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An Extended Kalman Filter for Data-enabled
Predictive Control

Daniele Alpago, Florian Dörfler and John Lygeros

Abstract—The literature dealing with data-driven analysis and
control problems has significantly grown in the recent years. Most
of the recent literature deals with linear time-invariant systems in
which the uncertainty (if any) is assumed to be deterministic and
bounded; relatively little attention has been devoted to stochastic
linear time-invariant systems. As a first step in this direction, we
propose to equip the recently introduced Data-enabled Predictive
Control algorithm with a data-based Extended Kalman Filter to
make use of additional available input-output data for reducing
the effect of noise, without increasing the computational load of
the optimization procedure.

Index Terms—Optimal control, Stochastic systems, Kalman
filtering.

I. INTRODUCTION

W ITH the increasing complexity of applications in sci-
ence and engineering, the use of model-based control

techniques is becoming more and more challenging as they
usually require accurate descriptions of model and uncer-
tainties, often difficult to obtain. The need of data-driven
approaches was already perceived in the 1980s with the advent
of system identification [1] and adaptive control [2], and
received new impetuous in the 1990s: cornerstones such as
Iterative Feedback Tuning, Correlation-based Tuning, Virtual
Reference Feedback Tuning [3]–[5] are among the most
effective approaches and currently represent active research
topics. Another successful stream of ongoing work originated
in those years was that of Reinforcement Learning (RL) [6].
In particular, model-free RL approaches such as Policy Search
[7] and Approximate Dynamic Programming [8] represent
flexible frameworks for phrasing relevant data-driven control
problems, see [9], [10] and references therein. In recent years,
the rediscovery of a result originally formulated in the context
of behavioral system theory [11], [12] by J. C. Willems and
coauthors, known as the Fundamental Lemma [13], shed new
light on data-driven analysis and control approaches. The
result states that if the input signal is sufficiently rich, all
possible trajectories of a deterministic, linear time-invariant
(LTI) system can be generated from linear combinations of
past trajectories of the same system. This allows one to use
a Hankel matrix constructed from input-output data as an
implicit representation of the underlying dynamics. This rep-
resentation has been first exploited for data-driven simulation
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and linear-quadratic tracking for deterministic LTI systems in
a behavioral setting [14], [15]. This has resulted in a growing
stream of literature dealing with data-driven analysis [16], [17]
and control problems [18]–[21].

In this context, particular attention has been devoted to
the problem of optimal trajectory tracking [22]–[26], widely
studied in model-based control. The aim is to compute an
optimal control policy based on output feedback that drives
the system along an output reference while minimizing a stage
cost and satisfying input and output constraints. Model Predic-
tive Control (MPC) has been one of the most effective methods
to tackle such problems. MPC requires an accurate model of
the system and an accurate description of the uncertainty (if
any), which might be challenging and expensive to obtain
in many applications [27], [28]. The success of MPC and
the difficulties arising from the requirement for models have
led to the introduction of a Data-enabled Predictive Control
(DeePC) algorithm. The latter does not rely on a particular
parametric system representation, but rather on a Hankel-
matrix representation of the underlying dynamics, constructed
from the system’s input-output trajectories [23]–[25]. Unlike
classical model-based predictive control methods, DeePC per-
forms the control computation without identifying the system
by solving a (parametric) convex optimization problem that
includes the Hankel matrix in the constraints. The complexity
of such optimization depends on the system dimensions, the
MPC horizon and the amount of available data. Therefore, it
is not obvious how to efficiently include additional data (for
example, past measurements of the output of the closed-loop
system) in the procedure, without increasing the computational
burden of the optimization that has to be solved online.

Unlike earlier methods, recent data-driven approaches based
on the Fundamental Lemma have devoted little attention to
stochastic systems. Some approaches adopt a “robust control”
perspective and treat the uncertainty as a deterministic and
bounded sequence [18], [20], [26], sometimes affecting just the
output. The focus of the present paper is to extend the DeePC
algorithm to stochastic LTI systems and design methods for
including more data to improve closed-loop performance,
without increasing the computational load of the optimization.
This is accomplished through a combination of an offline
averaging of Hankel matrix predictors and an online, data-
driven Extended Kalman Filter (EKF). The latter is based on
an implicit model constructed from the parametric solution of
the DeePC optimization program. The combination of off-line
averaging with online EKF dramatically improves the closed-
loop performance, as evidenced by numerical experiments.

