
An extended Java Call Control for Session
Initiation Protocol

Mauro Femminella, Francesco Giacinti, Gianluca Reali

Department of Information and Electronic Engineering - DIEI

University of Perugia

Via G. Duranti, 93, Perugia, Italy

{mauro.femminella,francesco.giacinti,gianluca.reali}@diei.unipg.it

Abstract

In this paper we propose a functional mapping between Java Call Control (JCC) and Session
Initiation Protocol (SIP). We show its effectiveness in enabling easy service design and
implementation through experimental results. For this purpose, we have implemented a JCC-SIP
Resource Adaptor for a Jain Service Logic Execution Environment (JSLEE). In particular, we have
used the Mobicents JSLEE, which is the only existing open source JSLEE implementation. Results,
obtained by implementing a typical VoIP service, show both feasibility and good performance of
our proposal.

Keywords: SIP, JCC, JSLEE, Mobicents

1. Introduction

Improving the design and implementation processes of multimedia services is essential for telcos

aiming to rapidly innovate their services by resorting to the use of third-party applications and

libraries.

A growing number of open source technologies are available to fulfill the requirements of open

service architectures. Due to its platform independence, Java is a natural candidate for

implementing advanced services. In particular, the Java APIs for Integrated Networks (JAIN) Server

Logic Execution Environment (SLEE) and Session Initiation Protocol (SIP) Servlet, have been created

to explicitly aid developers in creating, deploying, and managing advanced telecom services. The

JSLEE specifications explain how to realize communication platforms able to fulfill the constraints

of multimedia services, such as low latency, high throughput, and high availability. They also

provide a point of integration of multiple network resources and protocols [15].

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

A further simplification of service creation is achievable by the use of the JCC APIs [8][16][17].

They have been created with the specific objective to free service developer from the burden of

handling the underlying set of network protocols (e.g. Signaling System No. 7, H.323, SIP).

Currently, the JAIN SLEE package does not include any JCC support for SIP, although SIP is currently

the de-facto standard protocol for session management in VoIP (Voice over IP) networks.

So far, few papers show proposals for mapping JCC onto SIP, and unfortunately none of them

include very detailed implementation information. The JAIN community has produced a document

that illustrates a possible mapping between JCC and SIP [9]. However, this mapping is only

descriptive and provides only general implementation details about JCC mapping onto underlying

network. Each JCC API method has been mapped onto a SIP message but, in various cases,

correspondence between methods and messages has not been provided.

A more detailed approach can be found in [1], where the authors exploit SIP and JCC

complementarities. Nevertheless, the paper refers to the initial JCC specifications and does not

provide exhaustive information on business (i.e. server side) interface design and implementation.

Currently, implementations of JAIN SLEE JCC adaptors exist for intelligent network (IN) protocols

(e.g. CAMEL, CAP, INAP). Even the main JSLEE implementers have not provided a JCC support for

SIP yet, probably since SIP is rather different from other IN protocols, and the JCC-SIP mapping is

not straightforward. For this reason, in the JCC-SIP mapping of our proposal, the semantic of some

JCC methods has been slightly modified. All changes and extensions are thoroughly explained in

what follows, along with their implementation within the Mobicents Communication Platform [6],

which is the only available open-source JAIN SLEE.

The paper is organized as follows. Section II illustrates background concepts about JSLEE, JCC, and

SIP. Section III describes the JCC-SIP operation. Section IV reports some implementation details

and presents experimental results. Section V reports some concluding remarks.

2. Background

2.1 Jain SLEE overview

The JSLEE is a Java standard specification for creating and hosting telecom services. It is event-

driven and designed for hosting high performance, asynchronous, and fault tolerant application

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

servers (AS) [15]. A JSLEE AS is a software container suited for hosting communication services.

It also provides the non logical features for executing applications, which relieves programmers

from the burden of dealing with low-level implementation aspects. A JSLEE includes instruments

such as: (i) Resource Adaptors (RAs), used for accessing external resources, such as protocols,

devices, and databases; (ii) an Event Router, which delivers each event to the appropriate SBB;

(iii) Timer Facilities, useful to implement a service logic including scheduled actions.

A service logic is organized in components called Service Building Blocks (SBB) which operate

asynchronously by receiving, processing, and firing events. SBBs may be arranged hierarchically,

according to parent-child relations, thus increasing service modularity and flexibility.

Events from external, such as reception of a SIP message, are translated into internal Java

events by RAs, and dispatched to the correct SBB by the Event Router.

