Inclusion of some exact exchange does not make hybrid DFT methods superior to the corresponding pure DFT methods. The MADs are 0.004 (X3LYP), 0.013 (B3LYP), 0.010 (B3PW91), 0.040 (PBE0), and 0.002 a.u. (O3LYP).

^bMaximum negative deviations.

^cData taken from Ref. 23.

^dData taken from Ref. 53.

TABLE V. Mean absolute deviations (MAD, theory-exptl.) for electron affinities at 0 K, in eV, obtained from various flavors of DFT methods against the G2 test set (25 systems).

	Max +a	Max − ^b	MAD
SVWN ^c	+1.20 (F←F ⁻)	NA	0.754
$BLYP^{c}$	$+0.37 (Cl_2 \leftarrow Cl_2^-)$	-0.16 (Si \leftarrow Si $^-$,S ₂ \leftarrow S $_2^-$)	0.107
BPW91 ^c	$+0.31 (C \leftarrow C^{-})$	$-0.11 (S_2 \leftarrow S_2^-)$	0.102
BP86 ^c	$+0.84 (C \leftarrow C^{-}, Cl_{2} \leftarrow Cl_{2}^{-})$	NA	0.659
PBE^d	+0.29 (C←C ⁻)	$-0.12 (S_2 \leftarrow S_2^-)$	0.111
PWPW	+0.37 (C←C ⁻)	$-0.05 (S_2 \leftarrow S_2^-)$	0.141
mPWPW	+0.36 (C←C ⁻)	$-0.07 (S_2 \leftarrow S_2^-)$	0.130
PWLYP	$+0.39 (Cl_2 \leftarrow Cl_2^-)$	$-0.13 (Si \leftarrow Si^-)$	0.134
OLYP	$+0.12 (Cl_2 \leftarrow Cl_2^-)$	$-0.33 (O_2 \leftarrow O_2^-)$	0.133
XLYP	$+0.37 (Cl_2 \leftarrow Cl_2^-)$	$-0.13 (Si \leftarrow Si^{-})$	0.112
B3LYP ^c	$+0.45 (Cl_2 \leftarrow Cl_2^-)$	$-0.06 (OH \leftarrow OH^{-})$	0.108
B3PW91 ^c	$+0.29 (Cl_2 \leftarrow Cl_2^-)$	$-0.17 (OH \leftarrow OH^-)$	0.101
B3P86 ^c	$+0.84 (Cl_2 \leftarrow Cl_2^-)$	NA	0.601
PBE0 ^d	+0.22 (PO←PO ⁻)	$-0.28 (OH \leftarrow OH^-)$	0.126
PW3PW	$+0.31 (Cl_2 \leftarrow Cl_2^-)$	$-0.10 (OH \leftarrow OH^{-})$	0.108
PW1PW	$+0.25 (Cl_2 \leftarrow Cl_2^-)$	$-0.24 (OH \leftarrow OH^{-})$	0.117
mPW1PW	$+0.25 (Cl_2 \leftarrow Cl_2^-)$	$-0.26 (OH \leftarrow OH^{-})$	0.120
PW3LYP	$+0.47 (Cl_2 \leftarrow Cl_2^-)$	NA	0.137
KMLYP	$+0.52 (CN \leftarrow CN^{-})$	$-0.04 (NH_2 \leftarrow NH_2^-)$	0.221
O3LYP	$+0.20 (Cl_2 \leftarrow Cl_2^-)$	$-0.25 (O_2 \leftarrow O_2^-)$	0.107
X3LYP	$+0.40 (Cl_2 \leftarrow Cl_2^-)$	-0.12 (OH←OH ⁻)	0.087

^aMaximum positive deviations.