In Section II we introduce the notation and recall some
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preliminary results. In Section III the DeePC algorithm is
reviewed and the issues that motivate our approach are high-
lighted. Section IV-B introduces the proposed approach and
Section V presents numerical experiments. Finally, in Section
VI we draw conclusions and outline future lines of research.

II. NOTATION AND PRELIMINARIES

We recall the definition of persistently exciting signals and
a state-space version of a result from behavioral system theory
[11], [12], known as the Fundamental Lemma [13], [14].

Notation. Given a matrix A∈Rm×n, A> denotes its transpose
and A−1 its inverse (if m= n). The notation A(i : j, :), i≤ j≤m,
stands for the sub-matrix of A that goes from the i-th row of
A to the j-th row of A, included. If i = j we simply write
A(i, :). We denote with Im the identity matrix of dimension
m×m. With diag(A1, . . . ,An) we denote the block-diagonal
matrix formed with the matrices A1, . . . ,An. Given a sequence
of matrices Ah, . . . ,Ah+k in Rm×n, with k > 0, we denote
by Ah,h+k := col(Ah, . . . ,Ah+k) := [A>h · · · A>h+k]

> ∈ R(k+1)m×n.
Given a vector w ∈ Rm we introduce the quadratic form
‖w‖2

P = w>Pw which coincides with the squared Euclidean
norm ‖w‖2

2 when P = Im. The symbol E[·] denotes the expec-
tation operator.

Persistency of Excitation. Let w0, . . . ,wN−1 be N ∈ N sam-
ples of a given sequence (wk)k∈Z taking values in Rq. For
M ∈ N, M ≤ N, let

HM(w0,N−1) :=


w0 w1 · · · wN−M
w1 w2 · · · wN−M+2
...

...
...

...
wM−1 wM · · · wN−1


be the block-Hankel matrix associated to the trajectory w0,N−1,
with M block-rows and the maximal number of columns N−
M+1. We say that the signal w0,N−1 is persistently exciting of
order M if the Hankel matrix HM(w0,N−1) has full row-rank
qM. This requires the sequence w0,N−1 to be rich and long
enough, in particular N ≥ (q+1)M−1.

Fundamental Lemma. Consider a state-space representation
of an n-dimensional LTI system{

xk+1 = Axk +Buk

yk =C xk +Duk
(1)

where (xk)k∈Z is the n-dimensional state-process, (uk)k∈Z the
m-dimensional input process, and (yk)k∈Z is the p-dimensional
output process. Given an initial condition x0 ∈ Rn and a
sequence of inputs u0,k−1 ∈Rmk, the output of the system can
be written as

yk−1 =CAk−1x0 +
[
CAk−2B · · · CB D

]
u0,k−1, k ≥ 2, (2)

and y0 = C x0 + Du0. Let T ∈ N and collect T -long input-
output trajectories u0,T−1, y0,T−1 of the system (1). For fixed
positive integers Np, N f ∈ N and k ≥ Np, we can associate to
the vectors

u(k)p := uk−Np,k−1, y(k)p := yk−Np,k−1,

u(k)f := uk,k+N f−1, y(k)f := yk,k+N f−1,
(3)

the block-Hankel matrices[
Up
U f

]
=

[
u(Np)

p · · · u
(T−N f−1)
p

u(Np)
f · · · u

(T−N f−1)
f

]
=: HNp+N f (u0,T−1),

[
Yp
Yf

]
=

[
y(Np)

p · · · y
(T−N f−1)
p

y(Np)
f · · · y

(T−N f−1)
f

]
=: HNp+N f (y0,T−1).