Currently three main implementations of the JSLEE specification exist: Rhino, a commercial

JSLEE owned by Open Cloud [7]; jNetX Convergent Service Platform, a commercial JSLEE owned

by Amdocs [13]; Mobicents JAIN SLEE (MSLEE), owned by Red Hat [6], that we have selected

since it is open source and supported by a large community of developers. It includes a JSLEE

container, a Media Server, a Presence Server, and a SIP Servlet container. It is hosted within the

JBoss container, which offers capabilities for service and SLEE management through Java

Management Beans (MBean), service deployment, and thread pooling. The MSLEE

complements J2EE to enable convergence of voice, video, and data for implementing advanced

applications.

2.2 Java Call Control API Overview

The JCC API can handle communication sessions through a variety of heterogeneous networks

[1][8][9][16]. Its goal is to hide most of complexity of underlying network, which can be a

combination of circuit and packet-switched components, wireless or wired. It includes interfaces,

classes, operations, events, capabilities, and exceptions. Four key objects are specified:

• JCC Provider: it is the interface through which an application can access the implemented

JCC functions; it includes specific methods to add and remove event listeners, to get the

name and state of the Provider, to shut it down, to create a JCC Call object and to return

the object given a JCC Address string.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

• JCC Call: it represents a communication between two or more parties through a dynamic

collection of physical and logical entities involved in the communication;

• JCC Connection: it is a dynamic relationship between a Call and an Address;

• JCC Address: it is a logical endpoint, such as a directory number or an IP address.

Figure 1 shows the hierarchical relationship of these objects, their relationship type, and their

Finite State Machine (FSM).

JCC Provider

JCC Call

JCC Connection

JCC Address

1:N

1:N

1:1

IDLE

AUTHORIZE
CALL_ATTEMPT

ADDRESS
COLLECT

ADDRESS
ANALYZE

CALL DELIVERY

ALERTING

CONNECTED

ALL VALID
STATES

FAILED

DISCONNECTED

IDLE ACTIVE INVALID

IN_SERVICE

OUT_OF_SERVICE

SHUTDOWN

Figure 1:Relationship and FSM of the JCC API key objects. Thick arrows indicate modified transitions.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

The IN_SERVICE state of the JCC Provider indicates that it is alive and available for use; the

OUT_OF_SERVICE state indicates that it is temporarily not available; the SHUTDOWN state

indicates that it is permanently no longer available.

The JCC Call object can be created either by invoking the createCall() method on the JCC Provider

for an outgoing call or in response to a received network notification of an incoming call. A call

may be controlled by any of the involved parties. In the IDLE state, a JCC Call is not associated with

any JCC Connection; in the ACTIVE state, a JCC call has some ongoing activity and must have at

least one associated JCC Connection; the INVALID state indicates that a JCC Call has lost all its JCC

Connection objects.

A JCC Connection object consists of the relationship between a JCC Call object and a JCC Address

object. Figure 1 shows the FSM associated with a JCC Connection, along with our modifications

shown by thick arrows, proposed to deal with the SIP protocol. The IDLE state is the initial state.

The AUTHORIZE_CALL_ATTEMPT is associated with authorizing the originating and terminating

terminals for the Call. In the ADDRESS_COLLECT state, the initial address information package is

collected and processed according to a “dialing plan” to determine the final address; the

ADDRESS_ANALYZE state is entered when the complete initial information package from the

originating party is available. The information collected is processed according to a dialing plan in

order to resolve routing address and call type; the CALL_DELIVERY state of the originating party

implies the selection of the route and forwarding a message to notify the called party of the

desire to start a call. On the terminating side this state implies checking the busy/idle status of the

terminating access so as to notify the terminating side of an incoming call; the ALERTING state

means that the Address is being notified of an incoming call; the CONNECTED state implies that a

JCC Connection and its Address are part of a telephone call. Thus, two communicating parties are

represented by two JCC Connections of the same JCC Call staying in the CONNECTED state. In the

DISCONNECTED state, a Connection is no longer part of the telephone call, even if the Call and

Address references are still valid; the FAILED state indicates that a Connection has failed.

Each state transition of the JCC Connection FSM generates an event. In order to deliver events to

the appropriate listeners, the JCC specifications use EventFilters. Events are discarded if no

listeners are identified.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

A JCC Address object represents an endpoint. It has a string representation, such as a telephone

number. During a communication between parties, an Address object is related to a Call object via

a Connection object.

2.3 SIP Overview

The SIP protocol is a application-layer peer-to-peer signaling protocol [3] used for creating and

managing application sessions over IP networks. It is a text-based request-response protocol

which allows supporting innovative services, such as voice-enriched e-commerce, web page click-

to-dial, advanced Instant Messaging, and IP Centrex services.

