
An extended standard model and its Higgs geometry from the matrix

model

Jochen Zahn

Universität Wien

based on arXiv:1401.2020
joint work with Harold Steinacker

Bayrischzell, May 2014

Jochen Zahn (Uni Wien) An extended standard model Bayrischzell, May 2014



Motivation

The IKKT [Ishibashi, Kawai, Kitazawa, Tsuchiya 97] matrix model is a candidate for a
nonperturbative definition of a fundamental theory of matter and gravity.

Solutions can be interpreted as noncommutative branes, embedded in R
10, giving

rise to an emergent geometry [Steinacker 08].

There are some promising hints:

The perturbations around the Moyal plane lead to Ricci-flat geometries in the absence
of matter [Rivelles 03].
3 + 1 dimensions and an expanding universe seem to be dynamically generated
[Kim, Nishimura, Tsuchiya 2012].

? How to embed the standard model in this framework?

Generically, fermions are in the adjoint representation of SU(N) and are not chiral.
What about the Higgs?
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The IKKT model

The IKKT model is defined by the action

S = Λ4
0 tr

(

[XA,XB ][XA,XB ] + Ψ̄ΓA[XA,Ψ]
)

,

where the XA ∈ Mat(N × N), 0 ≤ A ≤ 9 are hermitean matrices, and the indices are
raised and lowered with η = diag(1,−1, . . . ,−1). The fermions Ψ are
Mat(N × N)-valued Majorana-Weyl spinors of SO(9, 1), and the Γ’s are the
corresponding γ matrices. Λ0 is some energy scale.

The action is invariant under 10-dimensional Poincaré transformations and unitary
transformations of the XA,Ψ. There is also an N = 2 supersymmetry.

For Ψ = 0, the action leads to the equation of motion

[XA, [XA,X
B ]] = 0.

A particular solution is thus the Moyal plane R
2n
θ , with commutation relations

[XA,XB ] = iλ2
NCθ

AB

for an antisymmetric matrix θ.
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Noncommutative N = 4 Super Yang-Mills

A particular solution is the 4-dimensional Moyal plane, i.e.,

X̄
A = (X̄µ, 0), µ ∈ {0, . . . , 3}.

We denote the corresponding algebra by A(R4
θ), represented on Hθ. A stack of N

coincident planes is described by A(R4
θ)⊗Mat(N × N), represented on Hθ ⊗ C

N . For
perturbations

Y
A = X

A − X̄
A ⊗ id = (θµνAν ,Φ

i ),

the IKKT action reduces to a NC N = 4 super Yang-Mills U(N) gauge theory:

S =

∫ √
G
(

− 1
4g2

YM

FµνF
µν − 1

2
D
µφa

Dµφa +
g2YM
4
[φa, φb][φa, φb]

+ iψ̄ /Dψ + g ψ̄Γa[φa, ψ]
)

d
4
x .

Here

G
µν =

√

|θ−1|θµµ′

θνν
′

ηµ′ν′ , Dµ = ∂µ − i [Aµ, ·], gYM = π|θ−1|
1
4 Λ−1

0 ,

and φ, ψ are rescaled versions of Φ,Ψ. All products are Moyal products. The tracial part
of U(N) corresponds to dynamical gravity [Steinacker 07] and will be ignored henceforth.
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Intersecting branes & Chiral fermions

Chiral fermions at the intersection of quantum planes [Chatzistavrakidis, Steinacker, Zoupanos 11]:

φ4,5 =

(

X 1,2 0
0 0

)

φ6,7 =

(

0 0
0 Y 1,2

)

ψ =

(

0 ψ(12)

ψ(21) 0

)

The internal Dirac operator

/Dintψ =
∑9

a=4
Γa[φa, ψ]

then acts on ψ(12) as

/Dintψ(12) = Γ4
X

1ψ(12) + Γ5
X

2ψ(12) + Γ6ψ(12)Y
1 + Γ7ψ(12)Y

2

= αa∗ψ(12) + α∗
aψ(12) + βψ(12)b

∗ + β∗ψ(12)b

where

a = X
1 − iX

2
b = Y

1 − iY
2

α = 1
2
(Γ4 − iΓ5) β = 1

2
(Γ6 − iΓ7)

Hence, there is a zero mode localized at the intersection:

ψ(12) = |0, ↓〉〈0, ↑|.