From (2) we can then construct the (m+ p)(Np +N f )× (T −
Np−N f +1) data matrix

H :=


Up
U f
Yp
Yf

=


0 Im(Np+N f )0

Op(A,C) Tp(B,D)
O f (A,C) T f (B,D)

[X
U

]
, (4)

where U := [u0 · · · uT−1] and X := [x0 · · · xT−1] are the block-
Hankel matrices containing the inputs and the corresponding
sequence of states, respectively. Here,

Op(A,C) := col(C,CA, · · · ,CANp−1),

O f (A,C) := col(CANp ,CANp+1, · · · ,CAN f−1),

are observability matrices,

Tp(B,D) :=



D 0 · · · 0 0 · · · 0
CB D · · · 0 0 · · · 0

CAB CB · · · 0 0
... 0

...
...

...
...

... · · · 0
CANp−2B CANp−3B · · · D 0 · · · 0

 ,
(5)

and T f (B,D) is defined similarly. The following fundamental
result from [13] guarantees that the matrix (4) can be used in
place of the parametric representation (1), as long as the input
u0,T−1 is persistently exciting.

Lemma 1 (Fundamental Lemma): Assume the system (1)
to be controllable and the input trajectory u0,T−1 to be per-
sistently exciting of order Np + N f + n. Then, a sequence
col(up,u f ,yp,y f ) is an input-output trajectory of the system
(1) if and only if it is in the range space of H.

Recalling the persistency of excitation condition, T ≥ (m+
1)(Np + N f + n) + 1 is a necessary condition for u0,T−1 to
be persistently exciting of order Np +N f + n. Lemma 1 has
been originally proven using the behavioral language in [13,
Theorem 1]. For an equivalent recent state-space proof see
[16] and [20, Appendix A].

III. DATA-ENABLED PREDICTIVE CONTROL REVIEW

We briefly introduce the recently proposed Data-enabled
Predictive Control (DeePC) method [23], and highlight some
related issues when dealing with stochastic LTI systems. This
will serve as a motivation for what follows.

Consider the stochastic version of (1){
xk+1 = Axk +Buk +E vk

yk =C xk +Duk +F vk
(6)

where (vk)k∈Z is p-dimensional white noise (zero mean and
unit-variance). We collect sufficiently long input-output tra-
jectories u0,T−1, y0,T−1, i.e. T ≥ (m + 1)(Np + N f + n) + 1.
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The same computations leading to (4), lead to the matrix
corresponding to the stochastic model (6):

H :=


Up
U f
Yp
Yf

=


0 Im(Np+N f )

0
0 0

Op(A,C) Tp(B,D) Tp(E,F)
O f (A,C) T f (B,D) T f (E,F)


X

U
V

 , (7)

where V := [v0 · · · vT−1] is the block-Hankel matrix gathering
the noise samples and Tp(E,F), T f (E,F) are block-Toeplitz
matrices similar to Tp(B,D), T f (B,D) in (5).

The DeePC algorithm proposed in [23] attempts to compute
an optimal-control action based on past input-output data
coming from the unknown system (6), without previous iden-
tification. The control action is selected through an MPC-like
optimization problem that allows one to enforce constraints
ensuring safety and performance requirements. The previously
collected data is directly used on-line in the MPC optimization
problem; the predictor is therefore implicit and arises as the
outcome of the optimization problem. In particular, at the
generic iteration k≥ Np, the DeePC computes optimal control
actions by solving

min
g,ui,yi

N f

∑
i=1
‖yi− rk+i‖2

Q +‖ui‖2
R +λy‖Ypg− y(k)p ‖2

2 +λg‖g‖2
2

subject to

Up
U f
Yf

g =

u(k)p
ui
yi

 , ui ∈ U, i = 1, . . . ,N f ,

yi ∈ Y, i = 1, . . . ,N f ,

(8)
where N f is the prediction horizon, r ∈ RpN f is the output
reference signal we want to track, U ⊆ Rm, Y ⊆ Rp are the
input and output constraint sets, respectively, Q ∈Rp×p is the
output cost matrix (positive semidefinite), R ∈ Rm×m is the
control cost matrix (positive definite), λy ≥ 0 and λg ≥ 0 are
the regularization parameters, and u(k)p , y(k)p are the most recent
Np input-output measurements from (6), according to the
notation (3). For simplicity we consider input and output box
constraints of the form U = [umin, umax] and Y = [ymin, ymax],
respectively. Note that the block-Hankel matrices Up,U f ,Yp,Yf
are fixed throughout the online iterations.