SIP Sessions are established through a three-way signaling exchange between a so-called User

Agent Client (UAC) and a User Agent Server (UAS). An exchange starts with an INVITE message,

sent by the UAC to the UAS, one or more provisional responses (i.e. 100 Trying, 180 Ringing)

replied back by the UAS to the UAC, a final response sent by the UAS to the UAC (200 OK), and a

final acknowledgment (ACK) sent by the UAC to the UAS. The set of messages including a request

and the relevant responses consists of a SIP transaction.

The session setup messages include also Session Description Protocol (SDP) offers [4], used for

describing media and specifying their parameters, such as ports and encoders.

Typically, signaling is exchanged through SIP proxies, providing user registration, location, and call

routing functions. A sample service showing the use of proxies is shown in Figure 2. Its

implementation will be shown as a proof of concept of our proposal. It consists of a third party call

control based on a central Back to Back User Agent (B2BUA), implemented by an MSLEE, which

acts as both SIP UAC and SIP UAS. It splits each call (represented by a JccCall instance) in two SIP

dialogs over two distinct call-legs (JccConnection A and JccConnection B). Five main signaling

entities are involved: SIP UAC, SIP UAS, SIP Proxy, MSLEE implementing the B2BUA, and Database

(DB), used to store user profiles and service related parameters.

A signaling flow is started by the SIP UAC, which sends a SIP INVITE message to the SIP proxy,

which in turn routes the message towards the MSLEE. When this INVITE is received, the MSLEE

event routing subsystem is invoked and a Selector root SBB is created. It immediately queries the

DB in order to retrieve the subscriber profile. Now the Selector SBB has all the information needed

and can both activate a child SBB, called CallControl, and leave the signaling flow control to it. At

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

this point, the child SBB creates the second call leg towards the UAS and establishes the media

session between endpoints (represented by the JccConnection instances). The subsequent DB

queries are used to update service related information, such us the residual credit for prepaid

services [10]. A final DB query, upon call termination, is used to update service-related information

in the database.

100 - Trying

INVITE

200 - OK
BYE

200 - OK

180 - Ringing

100 - Trying

ACK

200 - OK

180 - Ringing

INVITE

ACK

Callee UASUAC

S
R

D

Caller UAC UASSIP Proxy

INVITE

180 - Ringing

200 - OK

ACK

Database

Database query request

Database query response

Database query request

Database query response

Timer Start

Database query request

Database query response

10 s

10 s

BYE

200 - OK

BYE

200 - OK

Ti
m

er
 d

ur
at

io
n

(1
80

 s
)

100 - Trying

Database query request

Database query response

Timer End

JccConnection BJccConnection A

MSLEE
JccCall

Figure 2 –Signaling messages for session setup and tear-down.

For implementing SIP-based applications, programmers may use specific APIs. JAIN SIP is a Java

implementation of a low-level SIP interface. It allows manipulating messages, headers,

parameters, ports, and IP addresses. It can be used to build SIP entities such as UAs, proxies, and

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

B2BUA. Anyway, programmer is left with the burden implementing the SIP logic first, and then an

application on top of it, which can be time-consuming and error prone.

3. JCC-SIP operation

Our JCC-SIP combination includes significant novelties compared to previous proposals. In [1],

which is the most complete JCC-SIP mapping description found in the literature, the authors’ aim

was to demonstrate that SIP and JCC are complementary. In this paper there are few and/or not

exhaustive details on business level interface design and implementation relevant to the mapping

between SIP message exchange and state transitions of the JCC Connection objects. In our paper,

we have realized a detailed mapping, at business level, between JCC and SIP, relevant to the

creation of third party call control complex applications. In addition, the mapping between the SIP

third party call control mechanism, illustrated in IETF RFC 3725 (Flow III) [2], and JCC, that we have

designed, is an original contribution of this paper. Finally, the paper [1] refers to the obsolete JCC

specifications v.1.0, thus to the JCC 1.0 Connection FSM, whereas our mapping is based on the JCC

specification v.1.1, also known as v.1.0b [8]. In the JCC specifications v.1.1, the JCC Connection

FSM has been modified, thus some adaptations are necessary. Our proposed modifications, that

also simplifies and allows complex call setup, are highlighted by the thick arrows in Figure 1. The

operation of the modified JCC Connection FSM is illustrated by the signaling exchange shown in

Figure 3 and in Figure 4.

The JCC responses to SIP requests have been implemented through six SIP Request handlers,

according to the RFC 3261. Five of them are used to manage a specific SIP request, and one more

to handle possible unsupported ones. A further Response handler, able to handle all SIP

responses, has also been implemented.