F. Bonding properties of noble-gas dimers

For a neutral atom the effective potential seen by an electron far from atom should have the form -1/r, but none of the conventional density functionals have this form. $^{29-35}$

[The GGGA method⁶¹ does lead to -1/r but this has not been tested thoroughly.] With the wrong long-range potential, we cannot expect to have the correct long range density and hence we would expect problems getting the correct

TABLE VI. Mean absolute deviations (MAD, theory-exptl.) for proton affinities at 0 K, in kcal/mol, obtained from various flavors of DFT methods against the G2 test set (8 systems).

	Max + a	Max − ^b	MAD
SVWN ^c	NA	-10.1 (PH ₃ ←PH ₄ ⁺)	6.32
BLYP ^c	$0.55(C_2H_2 \leftarrow C_2H_3^+)$	$-3.9 (H_2O \leftarrow H_3O^+)$	1.90
BPW91 ^c	$1.89(C_2H_2 \leftarrow C_2H_3^+)$	$-1.59 (PH_3 \leftarrow PH_4^+)$	1.03
BP86 ^c	$0.95(C_2H_2\leftarrow C_2H_3^+)$	$-2.28 (PH_3 \leftarrow PH_4^+)$	0.84
PBE	$3 (C_2H_2 \leftarrow C_2H_3^+)$	$-5 (PH_3 \leftarrow PH_4^+)$	2.7
PWPW	$0.02 (HCl \leftarrow H_2Cl^+)$	$-3.77 (PH_3 \leftarrow PH_4^+)$	1.43
mPWPW	$0.46 (HCl \leftarrow H_2Cl^+)$	$-3.20 (PH_3 \leftarrow PH_4^+)$	1.20
PWLYP	NA	$-5.31 (H_2O \leftarrow H_3O^+)$	3.49
OLYP	$3.42(C_2H_2\leftarrow C_2H_3^+)$	$-0.74 \text{ (PH}_3 \leftarrow \text{PH}_4^+\text{)}$	1.38
XLYP	$0.12(C_2H_2\leftarrow C_2H_3^+)$	$-4.19 (H_2O \leftarrow H_3O^+)$	2.17
B3LYP ^c	$1.28(C_2H_2\leftarrow C_2H_3^+)$	$-2.80 (H_2 \leftarrow H_3^+)$	1.63
B3PW91 ^c	$2.12(C_2H_2\leftarrow C_2H_3^+)$	$-0.45 (H_2 \leftarrow H_3^+)$	0.73
B3P86 ^c	$1.48(C_2H_2\leftarrow C_2H_3^+)$	$-0.74 (H_2 \leftarrow H_3^+)$	0.71
PBE0 ^d	$5 (C_2H_2 \leftarrow C_2H_3^+)$	$-3 (PH_3 \leftarrow PH_4^{+})$	2.4
PW3PW	$0.75(C_2H_2 \leftarrow C_2H_3^+)$	$-1.82 (PH_3 \leftarrow PH_4^+)$	1.08
PW1PW	1.12 $(NH_3 \leftarrow NH_4^+)$	$-1.37 \left(\text{SiH}_4 \leftarrow \text{SiH}_5^+ \right)$	0.98
mPWPW	$1.70(C_2H_2\leftarrow C_2H_3^+)$	$-1.02 \left(\text{SiH}_4 \leftarrow \text{SiH}_5^+ \right)$	0.86
PW3LYP	NA	$-3.80 (H_2 \leftarrow H_3^+)$	2.29
KMLYP	$0.88 (NH_3 \leftarrow NH_4^+)$	$-3.05 (H_2 \leftarrow H_3^+)$	1.93
O3LYP	$3.25(C_2H_2 \leftarrow C_2H_3^+)$	$-0.59 (H_2 \leftarrow H_3^+)$	1.13
X3LYP	$0.81(C_2H_2 \leftarrow C_2H_3^+)$	$-3.20 (H_2 \leftarrow H_3^+)$	1.71

^aMaximum positive deviations.

^bMaximum negative deviations.

^cData taken from Ref. 23.

^dData taken from Ref. 53.

^bMaximum negative deviations.