If we let g?k be the optimal solution of problem (8) at
iteration k, DeePC provides an implicit predictor y(k)f = Yf g?k
whose model is never derived explicitly but whose predic-
tions are implicitly used for obtaining the optimal control
actions u(k)f = U f g?k . Problem (8) is solved in a receding-
horizon fashion: of the N f -long optimal control sequence
u(k)f = col(u?k , . . . ,u

?
k+N f−1) solution of (8), we apply a sub-

sequence u?k , . . . ,u
?
k+Nc

, for some Nc ≤ N f −1, to the system,

update u(k)p , y(k)p to the most recent input-output measurements
and set k to k+Nc +1.

Equation (8) is a relaxation of the corresponding problem
enforcing the constraint Yp g = y(k)p , which was proven to be
equivalent to the classical receding-horizon MPC in the case
of deterministic LTI systems [23]. Here, to cope with potential
infeasibility due to the disturbances, the constraint is substi-
tuted with the least-squares regularization term ‖Ypg− y(k)p ‖2

2.
The two-norm regularization on g has been introduced to

avoid overfitting and it has been shown to relate to distri-
butional robustness of the method with respect to a range of
uncertainties [24]. One can also see that, besides infeasibility
issues, considering stochastic models makes both the implicit
predictor model y(k)f =Yf g?k and the control actions u(k)f =U f g?k
defined by the optimization (8) to be non-linear in the past-
data (y(k)p , u(k)p ) (Section IV).

We conclude this section with a note on the effect of acquir-
ing more data. Classical LTI system identification methods use
historical data off-line to compute estimates of the matrices in
the system dynamics. The resulting matrices are then used
on-line to generate state estimates and perform the prediction
[1]. Other prediction methods estimate the linear relation from
u(k)p ,u(k)f , y(k)p to y(k)f off-line, and then use it online to carry
on the predictions, [29] and references therein. This kind of
prediction architectures naturally possesses a data-compression
mechanism. For the classical system identification methods
only storage of the estimates of the system matrices is re-
quired. This depends on input and output dimensions m and p
and on the (guessed) state dimension, but not on the amount T
of data nor on the prediction horizon N f . Likewise, the storage
requirements for linear predictors depends on input and output
dimensions m and p, and the horizons Np, N f , but not on the
amount T of data. If more data become available one can then
use it to improve predictions with no need to store it or use
it online. The DeePC approach, on the other hand, requires
one to carry all the data at every iteration and the size of the
optimization problem (8) increases both with the amount T
of available data and with the parameters m, p, Np, and N f .
Though additional data would in principle also be beneficial
for a DeePC controller, it is not clear how one can incorporate
it without increasing the on-line computational burden.

IV. METHOD DESCRIPTION

We introduce a possible way to effectively incorporate more
data in the DeePC framework to reduce the effect of noise in
the solution of problem (8). We propose to use additional data
that may be available off-line to de-noise the block-Hankel
matrices Yp and Yf and to equip the DeePC with an EKF
based on data to handle the noise in the on-line measurements
y(k)p .

A. Averaging Data Matrices
The output matrices Yp and Yf are constructed off-line from

the trajectory y0,T−1. Let (u(1)0,T−1,y
(1)
0,T−1), . . . ,(u

(N)
0,T−1y(N)

0,T−1)
be available T -long input-output trajectories and denote with
x(i)0 , i = 1, . . .N, the corresponding initial conditions. Using
those additional data on-line to improve the prediction will
lead to an intractable optimization problem. However, we can
make use of additional trajectories off-line to construct N
different data matrices H(1), . . . ,H(N) defined analogously to
(7), and average those matrices to obtain

H̄N :=
1
N

N

∑
i=1

H(i) =


0 Im(Np+N f )

0
0 0

Op(A,C) Tp(B,D) Tp(E,F)
O f (A,C) T f (B,D) T f (E,F)