• InviteRequestHandler:

when a SIP INVITE is received, this handler checks if it refers to an existing call. In case of a

new call, the handler creates new JCC Call and Connection objects that are associated with

the UA which has sent the SIP INVITE message. In case of an existing call, the handler

retrieves the JCC Call and Connection objects relevant to the sending UA. This handler

makes use of the JCC Call object, relevant to the existing call, to infer whether this call is a

B2BUA call or a single leg one. To this aim, it retrieves the mapping, stored in the JCC Call

object, between the JCC Connection objects (i.e. between the SIP legs). If the JCC

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

Connection object, relevant to the UA that has sent the SIP INVITE, is associated with

another JCC Connection object, then the call is a B2BUA one, otherwise it is a single leg call.

If the call is established by a B2BUA, the INVITE message is forwarded towards the second

leg. If it is single leg, the handler replies with a SIP 200 OK response.

• AckRequestHandler/CancelRequestHandler/ByeRequestHandler

when a SIP ACK/CANCEL/BYE request is received, this handler retrieves the JCC Connection

object relevant to the UA that has sent the ACK/CANCEL/BYE and delivers it to this JCC

Connection object for subsequent processing.

• OptionsRequestHandler:

when a SIP OPTIONS request is received, this handler replies with a SIP 200 OK response to

the UA that has sent the OPTIONS message. All information about the server capabilities

are included in the response message.

• UnsupportedRequestHandler:

when an unsupported SIP request is received, this handler replies with a SIP 501 NOT

IMPLEMENTED response. All information about the server capabilities and the supported

SIP requests are inserted in the response message.

• ResponseHandler:

when a SIP response is received, this handler retrieves the relevant JCC Connection object

relevant to the UA that has sent the SIP response and delivers it to this JCC Connection

object for subsequent processing.

In what follows we illustrate the basic operation of our JCC-SIP implementation tool by showing

the signaling exchange of two services, by using the same graphical style of [1]. Although some

implemented capabilities fall out of the scope of these services, such as the SIP Redirection [3],

they are sufficient to depict the potential of our proposal.

The involved entities are: JCC Application, JCC Calls, JCC Connections, JCC Provider, stateful SIP

server, and SIP end Parties (UAC and UAS).

The first service consists of a JCC-SIP point-to-point telephone call, established through a B2BUA

that manages each call leg independently of each other. The call setup signaling is depicted in

Figure 3. It is assumed that authentication, authorization, and accounting (AAA) operations for

each user have already been executed. In order to preserve readability and neatness of the figure,

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

arguments of JCC methods are not shown. The current state of the JCC Call and Connection

objects is shown in dashed boxes. All messages exchanged by the JCC Application represent the

interaction between the implemented service and the underlying system, which we have

integrated within a single Mobicents JCC-SIP RA.

1- By sending the initial SIP Invite(B,A) message, the UAC Party A initiates the signaling

exchange to setup a communication session with the SIP Party B (UAS).

2- The InviteRequestHandler in the receiving SIP Server sends a 100 Trying provisional

acknowledgement back to the sender SIP UA.

3-4- The SIP Server that receives the SIP Invite invokes the handleInvite() method of the

JCC Provider which, in turn, creates a JCC Call instance by invoking the

CreateCallAndConnection() method, the initial state of which is IDLE.

5- The JCC Call entity can optionally notify the JCC Application of its creation by firing an event

generated by invoking the callCreated() method.

6- The JCC Call entity can then instantiate the JCC Connection A, the initial state of which is

IDLE.

7- The JCC Connection A can optionally notify the JCC Application of its creation by firing an

event generated by invoking the connectionCreated() method.

8- The state of the JCC Call entity changes to ACTIVE and it can optionally notify the JCC

Application of this change by firing an event generated by invoking the callActive() method.

The state of the JCC Connection A entity changes to ADDRESS_ANALYZE. This transition is

possible only in the modified JCC Connection FSM shown in Figure 1. Avoiding the Authorize

Call Attempt state is due to the typical SIP operation that requests a preliminary AAA phase.

This allows saving resources for managing a relevant event by a dedicated listener.

9 - JCC Connection A notifies the JCC Application of this change by firing an event generated by

invoking the connectionAddressAnalyze() method. This is a further proposal, deriving from the

observation that in the SIP philosophy a call is typically managed by a service, and not by the

underlying system.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

10-11- Now the JCC application can invoke the only needed method to establish a call:

routeCall(B,A, …). This way the JCC Call is required to instantiate the JCC Connection B in its

initial IDLE state.

12- The JCC Connection B can optionally notify the JCC Application of its creation by invoking

the connectionCreated() method.

13-14- By the method sendInvite(), invoked by the JCC Call the JCC Connection B triggers the

SIP Server to send the SIP INVITE(B,A) towards the SIP Party B.