It has a definite chirality. This is stable under deformations [Steinacker, Z 13].
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The fuzzy sphere

A particularly simple matrix geometry is the fuzzy sphere S2
N [Hoppe; Madore]. Let J i be the

generators of the N-dimensional irreducible representation of su(2). Then set

X
i+3 = RJ

i .

It can be seen as a quantization with N quantum cells of the sphere of radius R N−1
2

with
symplectic structure

{x i , x j} = 2R
N
εijkxk .

The fuzzy sphere is not a solution to the IKKT equation of motion:

[X j , [Xj ,X
i ]] = 2R2

X
i .

There are several possibilities to obtain a fuzzy sphere solution:

Add a term tr εijk456XiXjXk to the action.

Add a term trXiX
i to the action.

Let the sphere rotate, for example in the planes 4− 7, 5− 8, 6− 9.

By replacing R by Ri , one obtains a fuzzy ellipsoid. For N = 2, consider

X
4 + iX

5 = φ

(

0 1
0 0

)

, X
6 =

r

2

(

1 0
0 −1

)

.

This can be seen as two quantum points at (0, 0,±r/2), which connect to an ellipsoid
upon switching on φ.

Jochen Zahn (Uni Wien) An extended standard model Bayrischzell, May 2014



Chiral fermions on S2
2 intersecting R

2
Θ

Consider the intersection of the fuzzy minimal ellipsoid with R
2
Θ:

φi =

(

φi
(1) 0

0 φi
(2)

)

, φ(1) =
1
2

(

φσ1 φσ2 rσ3 0
)

, φ(2) =
(

0 0 X 1 X 2
)

.

Now consider again the fermions ψ(12) connecting the branes.

For φ = 0, there are in total 4 zero modes, located at x6 = ±r/2. At both locations,
both chiralities occur.

For φ > 0, there are 2 zero modes ψ±
0 , located at x6 = ±r/2, of opposite chirality.

There are mirror fermions ψ±
1 , also located at x6 = ±r/2, with opposite chirality of

ψ±
0 , and

/Dintψ
±
1 = ±φψ∓

1 .

On top of that, there are modes with masses of the order
√
θ−1.

Analogous results hold for S2
2 × R

2
θ intersecting R

2
θ if the supplementary plane spans the

8− 9 plane. We will replace the quantum planes by large fuzzy spheres, which locally
look like the quantum plane. One then expects (and numerically confirms) would-be zero
modes ψ±

0 , i.e.,
/Dintψ

±
0 = ±φfψψ∓

0 ,

where fψ ≪ 1 in the appropriate limit.
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Outline

We consider branes of the form

Di = R
4
θ ×Ki ,

where Ki is a fuzzy matrix geometry, such as S2
Ni
.

On the intersections, fermionic would-be zero modes form.

Choosing Ki as a stack of ni coincident branes, Ki = K̃i ⊗Mat(ni × ni ), the brane
Di carries a gauge group U(ni ).

The fermions localized at the intersection of Di and Dj are then charged in the
bi-fundamental representation of U(ni )× U(nj).

The goal is to choose the configuration such that the gauge group is broken to the
standard model gauge group, with the fermionic would be zero modes appropriately
charged.
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The choice of branes

An arrangement of 6 branes (Dw ,Dx ,Dy ,Dz ,Dℓ,D3
B) to achieve fermions charged as in

the standard model was proposed in [Chatzistavrakidis, Steinacker, Zoupanos 11]:

X
a =

















X a
w 0 0 0 0 0

X a
x 0 0 0 0

X a
y 0 0 0

X a
z 0 0

X a
ℓ 0

X a
B

















, Ψ =

















0 0 0 0 νL uL
0 0 0 eL dL

0 0 eR dR
0 νR uR

0 0
03

















,

The electric charge Q and the weak hypercharge Y are realized by the adjoint action of

tQ = 1
2
diag(1,−1,−1, 1, 1,− 1

3
), tY = diag(0, 0,−1, 1, 1,− 1

3
).

For Xw = Xx , the gauge group is broken from U(N) to U(2)× U(1)3 × U(3).

Problem: The intersections of compact branes always leads to fermions of both chiralities.
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tQ = 1
2
diag(1,−1,−1, 1, 1,− 1

3
), tY = diag(0, 0,−1, 1, 1,− 1

3
).

