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Abstract. The nighttime light (NTL) satellite data have been widely used to investigate the urbanization pro-

cess. The Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) stable night-

time light data and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-

VIIRS) nighttime light data are two widely used NTL datasets. However, the difference in their spatial resolutions

and sensor design requires a cross-sensor calibration of these two datasets for analyzing a long-term urbaniza-

tion process. Different from the traditional cross-sensor calibration of NTL data by converting NPP-VIIRS to

DMSP-OLS-like NTL data, this study built an extended time series (2000–2018) of NPP-VIIRS-like NTL data

through a new cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and a composition of monthly

NPP-VIIRS NTL data (2013–2018). The proposed cross-sensor calibration is unique due to the image enhance-

ment by using a vegetation index and an auto-encoder model. Compared with the annual composited NPP-VIIRS

NTL data in 2012, our product of extended NPP-VIIRS-like NTL data shows a good consistency at the pixel

and city levels with R2 of 0.87 and 0.95, respectively. We also found that our product has great accuracy by

comparing it with DMSP-OLS radiance-calibrated NTL (RNTL) data in 2000, 2004, 2006, and 2010. Generally,

our extended NPP-VIIRS-like NTL data (2000–2018) have an excellent spatial pattern and temporal consistency

which are similar to the composited NPP-VIIRS NTL data. In addition, the resulting product could be easily

updated and provide a useful proxy to monitor the dynamics of demographic and socioeconomic activities for a

longer time period compared to existing products. The extended time series (2000–2018) of nighttime light data

is freely accessible at https://doi.org/10.7910/DVN/YGIVCD (Chen et al., 2020).

Published by Copernicus Publications.

https://doi.org/10.7910/DVN/YGIVCD


890 Z. Chen et al.: An extended time series of global NPP-VIIRS-like nighttime light data

1 Introduction

With the artificial electric light widely equipped in most

buildings and infrastructures, the nighttime light (NTL) re-

mote sensing data have been extensively used to investigate

human activities (Gaston et al., 2013; Falchi et al., 2011;

Elvidge et al., 1997a; Baugh et al., 2013; Li et al., 2018).

Thus far, two NTL data sources, the Defense Meteorologi-

cal Satellite Program Operational Linescan System (DMSP-

OLS) and Suomi National Polar-orbiting Partnership-Visible

Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime

light data, have been increasingly used to monitor and an-

alyze the urban structure and socioeconomic characteristics

of the city during urbanization processes, such as the esti-

mation of the population (Sutton et al., 2001; Xu et al., 2015;

Elvidge et al., 1997b; Yu et al., 2018) and economic develop-

ment (Zhao et al., 2017; Lo, 2002; Ma et al., 2012; Yu et al.,

2015; X. Zhao et al., 2019), identification of energy (Shi et

al., 2018, 2016b) and environmental issues (Ou et al., 2013;

Shi et al., 2016a; Liu et al., 2018; Jiang et al., 2018), and the

detection of urban area (Shi et al., 2014a; Cao et al., 2009;

Zhou et al., 2014; Z. Chen et al., 2019; Zhou et al., 2015)

and its spatial structure (Chen et al., 2015; Lu et al., 2018;

Z. Chen et al., 2017; Yu et al., 2014; Wu et al., 2019).

While both of the two NTL datasets are acknowledged as

good proxies for detecting the dynamics of demographic and

socioeconomic activities at different spatial scales (Yang et

al., 2019), their applications were always limited by their

quality and available time span. The DMSP-OLS NTL annu-

ally composited data can only be collected from 1992 to 2013

(Fig. 1). It has disadvantages, including the lack of on-orbit

radiance calibration, saturation issues, and blooming issues

(Letu et al., 2010; Cao et al., 2019; Elvidge et al., 2014; Levin

et al., 2020), which limit its potential applications. The NPP-

VIIRS NTL data have a better data quality (e.g., higher spa-

tial resolution of ∼ 500 m, etc.) and a superior detection abil-

ity, but the short available time span would cause problems

when long-term analysis is required. As shown in Fig. 1, the

monthly composited data are from April 2012 to the present,

and the annual NPP-VIIRS NTL data cover only 2015 and

2016. In addition, DMSP-OLS NTL data record the digital

number (DN), which is substantially different from the ra-

diance value in NPP-VIIRS NTL data. Consequently, these

two sets of NTL data are not comparable and could not be

directly used together. In this light, an extended time series

of nighttime light data with appropriate quality and a bet-

ter consistency is desirable for long-term temporal nighttime

light applications.