15-16- The state of the JCC Connections A and B change to CALL_DELIVERY. Also this change is

possible only in the modified JCC Connection FSM shown in Figure 1. The JCC Application can

be notified of these changes by the connectionCallDelivery() method. The SIP Trying message

is not shown for the sake of neatness.

17- The SIP signaling proceeds at the SIP Party B by sending the 180 Ringing message back to

the SIP Server.

18-20- The 180 Ringing message triggers the invocation of handleResponse (), handleRinging(),

and forwardRinging() methods.

21-22- The relevant response, implemented by the sendRinging() method, cause the SIP 180

Ringing message to be sent from the SIP Server back to the SIP Party A.

23- The state of the JCC Connection B entity changes to ALERTING and it can optionally notify

the JCC Application of this change by firing an event generated by invoking the

connectionAlerting() method.

24-27- The SIP Party B can than send a SIP 200 OK message back to the SIP Server, which

triggers the invocation of handleResponse (), handleOK(), and forwardOK() methods.

28-29- The relevant response, generated by invoking the sendOK() method, causes the SIP 200

OK message to be sent from the SIP Server back to the SIP Party A.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

30-35- The SIP Party A completes the three-way-handshake by the next ACK, which is

forwarded to the SIP Party B through a set of methods similar to the ones used to carry the SIP

200 OK message.

36-37 - The states of the JCC Connection A and JCC Connection B change to CONNECTED. They

notify the JCC Application of this change by firing events generated by invoking the

connectionConnected() method.

In our implementation the entities JCC Call, JCC Connection A, JCC Connection B, JCC Provider,

and SIP Server are included within the Mobicents JCC-SIP RA. Their methods are RA internal

methods.

From Figure 3, it is evident the complexity reduction achieved. Instead of programming a

complete SIP exchange, a single mandatory RouteCall() method is sufficient, thus reducing the

implementation time and avoiding the error prone management of the SIP methods.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

1. INVITE (B,A)
3. handleInvite()

JCC
Connection A

JCC
Connection B

JCC
Call

JCC
Provider

SIP
Server

SIP
Party A

SIP
Party B

JCC
Application

4. createCallAndConnection()
IDLE

5. callCreated()
IDLE

ACTIVE
8. callActive()

9. connectionAddressAnalyze() ADDRESS_ANALYZE

10. routeCall(B,A,-,-)

6. new()

IDLE
11. new()

13. sendInvite()

2. 100 TRYING

CALL_DELIVERY

7. connectionCreated()

15. connectionCallDelivery()
CALL_DELIVERY

14. INVITE (B,A)

17. 180 RINGING
18. handleResponse()

16. connectionCallDelivery()

12. connectionCreated()

ALERTING23. connectionAlerting()

21. sendRinging()
22. 180 RINGING

24. 200 OK
25. handleResponse()

19. handleRinging()

26. handleOK()

29. 200 OK

30. ACK

20. forwardRinging()

27. forwardOK()
28. sendOK()

31. handleACK()32. handleACK()

33. forwardACK()
34. sendACK()

35. ACK

CONNECTED36. connectionConnected()

CONNECTED37. connectionConnected()

Mandatory application method

Optional application method

Internal method

SIP message

Figure 3 JCC-SIP signaling exchange: point to point telephone call.

The second service consists of a JCC-SIP B2BUA call generated by the JCC Application. This service

is representative of all services in which third-party applications can establish calls between user

terminals, such as click-to-dial services. The signaling exchange is depicted in Figure 4. This

example refers to the best practices for implementing third party call control mechanism

illustrated in RFC 3725, Flow III [2]. To the best knowledge of the authors, this JCC extension has

not been published before.

We assume again that AAA operations have already been executed.

1- The JCC Application invokes the createCall() method of the JCC Provider.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

2- After that, the JCC Provider instantiates the JCC Call in the IDLE state.

3- The JCC Call entity can optionally notify the JCC Application of its creation by firing an event

generated by invoking the callCreated() method.

4-5 - The JCC Application requires the JCC Call to create the JCC Connection A by invoking the

method createConnection(), which is created in the IDLE state.

6- The JCC Connection A can optionally notify the JCC Application of its creation by invoking

the connectionCreated() method.

7- The state of the JCC call entity changes to ACTIVE and it can optionally notify the JCC

Application of this change by invoking the callActive() method.

8-9- Now the JCC application invokes the method routeCall(B,A, …) to require the JCC Call to

instantiate also the JCC Connection B in the IDLE state.

10- The JCC Connection B can optionally notify the JCC Application of its creation by firing an

event generated by invoking the connectionCreated() method.

11-12- After that, the JCC Call invokes the method sendInvite() of the JCC Connection A object,

which in turn requires the SIP Server to create and send the SIP INVITE message towards the

SIP Party A without any SDP offer.