^cData taken from Ref. 23.

^dData taken from Ref. 53.

TABLE VII. Total energies (Hartree) and deviations (theory-exptl.) for 10 atoms.

	System	Exp. ^a	LDA(SVWN)	BLYP	BPW91	BP86	PBE	PWPW
1	Н	-0.500	0.004	0.002	-0.004	-0.018	0.000	-0.001
2	He	-2.904	0.034	-0.001	-0.002	-0.038	0.013	0.006
3	Li	-7.478	0.081	-0.002	-0.006	-0.057	0.018	0.006
4	Be	-14.667	0.149	0.008	0.009	-0.064	0.040	0.022
5	В	-24.654	0.209	0.005	0.007	-0.089	0.047	0.022
6	C	-37.845	0.269	0.001	0.002	-0.115	0.052	0.019
7	N	-54.589	0.328	0.003	-0.001	-0.140	0.060	0.018
8	O	-75.067	0.394	-0.011	-0.008	-0.173	0.065	0.012
9	F	-99.734	0.459	-0.017	-0.012	-0.202	0.075	0.010
10	Ne	-128.938	0.525	-0.014	-0.009	-0.224	0.092	0.013
	MAD	0.000	0.245	0.007	0.006	0.112	0.046	0.013
	System	X3LYP	KMLYP	B3LYP	B3PW91	B3P86	PBE0	O3LYP
1	Н	0.000	-0.002	-0.002	-0.001	-0.019	-0.001	-0.000
2	He	-0.002	0.004	-0.009	0.006	-0.040	0.011	0.006
3	Li	-0.004	0.016	-0.013	0.006	-0.058	0.012	0.009
4	Be	0.008	0.045	-0.004	0.022	-0.063	0.032	0.000
5	В	0.006	0.066	-0.007	0.022	-0.083	0.039	0.001
6	C	0.005	0.086	-0.011	0.019	-0.106	0.043	0.000
7	N	0.009	0.106	-0.012	0.018	-0.127	0.049	0.001
8	O	0.000	0.132	-0.021	0.012	-0.153	0.057	0.002
9	F	0.000	0.160	-0.026	0.010	-0.176	0.069	0.000
	3.7	0.008	0.189	-0.023	0.013	-0.194	0.086	0.003
10	Ne	0.008	0.107	0.023	0.010	0.17.	0.000	0.000

^aExperimental data taken from Refs. 45 and 46.

long-range dispersion interactions (particularly near the minimum for the noble-gas dimers). We find below that X3LYP and mPWPW lead to fairly good descriptions for He₂ and Ne₂; however, this does not mean that the underlying problem of DFT has been solved. Indeed these methods do not do well at describing larger noble-gas dimers such as Xe₂, and even Ar₂. On the other hand, for the biological and other organic materials in which we are interested, the non-bonded contacts are dominated by H, C, N, and O, which have dispersion interactions similar to He and Ne. Thus we focused on these two cases to ensure a good description of biological systems.

Noble-gas dimers are the least ambiguous test molecules for determining how well the van der Waals attraction (London dispersion) is described. Table VIII summarizes the bonding properties of He_2 , Ne_2 , and Ar_2 calculated by different flavors of DFT functionals.

Although the B88 exchange functional has been very successful in describing the thermochemistry of covalent systems, it fails completely to describe van der Waals interactions. As shown in Table VIII, every DFT methods using B88 as exchange functional, pure or hybrid, gives unbounded noble-gas dimers.