X̄N

ŪN
V̄N


(9)
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where V̄N := 1
N ∑

N
i=1 V (i) is the average of the matrices V (i) =

[v(i)0 · · · v(i)T−1], i = 1, . . . ,N, constructed from the different
noise realizations v(i)0,T−1 affecting the trajectories y(i)0,T−1, and
similarly X̄N and ŪN contain the averaged state trajectories
corresponding to the different initial conditions x(i)0 and input
trajectories u(i)0,T−1, respectively. Since (vk)k∈Z is assumed to
be white-noise, the Law of Large Numbers guarantees that
V̄N → 0 as N → ∞ [30]. The averaging procedure makes use
of additional data to mitigate the effect of noise in the data-
driven model, hence reducing the risk of overfitting that would
be present if the data was used directly in DeePC. Accordingly,
the more matrices are involved in the average, the smaller the
value of the regularization parameter λg that gives the optimal
closed-loop cost (see Figure 3, Section V).

We recognize that such a method heavily exploits the
underlying linear structure of the problem. However, this is
meant to be a first attempt to exploit additional data for
improving the performance of the algorithm when dealing with
stochastic systems, without increasing the dimension of the
optimization problem (11) to be solved online. Indeed, thanks
to the linear structure and superposition, the sub-matrices X̄N
and ŪN in the averaged data matrix (9) still represent valid
system trajectories corresponding to the average of the initial
states x0 = 1

N ∑i x(i)0 and the average of the input sequences
u = 1

N ∑i u(i), used in the experiments that generated the
data for each H(i). The only point that requires attention is
ensuring that the resulting average input sequence respects
the persistence of excitation requirement. The simplest way
to ensure this is to assume that the same persistently exciting
input sequence is applied in all cases.

B. An EKF for DeePC

The averaging procedure represents a simple way to make
use of multiple T -long trajectories to denoise off-line the
data matrix representing the dynamics in the constraints of
(8). Numerical evidence suggests that additional denoising of
the on-line data y(k)p that enters the cost of (8) can lead to
a further, significant improvement in performance (Section
V). In a model based setting, such on-line denoising could
be performed by a Kalman filter. In our data-driven setting,
however, the classical Kalman filter cannot be applied as it
requires a model of the system dynamics. Here we show how
the non-linear one-step predictor implicit in (8) can be used
to derive an EKF for integrating past measurements into an
implicit “state estimate”; this can in turn be used to improve
the asymptotic performance of the algorithm.

We introduce a fictitious state vector zk :=
col(yk−N p+1, · · · , yk) ∈ RpNp and keep track of a filtered
state-estimate ẑk|k and the corresponding error covariance Pk|k.
At the generic iteration k ≥ Np, the EKF-DeePC algorithm
uses the estimate ẑk|k by solving the following optimization

problem

min
g∈Rd

N f

∑
i=1
‖(Yf g)i− rk+i‖2

Q +‖(U f g)i‖2
R

+λy‖Ypg− ẑk|k‖2
2 +λg‖g‖2

2

subject to Upg = u(k)p ,

umin ≤ (U f g)i ≤ umax, i = 1, . . . ,N f ,

ymin ≤ (Yf g)i ≤ ymax, i = 1, . . . ,N f .

(10)

The formulation (10) is obtained from (8) by substituting the
constraints ui = U f g and yi = Yf g in the cost, leaving g as
the only decision variable. The crucial difference with respect
to (8) is that the past data Ypg used in the implicit predictor
is now required to fit the state estimate ẑk|k instead of the
Np most-recent measurements y(k)p . Rewriting (10) as a multi-
parametric quadratic program (mp-QP) in the parameter θk :=
col(ẑk|k, u(k)p ) leads to an explicit relation between the optimum
g?k and the parameter θk; we exploit this relation to build the
EKF. The mp-QP form of (10) is

min
g∈Rd

1
2

g>Pg+(Gθk +qk)
>g+θ>k Hθk +

1
2

r>k Qrk

subject to Up g = Beq θk, Ain g≤ bin,
(11)

where the inequality constraint defined by

bin := col(1mN f umax,−1mN f umin,1pN f ymax,−1pN f ymin),

Ain := col(U f ,−U f ,Yf ,−Yf ),

has to be understood component-wise, i.e. (Ain g)i ≤ si for i =
1, . . . ,2(m+ p)N f . The cost is then defined by the reference
signal rk := col(rk+1, · · · ,rk+N f ) and the matrices

P := Y>f QYf +U>f RU f +λyY>p Yp +λg Id , qk :=−Y>f Qrk

G :=
[
−λyY>p 0

]
Beq :=

[
0 ImNp

] , H :=
[
(λy/2) · IpNp 0

0 0

]
.