For Xw = Xx , the gauge group is broken from U(N) to U(2)× U(1)3 × U(3).

Problem: The intersections of compact branes always leads to fermions of both chiralities.
Solution: Fuse Dw ,Dz and Dx ,Dy into Du and Dd , by turning on Higgs fields φu/d .
Concretely, Dd,u = S2

Nd,u
× S2

2 , such that eL, νL are located at the south pole of S2
2 and

eR , νR at the north pole, with the poles connected by φu/d . With Xw = Xx and Xy = Xz ,
we have a SU(2) symmetry at both poles, spontaneously broken by φu,d .
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The electric charge Q and the weak hypercharge Y are realized by the adjoint action of

tQ = 1
2
diag(1,−1,−1, 1, 1,− 1

3
), tY = diag(0, 0,−1, 1, 1,− 1

3
).

For Xw = Xx , the gauge group is broken from U(N) to U(2)× U(1)3 × U(3).

Problem: The intersections of compact branes always leads to fermions of both chiralities.
Solution: Fuse Dw ,Dz and Dx ,Dy into Du and Dd , by turning on Higgs fields φu/d .
Concretely, Dd,u = S2

Nd,u
× S2

2 , such that eL, νL are located at the south pole of S2
2 and

eR , νR at the north pole, with the poles connected by φu/d . With Xw = Xx and Xy = Xz ,
we have a SU(2) symmetry at both poles, spontaneously broken by φu,d . The SU(2) for
eR , νR is broken at a higher scale by introducing a scalar Higgs S connecting Du and Dℓ.
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Modified action

We want to find such a configuration of intersecting branes, which is a solution to a
modified IKKT model. Quasi-massless fermionic modes should be present, which are
quasi-localized on the correct pole Xw/x/y/z . There is a close analogy between branes in
the IKKT model and in supergravity, so typically one expects an attractive interaction
generated by quantum effects. We model this by adding to the IKKT action a term,

S = SIKKT − f (tr
∑9

i=4
XiX

i ),

where f should have a nontrivial minimum. Hence, the equation of motion becomes

[Xµ, [Xµ,X
j ]] = −cf

′(tr
∑9

i=4
XiX

i )X j
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Intersecting brane solutions

Xd(u) =

















R ′
dL3 ⊗ ✶2 + φd✶Nd

⊗ σ′
1

φd✶Nd
⊗ σ′

2

rd✶Nd
⊗ σ′

3

0
RdL1 ⊗ ✶2

RdL2 ⊗ ✶2

















, Xℓ =

















R ′
ℓK3

0
RℓK1

RℓK2

0
0

















.

Here Li ,Ki are the generators of the Nd/ℓ-dimensional irrep
of su(2), and σ′

i =
1
2
σi . This is a solution provided that

R
2
d = R

′
d
2
= R

2
ℓ = R

′
ℓ
2
= r

2
d = φ2

d = −c
′
f
′.

There are two intersection regions for Nℓ ∼ Nd ≫ 1, locally
looking like the intersection of R2

Θ × S2
2 and R

2
Θ. We expect

(quasi-) massless fermionic modes of (quasi-) definite
chirality, (quasi-) localized at the poles of S2

2 . The lowest
eigenvalues can be estimated (R = Rd,ℓ = R ′

d,ℓ, N = Nd,ℓ):

/Dintψ
±
i = ±λiψ

∓
i , λ0 ∼ φr 2

4N2R2
, λ1 ∼ φ.
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Numerical test of the expectations I

The lowest eigenvalues as a function of N, for R = r = φ = 1:
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Numerical test of the expectations II

The lowest eigenvalues as a function of R, for r = φ = 1, N = 16:
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Numerical test of the expectations III

The lowest eigenvalues as a function of r , for r = φ, R = 1, N = 16:
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Numerical test of the expectations IV

The lowest eigenvalue as a function of φ, for R = r = 1, N = 16:
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Numerical test of the expectations V

Expectation values of s = 1− σ3 and Σ = 1− Σ45 in the lowest eigenvalue as a function

of R, for r = φ = 1, N = 16. The estimate is Σ ∼ r2

2N2R2 .
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The singlet Higgs

The singlet Higgs should link Du and Dℓ, so we use the ansatz

H
a
S = h

a
S + h.c., S =

∑

n

|+, pn〉u〈qn|ℓ

where

|+, p〉u = |+〉|p〉, L3|+〉 = Nu−1
2

|+〉.