In the literature, there have been some studies for extend-

ing NTL data by integrating DMSP-OLS data and NPP-

VIIRS NTL data (Jeswani, 2017). Among them, Shao et

al. (2014), according to the NPP-VIIRS day–night band data

and lunar irradiance model, developed a vicarious radiomet-

ric calibration for DMSP-OLS daily NTL data. However, this

model requires selecting specific events at night as criteria

and is not suitable for the annual DMSP-OLS NTL com-

posite data. Zhu et al. (2017) and Li et al. (2017) both at-

tempted to use a power function for integrating the DMSP-

OLS NTL data and NPP-VIIRS NTL data. Zhu et al. (2017)

fitted the power function by using the cumulated DMSP-OLS

and NPP-VIIRS NTL intensity within each province in China

from 1992 to 2015. Then this power function was applied to

the cumulated NPP-VIIRS NTL intensity to generate simu-

lated DMSP-OLS NTL intensity. The power function from

Li et al. (2017) was fitted from annual DMSP-OLS NTL

data and monthly NPP-VIIRS NTL data. This power func-

tion was then conducted to inter-calibrate these two NTL

sets of data for analyzing Syria’s major human settlement

loss during a war. These power functions both heavily relied

on the strategy of training sample selection and are not easy

to be extended to other world regions or the entire world.

Instead of using power function and traditional DMSP-OLS

stable NTL data, Zheng et al. (2019) conducted a geographi-

cally weighted regression model to fit the radiance-calibrated

DMSP-OLS NTL data and NPP-VIIRS NTL data and then

generated the DMSP-like NPP-VIIRS NTL data for further

research. M. Zhao et al. (2019) proposed a sigmoid func-

tion model with a series of preprocessing procedures to con-

vert NPP-VIIRS NTL data into simulated DMSP-OLS NTL

data from 1992 to 2018 in Southeast Asia. Li et al. (2020)

provided a global DMSP-OLS-like NTL data, called harmo-

nized DMSP-OLS NTL data, through a stepwise calibration

of DMSP-OLS NTL data and a kernel density-based inte-

gration of calibrated DMSP-OLS and NPP-VIIRS NTL data.

However, since NPP-VIIRS NTL data have a better quality

than DMSP-OLS NTL data, the performance of estimating

social-economic index and extracting urban spatial structure

from NPP-VIIRS NTL is much higher (Shi et al., 2014b;

Z. Chen et al., 2017). Therefore, simulating an extended time

series of a NPP-VIIRS-like NTL dataset other than tradi-

tional DMSP-OLS-like NTL data would be very helpful for

further analysis and applications. Given the difficulties men-

tioned above, a new approach to cross-sensor calibrate these

two sets of NTL data is still a challenge.

Recently, deep learning technologies present great poten-

tial for image processing, such as image restoration, image

denoising, and target recognition/classification (Goodfellow

et al., 2016). An auto-encoder model proposed by Hinton

and Zemel (1994) contains a set of recognition weights for

encoding the input data and a set of generative weights for

reconstructing a similar input data. With convolutional neu-

ral networks (CNN), the auto-encoder model becomes more

powerful for learning high-level image features and enhanc-

ing the input image quality (Wang and Tao, 2016; Jain and

Seung, 2009). For instance, Tan and Eswaran (2008) and

Vincent et al. (2010) successfully developed a stacked auto-

encoder network with CNN to reconstruct and denoise hand-

written digital images, respectively. H. Chen et al. (2017) ap-

plied a residual encoder–decoder convolutional neural net-

work (RED-CNN) to enhance a CT image from low dense

Earth Syst. Sci. Data, 13, 889–906, 2021 https://doi.org/10.5194/essd-13-889-2021



Z. Chen et al.: An extended time series of global NPP-VIIRS-like nighttime light data 891

Figure 1. NTL data from DMSP-OLS and NPP-VIIRS.

to normal dense. By analogy, the DMSP-OLS NTL data can

be regarded as the low-density image with some noise, while

the NPP-VIIRS NTL data can be treated as the high-quality

image. According to the successful cases from the literature

mentioned above, it is believed that the auto-encoder model

is promising in converting DMSP-OLS NTL data to NPP-

VIIRS NTL data.