On the other hand, Table VIII shows that the PW91 exchange functional severely overbinds noble-gas dimers. Adamo and Barone modified PW91¹⁶ by fitting the differential exchange energies of noble-gas dimers to HF values, removing most of the overbinding tendency of PW91. This mPWPW model yields $r_e({\rm He-He}) = 3.14 \, {\rm Å}$ and $D_e({\rm He-He}) = 0.069 \, {\rm kcal/mol},^{16}$ as compared the PWPW values of $r_e({\rm He-He}) = 2.645 \, {\rm Å}$ and $D_e({\rm He-He}) = 0.231 \, {\rm kcal/mol},^{16}$ and the experimental values of $r_e({\rm He-He}) = 2.970 \, {\rm Å}, D_e({\rm He-He}) = 0.022 \, {\rm kcal/mol},^{50}$ The PBE func-

tional gives a good description of noble-gas dimers. For He₂, PBE0 yields r_e = 2.818 Å and D_e = 0.042 kcal/mol, although, critically, ⁴⁴ PBE0 still overestimates D_e by 91%.

The van der Waals attraction between noble-gas atoms is entirely due to electron correlation, originating from the interactions between instantaneous fluctuating dipoles as shown by London. Thus when the correlation functional is eliminated to obtain the exchange-only potential, the noble gas dimers should lead to totally repulsive interactions for all interatomic distances, similar to the HF potential. However, the PW91, mPW, PBE, and corresponding hybrid models, without correlation all lead to a bound state, indicating that some electron correlation is implicitly included in the exchange-only potentials.

In this context, we conclude that X3LYP outperforms all the other functionals listed in Table VIII. For He_2 , X3LYP yields $r_e = 2.726\,\text{Å}$ and $D_e = 0.021\,\text{kcal/mol}$; while the exchange-only (X3) potential is repulsive.

Further improvement on the correlation functional is needed to describe correctly the van der Waals attraction.

G. Bonding properties of water dimer

Hydrogen bonding plays a critical role in a wide range of chemical and biological phenomena. Consequently water dimer, a prototypical hydrogen bonded system, has received much experimental and theoretical attention. The equilibrium geometry and dissociation energy of $(H_2O)_2$ are now known quite accurately: $r_e(O \cdots O) = 2.912 \pm 0.005 \,\text{Å}$ and $D_e = 5.02 \pm 0.10 \,\text{kcal/mol.}^{65}$ These results come from a highlevel *ab initio* theory [coupled cluster including single and double excitations plus triples (CCSD(T)) (full)] using basis sets that are extrapolated to infinity. Accurate experimental

TABLE VIII. Bonding properties of He₂, Ne₂, and Ar₂.^a Bond lengths are in Å and bond energies are in kcal/mol

	He	2	Ne ₂	!	Ar ₂	
	R_e	ΔE	R_e	ΔE	R_e	ΔE
HF	unbounded		unbounded		unbounded	
SVWN	2.377	0.251	2.595	0.533	3.379	0.787
BLYP	unbounded		unbounded		unbounded	
BPW91	unbounded		unbounded		unbounded	
$mPWPW^b$	3.14	0.069	3.25	0.092	4.45	0.115
PBE	2.752	0.073	3.097	0.111	4.000	0.126
PWPW	2.645	0.231	3.016	0.316	3.954	0.295
PWLYP	2.400	0.510	2.753	0.751	3.728	0.560
OLYP	2.887	0.079	3.283	0.123	4.836	0.050
X (Ex-only)	unbounded		unbounded		unbounded	
XLYP	2.805	0.023	3.126	0.069	4.384	0.020
B3LYP	unbounded		unbounded		unbounded	
B3PW91	unbounded		unbounded		unbounded	
mPW0 (Ex-only)	3.105	0.039	3.467	0.051	4.724	0.029
mPW0(mPW1PW)	3.052	0.045	3.254	0.053	4.435	0.036
mPW0 ^b	3.11	0.046	3.23	0.069	4.42	0.069
PBE0 (Ex-only)	3.016	0.032	3.161	0.030	4.338	0.035
PBE0(PBE1PBE)	2.818	0.042	3.118	0.061	4.040	0.081
PW3PW	2.660	0.164	3.003	0.221	3.943	0.225
PW3LYP	2.420	0.379	2.750	0.566	3.722	0.449
KMLYP	2.448	0.140	2.671	0.303	3.584	0.332
O3LYP	2.860	0.072	3.225	0.109	4.473	0.032
X3 (Ex-only)	unbounded		unbounded		unbounded	
X3LYP	2.726	0.021	2.904	0.063	4.234	0.007
exptl.c	2.970	0.022	3.091	0.084	3.757	0.285