13- The state of the JCC Connection A entity changes to CALL DELIVERY and it can optionally

notify the JCC Application of this change by invoking the connectionCallDelivery() method. The

relevant SIP Trying message is not shown in Figure 4 for the sake of neatness.

14- The SIP signaling proceeds at the SIP Party A by sending the SIP 180 Ringing message back

to the SIP Server.

15-16- The 180 Ringing message triggers the invocation of handleResponse () and

handleRinging() methods.

17- The state of the JCC Connection A entity changes to ALERTING and it can optionally notify

the JCC Application of this change by invoking the connectionAlerting() method.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

18-20- The SIP Party A can send a SIP 200 OK message back to the SIP Server, along with its

SDP service configuration parameters. This message triggers the invocation of the

handleResponse () and handleOK() methods.

21- The subsequent response, sent back by the JCC Connection A to the SIP Server by invoking

the sendBlackHoledACK() method, is compliant with the specifications of the RFC 3725 [2]. In

particular, the answer is a "black hole" SDP, with its connection address equal to 0.0.0.0.

22- The ACK is propagated back by the SIP Server to the SIP Party A.

23- The state of the JCC Connection A entity changes to CONNECTED and it notifies the JCC

Application of this change by firing an event generated by invoking the connectionConnected()

method.

24-26- Now the JCC Connection A can invoke the sendInvite() method to ask the awaiting JCC

Connection B to require SIP Server to send the SIP INVITE message to the SIP Party B without

SDP. The state of the JCC Connection B changes to CALL_DELIVERY and it can optionally notify

the JCC Application of this change by firing an event generated by invoking the

connectionCallDelivery() method.

27- The SIP signaling proceeds at the SIP Party B by sending the SIP 180 Ringing message back

to the SIP Server.

28-29- The SIP 180 Ringing message triggers the invocation of handleResponse() and

handleRinging() methods.

30- The state of the JCC Connection B entity changes to ALERTING and it can optionally notify

the JCC Application of this change by invoking the connectionAlerting() method.

31-34- The SIP Party B can than send a SIP 200 OK message back to the SIP Server, along with

its SDP offer. This message triggers the invocation of the handleResponse(), handleOK(), and

sendReInvite() methods.

35- After an eventual negotiation for matching the SDP offers, the JCC Connection A require

the SIP Server to re-invite the SIP Party A.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

36-38 - The relevant SIP 200 OK message replied by the SIP Party A back to the SIP Server

triggers again the invocation of handleResponse() and handleOK() methods.

39-40 - By invoking the sendACK() method, the JCC Connection A requires the JCC Connection B

to trigger the SIP Server to send a SIP ACK to the SIP Party B.

41-42 – By invoking the sendACK() method, the JCC Connection A triggers the SIP Server to

send a SIP ACK to the SIP Party A.

43 - The state of the JCC Connection B changes to CONNECTED and it notifies the JCC

Application of this change by invoking the connectionConnected() method.

Even in this case, from Figure 4 it is evident that the complexity reduction achieved is significant

(5 JCC mandatory messages against at least 11 SIP ones).

4. JCC-SIP RA Implementation and Results

The JCC RA for SIP has been implemented as part of the Mobicents SLEE version 1.2.6. It is

compliant to the JAIN SLEE 1.0 specifications, the latest stable version at the beginning of this

work. The link between the RA and the underlying SIP network has been realized by using the JAIN

SIP API and JAIN SIP RI (Reference Implementation) v1.2.

In what follows we show the results of the experiments performed by using the service shown in

Figure 3, implemented by our JCC-SIP RA.

The SIP UAC and UAS have been implemented by two PCs hosting the Ubuntu Linux operating

system v.9.10, running the SIPp [11] traffic generator. Multiple MSLEE v.1.2.6.GA instances have

been virtualized by using the VMWare ESXi 4.1 hypervisor, installed on a Fujitsu-Siemens

PRIMERGY TX300 S4 server, dual Intel Xeon E5410@2.33GHz, with a total of 8 CPU cores and 16GB

of RAM. Each virtual machine (VM) containing an MSLEE runs the CentOS 32-bit v5.5 operating

system and a JVM version 1.6.0_21 32-bit Server, with 2 virtual CPUs and 3 GB of RAM. Thus, four

MSLEE instances can run in parallel over the shared hardware resources. This deployment has

been suggested by the analysis carried out in [5]. Subscriber policies have been stored into a

MySQL database v. 5.0.51a. In the same PC hosting the database, a SIP proxy, acting as a load

balancer between all MSLEE virtual instances, has been deployed by using the OpenSIPS server

[12]. Its task is to route SIP traffic towards MSLEE instances running in different VMs in a round

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

robin fashion. All the test bed devices have been connected through a dedicated Gigabit Ethernet

network.