In this study, we developed an auto-encoder (AE) model

including convolutional neural networks to integrate DMSP-

OLS NTL and NPP-VIIRS NTL data and generated an ex-

tended time series of global annual NPP-VIIRS-like NTL

data from 2000 to 2018. The Google Earth Engine (GEE)

platform (Kumar and Mutanga, 2018) and a parallel comput-

ing platform named Compute Unified Device Architecture

(CUDA) of the graphics processing unit (Huang et al., 2015)

were used in the proposed framework. The remainder of this

paper is organized as follows. Section 2 describes the data in-

volved in this study and the illustration of data preprocessing.

The auto-encoder network structure and cross-sensor calibra-

tion are presented in Sect. 3. In Sects. 4 and 5, the extended

time series of global NPP-VIIRS-like NTL data, accuracy

evaluation, spatial pattern, and temporal consistency are dis-

cussed. The findings are summarized in the final section.

2 Data

This study used three datasets (Table 1). The first one is the

enhanced vegetation index adjusted NTL index (EANTLI) of

2000–2013 (Zhuo et al., 2015) as an input dataset in the AE

model. It was derived from the annual calibrated DMSP-OLS

NTL data and Enhanced Vegetation Index (EVI) data pro-

duced by the Moderate Resolution Imaging Spectroradiome-

ter. The second dataset is the composited NPP-VIIRS NTL

data from 2012 to 2018, which was annually summarized

from the monthly NPP-VIIRS NTL data. The 2013 com-

posited NPP-VIIRS NTL data were used as the label data

in the AE model, and the 2012 data were introduced as the

reference for validation. The 2013–2018 data were appended

to the NPP-VIIRS-like NTL data (2000–2012) simulated by

the AE model. The third one is the DMSP-OLS radiance-

calibrated NTL (RNTL) data for the validation procedure.

2.1 Enhanced vegetation index adjusted NTL index

(EANTLI)

Due to the mentioned issues in the annual DMSP-OLS

NTL data, an enhanced vegetation index adjusted NTL in-

dex (EANTLI) of 2000–2013 was used as an input in the

AE model to simulate NPP-VIIRS-like NTL data. EANTLI

was proposed by Zhuo et al. (2015) by fusing the EVI and

DMSP-OLS NTL data. EANTLI not only reduces the satura-

tion problems but also enhances the nighttime light intensity

variations. It can be expressed mathematically in the follow-

ing equation:

EANTLI =
1 + (nNTL − EVI)

1 − (nNTL − EVI)
× NTL, (1)

where EVI represents the value from the annual average EVI

value, NTL is the DMSP-OLS NTL intensity, and nNTL in-

dicates the normalized NTL.

In this study, to get an EANTLI dataset with better tem-

poral consistency, the calibrated DMSP-OLS NTL data re-

placed the original DMSP-OLS NTL data in Eq. (1). The

calibrated DMSP–OLS NTL data of 2000–2013 used in this

study were derived from the original annual DMSP-OLS

NTL data via a stepwise calibration (Li and Zhou, 2017).

The calibrated DMSP–OLS NTL data have a better tempo-

ral consistency and a greater agreement with the NPP-VIIRS

NTL data (Li et al., 2020). This calibrated NTL data cover

the same extent (180 to 180◦ longitude and −65 to 75◦ lat-

itude) and spatial resolution (30 arcsec). The data record the

digital number (DN) values with a range from 0 to 63. Zero

indicates no nighttime light intensity (used as background),

while 63 indicates the highest nighttime light intensity.

The 16 d EVI products (MOD13A1) with a spatial reso-

lution of 500 m are involved. To mitigate the sensitivity to

seasonal and interannual fluctuations, the MOD13A1 EVI

https://doi.org/10.5194/essd-13-889-2021 Earth Syst. Sci. Data, 13, 889–906, 2021
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Table 1. The list of data used in this study.