^aAll calculations are performed with aug-cc-pVTZ. Bond energies are corrected for basis set superposition error (BSSE) effects.

determination of r_e and D_e have proven to be an elusive goal. Microwave measurements lead to a vibrationally averaged O··O distance $R_0 = 2.976\,\text{Å}$, from which it was estimated that $R_e = 2.946\,\text{Å}$. ⁶⁸ The widely accepted experimental $D_e = 5.4 \pm 0.7\,\text{kcal/mol}^{69}$ was based on measurements of the thermal conductivity of the water vapor and involved complex interpretations. We conclude that the *ab initio* values are the most reliable.

Table IX lists the calculated bonding properties of $(H_2O)_2$ using a variety of DFT methods. The most accurate overall description is from X3LYP, which leads to a bond distance just 0.004 Å from the exact value (and within the error bars) and a bond energy within 0.05 kcal/mol of the exact value (and within the error bars), predicting bonding properties of $(H_2O)_2$ with better quality than the other functionals listed in Table IX.

Other DFT methods with either R_e or D_e within experimental error of the exact result are PBE0 for D_e and mP-WPW for R_e .

BLYP gives r_e = 2.952 Å, which is 0.04 Å too long, and D_e too weak by 0.84 kcal/mol (16%), indicating too weak a hydrogen bond. B3LYP leads to some improvement but still underestimates hydrogen bonds, leading to r_e too long by 0.014 Å and D_e too weak by 0.45 kcal/mol (9%).

In contrast PWPW overestimates hydrogen bonds, leading to r_e too short by 0.026 Å and D_e too strong by 0.41 kcal/mol. The modified PW91 functional (mPWPW) im-

proves R_e to within 0.001 Å, but over-corrects the overbinding, leading to a bond too weak by 0.54 kcal/mol.

Although OLYP is very promising for thermochemistry, it is not good for hydrogen bonding, leading to $R_e(\text{O}\cdots\text{O})$ too long by 0.263 Å and D_e too weak by 2.26 kcal/mol, indicating that hydrogen bonds are significantly underestimated by this functional. O3LYP improves slightly from OLYP, but $R_e(\text{O}\cdots\text{O})$ too long by 0.183 Å, with D_e too weak by 1.82 kcal/mol.

V. CONCLUDING REMARKS

Development of improved approximations to the exchange-correlation functional has been critical to the success of Kohn–Sham density functional theory, with several exchange-correlation functionals that do quite well for particular properties. This success has been achieved either by construction of functional forms to satisfy physical constraints or by fitting a few scale parameters to experimental data. We have combined these two approaches to obtain the X3LYP exchange-correlation functional whose form matches well the behavior of a Gaussian-type decaying density. To aid those that would like to test X3LYP, we express the $F^{\rm X}$ GGA as a linear combination of $F^{\rm B88}$ and $F^{\rm PW91}$. The four mixing coefficients in X3LYP were determined by fitting to the atomization energies of a set of 33 diatomic and 5 triatomic molecules involving single, double, and triple bonds.

^bReference 38. Basis sets are modified cc-pV5X.

cReference 50.

TABLE IX. Bonding properties of water dimer.^a Bond lengths are in Å and bond energies are in kcal/mol.