For suitably chosen pn, qn, this becomes an eigenvector of the linearized wave operator if
we choose

h
a = h(e8 + ie

9).

One verifies numerically that
∑

n|pn〉〈qn| can be chosen to be (quasi-) localized at νR , as
expected. The resulting mode of the linearized wave operator is instable. We assume
that it is non-linearly stabilized, so that h acquires a non-zero value.

For h = 0, we have one stack of 2 branes Dd ,Du, and one stack of 4 branes,
Dℓ,DB . Hence we have a U(2)× U(4) symmetry. Turning on h breaks it to

SU(3)c × U(1)Q × U(1)B × U(1)tr.

The singlet Higgs can induce a Majorana mass for νR ,

trN(ν
T
R γ

0
S
∗νRS

∗).
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The gauge bosons

The gauge bosons are obtained from fluctuation of the Xµ:

A = g(W−t+ +W+t− +W3t3) +
1
2
g
′
BtY + g5B5t5 + gSAαtα,

where, in the basis (DL,Dy ,Dz ,Dℓ,D3
B), with DL = (Dw ,Dx),

t±,3 =
1
2
diag(✶N1 ⊗ σ±,3, 0, 0, 0, 03) tY = diag(02,−✶N1 ,✶N1 ,✶N2 ,− 1

3
✶N2 ⊗ ✶2)

tα = diag(02, 0, 0, 0,✶N2 ⊗ λα) t5 = diag(✶N1 ⊗ ✶2,−✶N1 ,−✶N1 ,−✶N2 ,
1
3
✶N2 ⊗ ✶2)

with Nu = Nd = N1, NB = Nℓ = N2, and

g =
gYM√
N1

, g
′ =

gYM
√

N1 +
2
3
N2

, g5 =
gYM

√

8(N1 +
1
3
N2)

, gS =
gYM√
N
.

The λα are generators of the fundamental u(3) representation. The identity generator
gives U(1)B , which is anomalous and expected to disappear from the low energy
spectrum. Note that [t5, ·] acts as B − L+ γ5 on the chiral fermions, so U(1)5 is also
anomalous (it is also broken by the Higgs φ).
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Electroweak symmetry breaking

As usual, the electroweak Higgses φu = φd = φ induce mass terms for some gauge
bosons,

φ2
N1

(

1
2
g
2(W 2

1 +W
2
2 ) +

1
2
g
2
ZZ

2 + 2g 2
5B

2
5

)

,

where
gZZ = gW3 − g

′
B.

In particular, we obtain the Weinberg angle

sin2 θW =
1

1 + g2

g′2

=
1

2 + 2
3
N2
N1

.

For N1 = N2, we then obtain

sin2 θW = 3
8
, gS = g ,

as in the SU(5) GUT.
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Fermion & Higgs masses

The Yukawa mass terms for the would-be zero modes can be made arbitrarily small by
choosing Ni large enough (provided that our heuristic estimate is correct). The mirror
fermions with opposite chirality have Yukawa masses

m ∼ gYMφ =
√
2mW

However, one has to keep in mind that these are tree level masses at some high energy
scale. Due to the coupling to massive Kaluza-Klein modes, one may expect that
quantum effects raise this gap.

For the fluctuation of the Higgs φ, one obtains a mass

m
2
φ = 4m2

W

(

1 + 2π2
f
′′
)

.
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Summary & Outlook

Summary:

Configurations in the IKKT model whose low-energy physics resembles the standard
model.

Predicts mirror fermions and Kaluza-Klein towers of gauge fields.

Issues:

Introduced an ad-hoc supplementary term to the IKKT action, breaking
10-dimensional Poincaré and super-symmetry. Motivated by quantum effects, but
can this be made precise?

Non-linear stabilization of the scalar Higgs?

With our configuration, only an even number of generations can be achieved.

Low scale of the mirror fermions.

Despite these problems, one may find it remarkable that one can get standard model like
low energy energy physics from an N = 4 supersymmetric gauge theory.

Jochen Zahn (Uni Wien) An extended standard model Bayrischzell, May 2014



Thank you for your attention!
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