JCC
Connection A

JCC
Connection B

JCC
Call

JCC
Provider

SIP
Server

SIP
Party A

SIP
Party B

JCC
Application

IDLE

3. callCreated()

IDLE

ACTIVE7. callActive()

8. routeCall(B,A,-,-)

5. new()

IDLE
9. new()

11. sendInvite()

CALL_DELIVERY

6. connectionCreated()

13. connectionCallDelivery()

CALL_DELIVERY

12. INVITE no SDP

14. 180 RINGING15. handleResponse()

26. connectionCallDelivery()

10. connectionCreated()

ALERTING17. connectionAlerting()
18. 200 OK offer1

19. handleResponse()

16. handleRinging()

20. handleOK()

21. sendBlackHoledACK()

42. ACK

CONNECTED23. connectionConnected()

CONNECTED43. connectionConnected()

1. createCall()

2. new()

4. createConnection()

22. ACK answer1 (bh)

24. sendInvite()
25. INVITE no SDP

27. 180 RINGING
28. handleResponse()

ALERTING30. connectionAlerting()
31. 200 OK offer2

32. handleResponse()

29. handleRinging()

33. handleOK()
34. sendReInvite()

35. INVITE offer2'

36. 200 OK answer2'
37. handleResponse()

38. handleOK()

39. sendACK()

40. ACK answer2'

41. sendACK()

Mandatory application method

Optional application method

Internal method

SIP message

Figure 4: JCC-SIP signaling exchange: third party initiated telephone call.

The service has been tested by optimizing the configuration of both the ESXi VM and the JVM [5].

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

Table 1 reports the basic JVM parameters for both parallel and concurrent garbage collection

configurations and some experimental results.

JSLEE RA and

GC Type

JVM Parameters MCT

(cps)

Average SRD

(ms)

MCT (cps) with

95th pct 200 ms

COCOMO

(mm)

JCC-SIP RA

Parallel GC

-Xms2436m
-Xmx2436m
-XX:PermSize=64m
-XX:+UseTLAB
-XX:NewRatio=18

170 421 145 1.24

JCC-SIP RA

Concurrent GC

-Xms2436m
-Xmx2436m
-XX:PermSize=64m
-XX:+UseTLAB
-XX:+UseConcMarkSweepGC
-XX:NewSize=220
-XX:MaxNewSize=220

185 1185 120 1.24

SIP RA -Xms2500m
-Xmx2500m
-XX:+UseTLAB
-XX:NewRatio=10

135 159 110 1.52

Table 1: JVM configuration and achieved performance

Calls have been generated by the SIPp UAC according to a deterministic arrival process. The call

length was 180 seconds, and the duration of each test was 60 minutes. As performance metrics,

we report the maximum call throughput (MCT, defined as the maximum input call rate generating

a percentage of lost calls lower than 1%), expressed in calls per second (cps), and the average

Session Request Delay (SRD), defined as the time interval from the initial SIP INVITE to the first

non-100 provisional SIP response. SRD values are important since they are related to the latency

experienced by a caller initiating a session. Since in operation SDR values need to be bounded, we

also reported the MCT value corresponding to the further limitation of generating a 95-th SRD

percentile of 200 ms.

Table 1 also reports the Constructive Cost Model (COCOMO), which is a model used for estimating

man-month (mm) effort associated with software projects [14], and the performance achieved by

the Mobicents SIP RA. It is worth considering that while our implementation is optimized for the

implemented functions, the SIP RA includes a larger set of capabilities and relevant control

procedures. Thus, even if we have added a further abstraction layer to speed up service

implementation and deployment, our implementation can outperform the SIP RA. On the other

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

hand, this result demonstrates the suitability of our proposal and the effectiveness of our

implementation. Finally, it is worth noting the both JCC RA and Mobicents SIP RA can be deployed

in the same MSLEE and used simultaneously for implementing any service. This could be extremely

useful for executing legacy services implemented by using the SIP RA together with services

implemented by using our JCC-SIP RA.

5. Conclusion

In this paper we have presented a JCC-SIP mapping and the relevant implementation as a JCC-SIP

RA for the Mobicents JSLEE. We have shown the effectiveness of the implemented JCC RA in

allowing service developers to realize carrier-grade services in an easier and faster way with

respect to creating the same services by directly using the SIP methods. Through a higher layer

abstraction provided by the JCC RA, a complex service logic does not have to include specific SIP

signaling issues, and the achievable performance results to be very promising.

Further activities for simplifying service design and implementation are ongoing, such as JCC

mapping with the Media Gateway Control Protocols.