	$R_e(O \cdot \cdot \cdot O)$	D _e
BLYP	2.952	4.18
PWPW	2.886	5.43
mPWPW	2.911	4.48
PBE	2.899	5.11
OLYP	3.175	2.76
XLYP	2.953	4.43
B3LYP	2.926	4.57
PW0 (PW1PW)	2.884	5.23
mPW0 (mPW1PW)	2.898	4.60
PBE0 (PBE1PBE)	2.896	4.98
O3LYP	3.095	3.20
X3LYP	2.908	4.97
Best ab initio ^b	2.912 ± 0.005	5.02 ± 0.10
exptl.	2.948°	5.44 ± 0.7^{d}

^aOur calculated D_e are BSSE-corrected. In bold face are the results within the uncertainty of the most accurate values [ab initio CCSD(T) full calculations with the basis set extrapolated to infinity].

In addition we included He₂, Ne₂, and Ar₂ to test accuracy of van der Waals interactions, and here we demanded that exclusion of the LYP correlation function would lead to a repulsive potential curve, similar to HF. Total energies of the first 10 atoms as well as ionization potentials and electron affinities of the first and second row atoms were also included in the fitting set.

The accuracy of X3LYP was validated by testing against experimental data for the extended G2 set, which contains 148 standard heats of formation, 42 ionization potentials, 25 electron affinities, 8 proton affinities, and 10 total atomic energies for H through Ne. In addition we tested X3LYP for noble gas and water dimers. Among all the DFT functionals tested here, the mean absolute deviations achieved by X3LYP are:

- (i) Heats of formation: 2.804 kcal/mol (best for all DFT);
- (ii) ionization potential: 0.154 eV (2nd best of all DFT, best is O3LYP with 0.139 error);
- (iii) electron affinities: 0.087 eV (best for all DFT);
- (iv) proton affinities: 1.714 kcal/mol (best is B3P86 with 0.71 error);
- (v) total atomic energies: 0.004 a.u. (2nd best of all DFT, best is O3LYP with 0.002 error);
- (vi) He₂ bond energy: error of 0.001 kcal/mol or 5% (tied with XLYP for the best of all DFT);
- (vii) He₂ bond distance: error of 0.244 Å or 8% (best is mPW0 with an error of 0.082 Å but a bond energy too large by 0.023 or 110%);
- (viii) Ne₂ bond energy: error of 0.021 kcal/mol or 25% (best is mPWPW with an error of 0.008);
- (ix) Ne₂ bond distance: error of 0.187 Å or 5% (the best is PW3PW with an error of 0.088 Å);

- (x) H₂O dimer bond energy: error of 0.005 kcal/mol or 0.1% (2nd best of all DFT, best is PBE0 with 0.004 error):
- (xi) H_2O dimer bond distance: error of 0.004 Å or 0.1% (2nd best of all DFT, best is mPWPW with 0.001 Å error).

Thus X3LYP is the most accurate DFT for most properties and is competitive with the best DFT for most other properties, making it the most consistent overall. In particular the accuracy for van der Waals and hydrogen bond interactions should make X3LYP useful for applications over a wide range of important chemical and biological systems.

Supplementary material available (Ref. 70):

Table S1 Deviations (theory-exptl.) from experiment for the heats of formation (kcal/mol at 298 K) for the extended G2 set (148 molecules), calculated by PWPW, PWLYP, PW3PW, PW1PW, and PW3LYP in Jaguar.

Table S2 Ionization potentials (in eV) at 0 K of 42 systems of G2 set and the deviations (theory-exptl.) obtained from B3LYP, PBE0, and X3LYP.

Table S3 Electron affinities (in eV) at 0 K of 25 systems of G2 set and the deviations (theory-exptl.) obtained from B3LYP, PBE0, and X3LYP.

Table S4 Proton affinities (in kcal/mol) at 0 K of 8 systems of G2 set and the deviations (theory-exptl.) obtained from B3LYP, PBE0, and X3LYP.