Dataset Source Role

EANTLI Calibrated DMSP-OLS NTL dataa

EVI Datab
Input data in AE model (2000–2013)

Composited NPP-VIIRS NTL data Monthly NPP-VIIRS NTL datac Reference data for validation (2012);

label data in AE model (2013)

part of NPP-VIIRS-like NTL data

(2013–2018)

DMSP-OLS RNTL data3 F12–F15_20000103–

20001229_rad_v4

F14_20040118–20041216_rad_v4

F16_20051128–20061224_rad_v4

F16_20100111–20101209_rad_v4

Reference data for validation

(2000, 2004, 2006, 2010)

Census datad Total population (ID: SP.POP.TOTL) Reference data for temporal consis-

tency validation (2000–2018)

a Accessed from Li et al. (2020) in February 2020. b Accessed from MOD13A1 version 5 based on Google Earth Engine in May 2020. c Accessed from the

Earth Observation Group (EOG) from the Colorado School of Mines (https://payneinstitute.mines.edu/eog/nighttime-lights/, last access: 20 May 2020) in

May 2020. d Accessed from the World Bank (2020) in May 2020.

products were processed as an annual average EVI (Jing et

al., 2015) using Google Earth Engine. It is worth noting that

since the MOD13A1 EVI data are only available from 2000

onwards, we only processed the enhanced vegetation index

adjusted NTL index (EANTLI) of 2000–2013. More details

and advantages of calibrated DMSP–OLS NTL and EANTLI

can be found in Li et al. (2020) and Zhuo et al. (2015).

2.2 Composited NPP-VIIRS NTL data

The monthly NPP-VIIRS NTL data were calibrated and ag-

gregated to the annual NPP-VIIRS NTL data from 2012 to

2018. The composited NPP-VIIRS NTL data of 2012 were

for the validation process, the composited NPP-VIIRS NTL

data of 2013 were for the training process in the AE model,

and the composited NPP-VIIRS NTL data from 2013 to 2018

were appended to the final product as a part of the NPP-

VIIRS-like NTL data.

The version 1 monthly NPP-VIIRS NTL composite data

(vcm version) of April 2012 to December 2018 provided by

the Colorado School of Mines were used to composite an-

nual NPP-VIIRS NTL data. The monthly NPP-VIIRS NTL

data cover the same extent of calibrated DMSP-OLS NTL

data with a finer spatial resolution of 15 arcsec (approxi-

mately 500 m near the Equator) and a more sensitive sensor

with a unit of nanowatts per centimeter squared per steradian

(nW cm−2 sr−1). Since the official annual NPP-VIIRS NTL

data are only available in 2015 and 2016 and they require in-

accessible parameters to repeat the official annual composite

process for other years (Elvidge et al., 2017), we compos-

ited new annual NPP-VIIRS NTL data by using the median

value of 12 NPP-VIIRS NTL monthly sets of composite data

per each pixel. To differentiate with the official annual NPP-

VIIRS NTL data (2015 and 2016), we named our annual

NPP-VIIRS NTL data composited NPP-VIIRS NTL data in

the following sections.

We used the median value instead of the traditional aver-

age or max value because the monthly NPP-VIIRS NTL data

were contaminated by stray light in the mid-to-high latitude

regions during the entire summer, and the contaminated pix-

els are reassigned as 0 in the official monthly composite data

(Elvidge et al., 2017). As the mean value could lower the

NTL intensity and the max value could highlight the abnor-

mal value, the median value could be more reliable than the

mean or max value (Liu et al., 2010). A validation of these

median composited NPP-VIIRS NTL data was conducted as

described in the following section.

According to the correction model of NPP-VIIRS NTL

data proposed by Shi et al. (2014b) and Ma et al. (2014), a

dark background mask and a nighttime light intensity thresh-

old value are required to remove pixels of unstable and ab-

normal nighttime light intensity, respectively. First, the dark

background mask consists of the EANTLI pixels with the

value of 0 and the NPP-VIIRS NTL pixels with an intensity

lower than 1 nW cm−2 sr−1. We then filtered the correspond-

ing annual NPP-VIIRS data by using this dark background

mask. Then, we assumed that the NTL intensities in other ar-

eas do not exceed the maximum NTL intensity in the center

of large cities. If the pixel has a value larger than the maxi-

mum, this pixel was identified as the abnormal pixel and was

adjusted (Shi et al., 2014b). According to the global city rank

from the Globalization and World Cities (GaWC) Research

Network (Taylor et al., 2010), two cities (New York City in

the United States and London in the United Kingdom) with

the alpha++ level and the two largest cities in China (Shang-

hai and Beijing) were selected in this study to capture the

Earth Syst. Sci. Data, 13, 889–906, 2021 https://doi.org/10.5194/essd-13-889-2021
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maximum NTL intensity as the threshold to adjust the ab-

normal pixels for each year. Once an NPP-VIIRS NTL pixel

value is higher than this threshold value, this pixel value will

be replaced by its maximum NTL intensity within its eight

neighbor pixels to eliminate the abnormal value.