References

[1] R. Jain, J.-L. Bakker, F. Anjum, “Java Call Control (JCC) and Session Initiation Protocol”, IEICE
Transactions on Communications, vol. E-84-B, no. 12, December 2001.

[2] J. Rosenberg, J. Peterson, H. Schulzrinne, G. Camarillo, “Best Current Practices for Third Party
Call Control (3pcc) in the Session Initiation Protocol (SIP)” IETF RFC 3725 , April 2004.

[3] RFC 3261, "SIP: Session Initiation Protocol", 2002, http://www.ietf.org/rfc/rfc3261.txt.
[4] RFC 4566, “SDP: Session Description Protocol”, 2006, http://www.ietf.org/rfc/rfc4566.txt.
[5] M. Femminella, E. Maccherani G. Reali, “Performance Management of Java-based SIP

Application Servers”, IFIP/IEEE IM’11, Dublin, Ireland, May 2011.
[6] Mobicents web site, http://www.mobicents.org.
[7] Open Cloud web site: www.opencloud.com.
[8] Sun Microsystems, Inc., “Java Call Control (JCC) Application Programming Interface (API)

Version 1.0b, Overview of the API”, July 2002
[9] H. Sasaki, J. L. Bakker, P. O’Doherty, “Java Call Control v1.0 to Session Initiation Protocol

Mapping”, Oct 2001.
[10] M. Femminella, R. Francescangeli, F. Giacinti, E. Maccherani, A. Parisi, G. Reali, “Scalability

and Performance Evaluation of a JAIN SLEE-based Platform for VoIP Services”, ITC 21, 15-17
September 2009, Paris, France.

[11] SIPp Web Site: http://sipp.sourceforge.net.
[12] OpenSIPS Project Web Site: http://www.opensips.org.
[13] Amdocs Web Site, available at: http://www.amdocs.com/Products/Service-

Delivery/Convergent-Service-Platform/Pages/index.aspx.
[14] B. Boehm, “Software Engineering Economics”, Englewood Cliffs, Prentice-Hall, 1981.

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

[15] H. Khlifi, J.-C.Gregoire, “IMS application servers: roles, requirements, and implementation
technologies,” IEEE Internet Computing, May-June 2008, 12(3), pp. 40-51.

[16] R. Jain, F.M. Anjum, P. Missier, S. Shastry, “Java call control, coordination, and transactions”,
IEEE Communications Magazine, 38(1), pp. 108-114.R.

[17] Jain, J.-L. Bakker, and F. Anjum "Programming Converged Networks: Call Control in Java,
XML, and Parlay/OSA", Wiley, 2004.

Authors’ biographies

Mauro Femminella received both the master degree and the Ph.D. in Electronic Engineering from
University of Perugia in 1999 and 2003, respectively. Since November 2006, he is assistant
professor at the Department of Electronic and Information Engineering, University of Perugia. His
current research interests focus on nano-scale networking and communications, middleware
platforms for multimedia services, location and navigation systems, and network and service
management architectures for the Future Internet.

Francesco Giacinti received the master degree in Telecommunication and Computer Engineering
from University of Perugia in 2011. Since September 2011, he is contract researcher at
Department of Electronic and Information Engineering, University of Perugia His research interests
focus on the design and performance evaluation of middleware platforms for multimedia services.

Gianluca Reali is an associate professor at the University of Perugia, Department of Information
and Electronic Engineering (DIEI), Italy, since January 2005. He received the Ph.D. degree in
Telecommunications from the University of Perugia in 1997. From 1997 to 2004 he was researcher
at DIEI. In 1999 he visited the Computer Science Department at UCLA. His research activities
include resource allocation over packet networks, wireless networking, network management, and
multimedia services.

Contact Information

Mauro Femminella
Department of Information and Electronic Engineering - DIEI
University of Perugia
Via G. Duranti, 93, Perugia, Italy
mauro.femminella@diei.unipg.it
Tel. +39 075 585 3630

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

Francesco Giacinti
Department of Information and Electronic Engineering - DIEI
University of Perugia
Via G. Duranti, 93, Perugia, Italy
francesco.giacinti@diei.unipg.it
Tel. +39 075 585 3647

Gianluca Reali (contact author)
Department of Information and Electronic Engineering - DIEI
University of Perugia
Via G. Duranti, 93, Perugia, Italy
mauro.femminella@diei.unipg.it
Tel. +39 075 585 3651

Digital Object Indentifier 10.1109/MMUL.2011.58 1070-986X/$26.00 2011 IEEE

This article has been accepted for publication in IEEE MultiMedia but has not yet been fully edited.
Some content may change prior to final publication.