Here 1N := col(1,1, · · · ,1)∈RN , Q = diag(Q, . . . ,Q) and R =
diag(R, . . . ,R). Assuming P = P> > 0 and the KKT-matrix for
problem (11) to be positive semi-definite (which is always the
case for an MPC problem with input weighting matrix R > 0
[31]), the optimizer g?k is a piecewise affine function of the
parameters, and can be written as g?k = Ãk ẑk|k + B̃k u(k)p + h̃k.
In particular, the equality constraints in (11) and the noise in
the model are responsible for the affine structure while the
inequality constraints implies this affine relation to hold just
locally, i.e. in a neighborhood of the parameter θk, known as
the critical region. The coefficients Ãk, B̃k and h̃k coming from
the KKT conditions for problem (11), are therefore region-
dependent themselves [31]: we consider the affine expansion
of g?k pertaining to a specific value for the parameter θk, fixed
by the previous iteration.

The fact that, under suitable assumptions, the piecewise
affine relation between the optimizer g?k of (11) and the
parameter θk can be derived from the KKT conditions for
problem (11), might suggest that the predictor implicit in (10)
could be made explicit and be constructed off-line. Doing
this would require one to construct all the regions on which
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the affine expansion is defined, for all the possible values
of the parameters. As the number of these regions scales
exponentially with the QP size (parameters plus constraints),
hence with the amount T of available data and the horizons
Np and N f , this approach is likely to be computationally
intractable. This is the main reason for keeping the predictor
implicit.

Let M := col(Yp(2 : pNp, :), Yf (1, :)) be the prediction map.
We can exploit the piece-wise affine form of the optimizer g?k
to incorporate the implicit predictor provided by (11) in an
EKF-like architecture. To fix ideas, suppose we start running
the algorithm at k = Np. From an initial guess of the mean
ẑNp|Np = E[zNp ] and the covariance matrix PNp|Np = E[(zNp −
ẑNp|Np)(zNp− ẑNp|Np)

>], we then compute recursively (at every
point in time) the standard Kalman filter update steps in Figure
1. We note that, because of its dependence on g?k , the implicit
predictor is piecewise affine (the matrices Ak,Bk, hk at the
current iteration, depend on the critical region) making this a
data-driven analogue to an Extended Kalman Filter.

Prediction Update

Pk+1|k =AkPk|kA>k +Qk Pk+1|k+1 = (I−Kk+1C)Pk+1|k

ẑk+1|k =Mg∗k =Ak ẑk|k +Bk u(k)p +hk ẑk+1|k+1 = ẑk+1|k +Kk+1(yk+1−Cẑk+1|k)

ŷk+1 = C ẑk+1|k

Fig. 1: EKF equations. Here, C := [0 · · · 0 Ip] by construction,
Ak :=MÃk, Bk :=M B̃k, hk :=M h̃k and Sk+1 = CPk+1|kC>+
Rk, Kk+1 = Pk+1|kC>S−1

k+1, are the variance of the innovation
process and the filter gain, respectively.

solve
optimization

(10)

rk

u(k)
p

prediction

update

EKF
(Fig.1)

unknown
system

Ak, Bk, hk

ẑk+1|k
Pk+1|k

Uf (1, :)g?
k

yk+1

ẑk+1|k+1
Pk+1|k+1

k
7→

k
+

1

Fig. 2: EKF-DeePC Algorithm.

The matrices Qk ∈ RpNp×pNp and Rk ∈ Rp×p are the vari-
ances of the process and measurement noise implicitly affect-
ing the state and output dynamics zk+1 = Ak zk +Bk u(k)p +hk
and yk = Czk, respectively. In practice, to implement the filter
in Figure 1 one needs to address the same issues as for any
Kalman filter, i.e. choosing the initial conditions ẑNp|Np and
PNp|Np , and obtaining an estimate (or guess) of the variances
Qk and Rk. For a model-based Kalman filter, one can use the
residuals of the system identification to obtain estimates for
these quantities; we speculate that something similar would be
possible using the residuals between the average and individual
data matrices in Section IV-A, though we do not pursue this
direction here, due to space limitations. The steps outlined
above are summarized in Figure 2.