2.3 DMSP-OLS radiance-calibrated NTL (RNTL) data

Since the NPP-VIIRS NTL data are only available after

2012, DMSP-OLS RNTL data in 2000, 2004, 2006, and 2010

were selected as reference data to evaluate if our product

has good accuracy during the entire time series. The DMSP-

OLS RNTL data have a radiance calibration based on pre-

flight sensor parameters and are free from sensor saturation

(Feng-Chi et al., 2015). However, this dataset is still unit-

less because the lack of an onboard calibration system for

all DMSP-OLS data results in the imprecise measurement of

the sensor degradation over time. DMSP-OLS RNTL data

have the same extent as the original DMSP-OLS NTL data

with the same spatial resolution (30 arcsec), but they are only

available in specific years. The four selected DMSP-OLS

RNTL data were accessed from Earth Observation Group

(EOG) from the Colorado School of Mines, as shown in Ta-

ble 1.

3 Methodology

As outlined in Fig. 2, after data preprocessing, a four-step

approach was proposed to generate an extended time se-

ries (2000–2018) of NPP-VIIRS-like NTL data from the

EANTLI data and composited NPP-VIIRS NTL data. In

step 1, a modified auto-encoder model was developed. In

steps 2 and 3, the architecture of the auto-encoder model

with CNN was designed, and the cross-sensor calibration

model was trained. In step 4, an extended time series (2000–

2018) of the NPP-VIIRS-like NTL dataset was generated us-

ing the trained model by inputting the 2000–2012 EANTLI

data and appending the composited NPP-VIIRS NTL data

(2013–2018) with postprocessing of the data. Finally, a com-

prehensive accuracy evaluation was conducted.

3.1 The auto-encoder (AE) model

The auto-encoder model was trained by setting the 2013

EANTLI data as input data and the 2013 composited NPP-

VIIRS NTL data as the label. Then, the trained model

was adopted to simulate the NPP-VIIRS-like NTL data by

inputting the 2000–2011 EANTLI data. The auto-encoder

model includes two main parts (encoder and decoder), as

shown in Fig. 3. Let X ∈ Rm×n, Y ∈ Rm×n, and Ŷ ∈ Rm×n be

the annual EANTLI data, composited NPP-VIIRS NTL data,

and simulated NPP-VIIRS-like NTL data. The encoder part

is to learn a deterministic mapping fθ which could transfer

X into a hidden representation (H). A typical deterministic

mapping function can be expressed as

fθ (x) = s (Wx + b) , (2)

where x ∈ X, and θ represents the parameter set, including

weight matrix (W) and offset (b). In contrast, the traditional

decoder part is to reconstruct X using the high-level features

extracted from the hidden representation (H). This recon-

struction gθ ′ is called the decoder and can be expressed as

Ŷ = gθ ′ (h) = s
(

W′h + b′
)

, (3)

where h ∈ H, and θ ′ represents the parameter set, including

weight matrix (W′) and offset (b′). However, in this study,

the decoder part was modified to map the composited NPP-

VIIRS NTL data (Y) rather than the traditional reconstruc-

tion of X, which means that the problem can be transformed

to build two functions, fθ and gθ ′ , via deep learning technol-

ogy to minimize a specific loss function (e.g., mean square

error):

arcmin

∥

∥

∥
Ŷ − Y

∥

∥

∥

2
. (4)

3.2 The auto-encoder with a CNN architecture design

AE and CNN have both demonstrated excellent performance

on the image feature extractions. In this study, based on the

AE and CNN framework, we proposed a 10-layer network

architecture as the cross-sensor calibration model (Fig. 4).

This model includes five convolutional operations for encod-

ing EANTLI data and then stacks five deconvolutional op-

erations for decoding in symmetry. Because our intention is

to reconstruct images instead of classifying targets, the fully

connected layers in the traditional encoder and decoder parts

were removed from our architecture.