ACKNOWLEDGMENTS

We thank Dr. Y. X. Cao, Dr. Dale Braden, and Dr. Jason Perry at Schrödinger Inc. for technical support of using and programming with Jaguar. This research was funded by DOE (ASCI), DARPA-CMDF, DARPA-PROM, National Institutes of Health (HD 36385-02), National Natural Science Foundation of China (20021002), National Natural Science Foundation of Fujian (2002F010), the Ministry of Science and Technology of China (2001CB610506) and TRAPOYT from the Ministry of Education of China. The facilities of the Materials and Process Simulation Center (MSC) used in these studies were funded by DURIP-ARO, DURIP-ONR, IBM (SUR), NSF (MRI), and the Beckman Institute. In addition, the MSC is funded by grants from DOE-FETL, ARO-MURI, ONR-MURI, NIH, ChevronTexaco, Aventis Pharma, General Motors, Seiko-Epson, Berlex Biopharma, and Asahi Kasei.

^bReference 65. CCSD(T)(FULL)/IO275→∞ (IO275: interaction optimized basis set with 275 basis functions for H_2O dimer. O: 7s5p5d3f2g1h; H_d : 2s4p1d, H: 2s3p, BF: 3s3p2d1f).

^cGeometric parameters are taken from Ref. 67.

 $^{^{}m d}$ Experimental D_e was estimated by adding the zero-point energy calculated at HF/4-21G level in Ref. 69.

¹R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules* (Oxford University Press, New York, 1989).

²P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).

³J. C. Slater, *Quantum Theory of Molecules and Solids*, Vol. 4 (McGraw-Hill, New York, 1974).

⁴S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

⁵R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. **61**, 689 (1989).

 ⁶ W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. **100**, 12974 (1996).
 ⁷ J. P. Perdew and Y. Wang, Phys. Rev. B **33**, 8800 (1986).

⁸ A. D. Becke, Phys. Rev. A **38**, 3098 (1988).

⁹J. P. Perdew, in *Electronic Structure of Solids '91*, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11.

¹⁰J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996)

¹¹C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

- ¹²B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. **157**, 200 (1989).
- ¹³ J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- ¹⁴M. Filatov and W. Thiel, Mol. Phys. **91**, 847 (1997).
- ¹⁵ P. M. W. Gill, Mol. Phys. **89**, 433 (1996).
- ¹⁶C. Adamo and V. Barone, J. Chem. Phys. **108**, 664 (1998).
- ¹⁷W.-M. Hoe, A. J. Cohen, and N. C. Handy, Chem. Phys. Lett. **341**, 319 (2001).
- ¹⁸E. Fermi and G. Amaldi, Men. R. Acad. Italia. **6**, 117 (1934).
- ¹⁹S. B. Liu and R. G. Parr, J. Comput. Chem. 20, 2 (1999).
- ²⁰ G. J. Laming, V. Termath, and N. C. Handy, J. Chem. Phys. **99**, 8765 (1993).
- ²¹B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).
- ²² L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. **106**, 1063 (1997).
- ²³ L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. **109**, 42 (1998).
- ²⁴ A. D. Becke, J. Chem. Phys. **98**, 5648 (1993).
- ²⁵ A. D. Becke, J. Chem. Phys. **107**, 8554 (1997).
- ²⁶ H. L. Schmider and A. D. Becke, J. Chem. Phys. **108**, 9624 (1998).
- ²⁷P. J. Stephens, F. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. **98**, 11623 (1994).
- ²⁸ C. Tuma, A. D. Boese, and N. C. Handy, Phys. Chem. Chem. Phys. 1, 3939 (1999).
- ²⁹ J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett. **233**, 134 (1995).
- ³⁰S. Kristyan and P. Pulay, Chem. Phys. Lett. **229**, 175 (1994).
- ³¹ T. A. Wesolowski, O. Parisel, Y. Ellinger, and J. Weber, J. Phys. Chem. A 101, 7818 (1997).
- ³² Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996)
- ³³ J. F. Dobson and B. D. Dinte, Chem. Phys. Lett. **76**, 1780 (1996).
- ³⁴ W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett. **80**, 4153 (1998).
- ³⁵ Q. Wu and W. Yang, J. Chem. Phys. **116**, 515 (2002).
- ³⁶ Y. Zhang, W. Pan, and W. Yang, J. Chem. Phys. **107**, 7921 (1997).
- ³⁷D. C. Patton and M. R. Pederson, Phys. Rev. A **56**, R2495 (1997).
- ³⁸C. Adamo and V. Barone, J. Chem. Phys. **110**, 6158 (1999).
- ³⁹ A. J. Cohen and N. C. Handy, Chem. Phys. Lett. **316**, 160 (2000).
- ⁴⁰N. C. Handy and A. J. Cohen, Mol. Phys. **99**, 403 (2001).
- ⁴¹D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993).
- ⁴²M. Levy and J. P. Perdew, Phys. Rev. B **48**, 11638 (1993).
- ⁴³E. H. Lieb and S. Oxford, Int. J. Quantum Chem. **19**, 427 (1981).