V. NUMERICAL VALIDATION

We present numerical experiments assessing the effects
of the proposed solution in tackling the noise acting in the
optimization (8). Consider the stochastic system{

xk+1 = Axk +Buk +wk

yk =Cxk + vk
, A =

[
0.8 1
0 0.8

]
,

B = [0 1]>,
C = [1 1].

(12)
where (wk)k∈Z, (vk)k∈Z are independent zero-mean Gaussian
white noises with covariance Σw := EE> and Σv := FF>

respectively; below we consider Σw = σ2
wIn and Σv = σ2

v Ip
and report results for different values of σ2

w and σ2
v . Model

(12) is reachable and observable. The performance metric
we will consider throughout is the closed-loop cost J(u,y) =
∑

Nsim
k=1 ‖yk− rk‖2

Q + ‖uk‖2
R, where rk = 5sin(0.3k) is the refer-

ence signal. To isolate the effects of averaging and the EKF,
for each numerical experiment we tuned the regularization
parameters λy and λg through exhaustive search to minimize
the closed-loop cost for the standard DeePC, the averaged
DeePC and the averaged DeePC with EKF. All numerical
evidence comes from 100 repetitions for different data-sets.
Unless otherwise stated, we set T = 100, Nsim = 100, Np = 3,
N f = 5, Q = Ip, R = Im, σ2

w = σ2
v = 0.5 and N = 40 data

matrices in the average (9).
First we show the effect of the averaging introduced in

Section IV-A. To isolate the averaging effect, we consider
noisy Yp, Yf but y(k)p generated from the model with neither
process noise, nor measurement noise. The result, shown in
Figure 3, is as expected: the cost decreases towards the ideal
cost of MPC with the same horizon but perfect model and full
state measurement while on the right, the optimal (numerically
found) value of the regularization parameter λg decreases to
zero, as we expect from standard results in optimization. Fig-

1 5 10 20 40 50 80
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JMPC

1 5 10 20 40 50 80
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300

400

500
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λ ?
g

Fig. 3: Closed-loop cost (left) and optimal λg (right) when
averaging N data matrices. The dashed-green line shows the
MPC cost with the same horizon, but perfect model and full
state measurement.

ure 4 shows a comparison between the closed-loop costs of the
standard DeePC and the averaged DeePC with EKF algorithms
when varying the noise variances σ2

w and σ2
v . Figure 4 shows

that introducing averaging and the EKF substantially improves
the performance of the DeePC algorithm. Further experiments
(data not shown) with averaged DeePC without EKF and EKF
without averaging confirmed that DeePC with a combination
of averaging and EKF substantially outperformed all other
combinations; indeed this was the case across a broad range of
values of the regularizes λy and λg, suggesting that averaged
DeePC with EKF is easier to tune. Figure 5 shows how the
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Fig. 4: Closed-loop cost of standard DeePC and averaged
DeePC with EKF for different σ2

v while keeping σ2
w = 0.1

(left), and different σ2
w while keeping σ2

v = 0.2 (right).
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Fig. 5: Closed-loop costs while varying the past horizon Np.

closed-loop cost of the two algorithms behaves with respect
to the past horizon Np. The improvement in the performance
is due to the introduction of the averaging plus the EKF,
highlighting the difference between fixed horizon and recursive
filtering.

VI. CONCLUSION AND OUTLOOK

We presented an extension of the data-enabled predictive
control (DeePC) algorithm introduced in [23] to tackle control
problems on unknown stochastic LTI systems, by making
use of additional data without increasing the dimension of
the on-line optimization problem. The procedure features an
on-line data-driven EKF that filters out the noise in the
measurements, and an (off-line) averaging of multiple data
matrices to get a cleaner data-driven model. The performance
of the proposed method has been validated experimentally on
an LTI stochastic system showing improvements with respect
to standard DeePC. Future work includes testing the proposed
method on a real-case scenario and comparing it to algorithms
such as [3]–[5].
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