The kernel size of convolutional and deconvolutional oper-

ations adopted in this architecture is 3 by 3 with a stride and

padding of 1 to keep the size of the output layers the same

as the input layers. In the encoder part, the batch normaliza-

tion (BN) operations were added after each convolution layer

to avoid the vanishing or exploding gradient problem (Ioffe

and Szegedy, 2015). The rectified linear unit (ReLU) func-

tion was applied in this architecture as the activation function

after each convolutional and deconvolutional layer except the

last deconvolutional layer. The ReLU function can be formed

as

ReLU(x) = max(0,x) . (5)

The traditional CNN structure always contains more than one

pooling operation to improve its learning efficiency, but these

pooling operations could lose the details of the input images.

To keep as much of the image information as possible, the

pooling processes among all layers were deleted.

https://doi.org/10.5194/essd-13-889-2021 Earth Syst. Sci. Data, 13, 889–906, 2021
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Figure 2. Flow chart of the generation of NPP-VIIRS-like NTL data.

Figure 3. The framework of the auto-encoder model.

3.3 Training auto-encoder model with a CNN

architecture

Considering the balance between computational limita-

tion and efficiency, the EANTLI data and composited

NPP-VIIRS NTL data were severally split into tiles of

256 × 256 pixels. Since both sets of NTL data cover the

year 2013, we built a training set of paired tiles, as

P = {(X1,Y1) , (X2,Y2) , . . ., (XN ,YN )}, by using the 2013

EANTLI data and composited NPP-VIIRS NTL data, re-

spectively, where N indicates the number of tiles. Then this

training set was input to train the auto-encoder model de-

signed above by minimizing the loss function L between

composited NPP-VIIRS NTL data (Y) and simulated NPP-

VIIRS-like NTL data (Ŷ). The loss function adopted in this

study is the mean square error function and was then opti-

mized by the Adam algorithm proposed by Kingma and Ba

(2014) in each deep learning step. The loss function can be

formed as

L =
1

N

N
∑

n=1

(

Ŷn − Yn

)2
. (6)

3.4 Generating an extended time series of

NPP-VIIRS-like NTL data

We generated the extended time series (2000–2018) of NPP-

VIIRS-like NTL data with two components. First, the trained

AE model was applied to the 2000–2012 EANTLI data to

generate the simulated NPP-VIIRS-like NTL data covering

Earth Syst. Sci. Data, 13, 889–906, 2021 https://doi.org/10.5194/essd-13-889-2021
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Figure 4. The overall architecture of our proposed auto-encoder with CNN.

the same period. Second, we composited annual NPP-VIIRS

NTL data (2013–2018) from monthly data. Via appending

these two components, the extended time series (2000–2018)

of global NPP-VIIRS-like NTL data was generated.

The split tiles of 2000–2012 EANTLI data with the same

size (256 by 256) were input into the trained auto-encoder

model to simulate the NPP-VIIRS-like NTL data. Due to the

fluctuation of EVI data, the input EANTLI data have several

abnormal pixels, which makes the output NTL pixels unrea-

sonable. Thus, postprocessing of the data is required for the

simulated NPP-VIIRS-like data which involves three proce-

dures. Firstly, as it is not reasonable to simulate lights where

there is no stable light source, the EANTLI pixels with DN

value of 0 were extracted as a dark background mask for each

year and overlaid with the simulated NPP-VIIRS-like data

to assign the pixels in the same locations as 0. Meanwhile,

because of the NPP-VIIRS sensor’s detection limitation, the

simulated NTL intensity lower than 1 nW cm−2 sr−1 was also

assigned as 0 (Ma et al., 2014). Finally, to ensure simulated

NPP-VIIRS NTL data have the same temporal change as

the calibrated DMSP-OLS NTL images, the simulated NPP-

VIIRS-like intensity was computed by

SNTL(year, i) =















































SNTL(year+1, i)

NTL(year, i) > NTL(year+1, i)

∩SNTL(year, i) < SNTL(year+1, i)

SNTL(year+1, i)

NTL(year, i) < NTL(year+1,i)

∩SNTL(year, i) > SNTL(year+1, i)

SNTL(year, i) otherwise

, (7)

where SNTL(year, i) and NTL(year, i) indicate the simulated

NPP-VIIRS-like intensity and calibrated DMSP-OLS NTL

intensity of the ith pixel in the year (from 2000 to 2012).