- ⁴⁴T. A. Wesolowski, J. Chem. Phys. **113**, 1666 (2000).
- ⁴⁵ E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C. F. Fischer, Phys. Rev. A 44, 7071 (1991).
- ⁴⁶S. J. Chakravorty, S. R. Gwaltney, and E. R. Davidson, Phys. Rev. A 47, 3649 (1993).
- ⁴⁷D. Feller and K. A. Peterson, J. Chem. Phys. **108**, 154 (1997).
- ⁴⁸L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. **94**, 7221 (1991).
- ⁴⁹ V. E. Bondybey and J. H. English, J. Chem. Phys. **80**, 568 (1984).
- ⁵⁰ J. F. Ogilvie and F. Y. H. Wang, J. Mol. Struct. **273**, 277 (1992).
- ⁵¹T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989).
- ⁵² R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. **96**, 6796 (1992).
- ⁵³M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. **110**, 5029 (1999).
- ⁵⁴JAGUAR 4.0 Schrödinger, Inc., Portland, Oregon, 2000.
- ⁵⁵ J. K. Kang and C. B. Musgrave, J. Chem. Phys. **115**, 11040 (2001).
- ⁵⁶ J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. **90**, 5622 (1991).
- ⁵⁷ L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, J. Chem. Phys. **93**, 2537 (1990).
- ⁵⁸ J. M. Galbraith and H. F. Schaefer, J. Chem. Phys. **105**, 862 (1996).
- ⁵⁹N. Rösch and S. B. Trickey, J. Chem. Phys. **106**, 8940 (1997).
- ⁶⁰T. V. Mourik and R. J. Gdanitz, J. Chem. Phys. 116, 9620 (2002).
- ⁶¹ X. Hua, X. Chen, and W. A. Goddard III, Phys. Rev. **55**, 16103 (1997).
- 62 K. Kim and K. D. Jordan, J. Phys. Chem. 98, 10089 (1994).
- ⁶³D. A. Estrin, L. Daglieri, G. Corongiu, and E. Clementi, J. Phys. Chem. 100, 8701 (1996).
- ⁶⁴ M. W. Feyereisen, D. Feller, and D. A. Dixon, J. Phys. Chem. **100**, 2993 (1996).
- ⁶⁵ W. Klopper, J. G. C. M. van Duijneveldt-vande Rijdt, and F. B. van Duijneveldt, Phys. Chem. Chem. Phys. 2, 227 (2000).
- ⁶⁶T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. **66**, 498 (1977).
- ⁶⁷ J. A. Odutola and T. R. Dyke, J. Chem. Phys. **72**, 5062 (1980).
- ⁶⁸ K. Kuchitsu and Y. Morino, Bull. Chem. Soc. Jpn. 38, 805 (1965).
- ⁶⁹ L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys. **71**, 2703 (1979).
- ⁷⁰ See EPAPS Document No. E-JCPSA6-121-313445 for Tables S1¡S4. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.