4 Results

4.1 Training of the auto-encoder model with CNN

In the training process of the AE model, the learning rate in

this study was initialized as 1×10−4 and optimized by using

the Adam algorithm. For weight initialization, this study em-

ployed the method proposed by He et al. (2015) instead of the

traditional random weights from Gaussian distribution. The-

oretically, the AE model was iteratively trained until the re-

construction loss became stable. In this study, the loss value

tended to be stable around 200 when the number of train-

ing iterations reached 4000, which implies that an increase

in iterations beyond 4000 cannot further improve the model

precision.

4.2 Accuracy evaluation

According to the pixel-level and city-level validations be-

tween the extended NPP-VIIRS-like NTL data and compos-

ited NPP-VIIRS NTL data of 2012 (Fig. 5), our result is

close to the composited NPP-VIIRS NTL data at both spa-

tial scales. At the pixel level, 150 000 random pixels were

selected as validation points, and the coefficient of determi-

nation (R2) between our results and the composited NPP-

VIIRS NTL data of 2012 was 0.87 with a root mean squared

error (RMSE) of 2.96 nW cm−2 sr−1 at the significant level.

The dots were colored based on their kernel density, which

follows the color ramp of the density scale. A warmer col-

ored dot represents a higher density. It can be observed that

the dots were mostly clustered around the low NTL inten-

sity (the origin of the coordinates). For the city-level valida-

tion, the total NTL intensity for each city (i.e., the sum of all

pixels’ NTL intensities within each of the 40 000 cities) was

adopted as the variable, and the results showed that the ex-

tended NPP-VIIRS-like NTL data have a better performance

with an R2 of 0.94 and a RMSE of 3024.62 nW cm−2 sr−1
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Figure 5. The comparison with kernel density between the global composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL

data in 2012 (unit: nW cm−2 sr−1) (a) at the pixel and (b) city levels. The solid line denotes the 1 : 1 line, and N is the number of sample

points (cities).

(Fig. 5b). Most of the dots in these two scatter plots are

around the non-bias (1 : 1) line (red line in Fig. 5), which

implies that the extended NPP-VIIRS-like NTL data have a

positive 1 : 1 relationship with the composited NPP-VIIRS

NTL data.

Among the global validation points, we also selected six

subsets within six countries (United States, Italy, China,

Brazil, South Africa, and Australia) and found that the ac-

curacy in these countries is acceptable and has no signifi-

cant spatial variation (Fig. 6). Brazil has the highest accuracy

(R2 = 0.86), followed by the United States (R2 = 0.84). The

rest of the countries all have an accuracy higher than 0.7.

Australia has an R2 of 0.79, while Italy and China have an R2

of 0.76 and 0.72, respectively. South Africa also has a good

R2 of 0.70. In particular, the RMSE of each sample country

is very small (from 1.67 to 5.72), which means our results

are very similar to the calibrated NPP-VIIRS NTL intensity

at the pixel level.

Figure 7 shows that our extended NPP-VIIRS-like NTL

data have a strong agreement with the DMSP-OLS RNTL

data in the same 40 000 cities in 4 years (2000, 2004, 2006,

and 2010), which implies that the AE model is suitable for

simulating NPP-VIIRS-like NTL data during the entire pe-

riod. Before 2012, the composited NPP-VIIRS NTL data are

not available for the validation, but the DMSP-OLS RNTL

data are accessible in some separate years. To validate our

results before 2012, we have to use the DMSP-OLS RNTL

data as the reference data. The DMSP-OLS RNTL data were

calibrated by using preflight sensor calibrations and have no

actual radiance value. Thus, this validation was conducted

at the city level, and the total NPP-VIIRS-like NTL intensity

and DMSP-OLS RNTL intensity of each city were calculated

and scattered (Fig. 7). In these 4 years, all the R2 values are

higher than 0.75 and demonstrate our model does work for

this entire time series. Note that the DMSP-OLS RNTL data

still have interannual biases due to sensor degradation and

other sources (Feng-Chi et al., 2015), resulting in the differ-

ent slopes of trend lines in 4 years.

Finally, a comparison between the composited NPP-

VIIRS NTL data and the official annual NPP-VIIRS NTL

data in 2015 was performed based on 5000 random valida-

tion pixels, and the result indicated the former is close to the

latter (see Fig. 8). In other words, using the median value to

composite annual NPP-VIIRS NTL data is reasonable and

appropriate. In Fig. 8a, the similar distribution of green bars

and blue bars in these two histogram plots indicate that the

pixel numbers of composited and official annual NPP-VIIRS

NTL data are similar within each bin at 10 nW cm−2 sr−1.

The result illustrates that these two datasets have a signifi-

cant statistic similarity. Meanwhile, the scatter plot between

these two NTL intensities at the pixel level (Fig. 8b) showed

that our composited NPP-VIIRS NTL data have a strong lin-

ear relationship (R2 = 0.85 and the slope is close to 1) with

the official annual NPP-VIIRS NTL data. Both validation re-

sults proved that the composited annual NPP-VIIRS NTL

data generation model based on median values is a reason-

able solution.

4.3 The extended time series (2000–2018) of global

NPP-VIIRS-like NTL data

Figure 9 shows the global spatial distribution of extended

NPP-VIIRS-like NTL in 2012, including three enlarged sub-

plots of New York, Rome, and Shanghai. From each enlarged

subplot (Fig. 9b–d), our results could provide more informa-

tion for urbanization evaluation, such as the road network and

urban spatial structure. In addition, our product can be used

to explore the differences in NTL intensity among cities. For
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Figure 6. The comparison between composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL data in 2012 (unit:

nW cm−2 sr−1) at the pixel level in six countries. The solid line denotes the 1 : 1 line, and N is the number of sample points (cities).

Figure 7. The comparison between the annual DMSP-OLS RNTL intensity (DN Value) and extended NPP-VIIRS-like NTL intensity (unit:

nW cm−2 sr−1) at the city level in (a) 2000, (b) 2004, (c) 2006, and (d) 2010.
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Figure 8. A comparison of composited and official annual NPP-VIIRS NTL data via (a) histograms and (b) scatter plot with kernel density.

Figure 9. The extended NPP-VIIRS-like NTL data (unit: nW cm−2 sr−1) with three enlarged subplots of New York, Rome, and Shanghai

in 2012 and the dynamics of NTL intensity from 2000 to 2015 by longitude and latitude (1◦ bins).
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example, these three enlarged subplots clearly show that New

York had higher NTL intensity than either of the other two

cities.

The dynamics (2000–2018) of extended NTL intensity

were also plotted in Fig. 9e and f. At the global scale, higher

NTL intensities clustered in the region from 20 to 45◦ N,

while those with lower values were located in the South-

ern Hemisphere. The region from 30 to 45◦ N had no sig-

nificant change in NTL intensity during the 2000–2010 pe-

riod but had a great enhancement after 2010. For the region

from 15 to 30◦ N, the NTL intensity was increasing during

the 15 years, which was mostly caused by China’s develop-

ment. In the longitudinal direction, one of the NTL intensity

peaks within the Western Hemisphere region was mostly lo-

cated in the United States (from 70 to 100◦ W). In the Eastern

Hemisphere region, there were three significant peaks in Eu-

rope, the Middle East, and China (from west to east). The

temporal changes in NTL intensity between 2000 and 2005

were generally slighter than those between 2005 and 2010,

but from 2010 to 2015, the blue part (2015) in Fig. 9e and f

was larger than the yellow part (2010), which implies that the

NTL intensity strengthened almost all over the world. This

result was highly associated with the global economic recov-

ery after the global financial crisis of 2007–2008 (W. Chen

et al., 2019).

Figure 10 reports the trend in NTL intensity from our

extended NPP-VIIRS-like NTL data within each continent.

Globally, the NTL intensity had more than doubled during

the period from 2000 to 2018, from 60 million to almost

150 million nW cm−2 sr−1. At the regional scale, Asia and

North America had the most intense NTL intensity increase

and seemed to be the main contributors to global urbaniza-

tion. As the second group, both Europe and South Amer-

ica had a stable but slow increase. In Oceania and Africa,

the NTL intensity had no obvious growth, especially before

2010.

5 Discussion

5.1 Evaluation of spatial patterns of extended

NPP-VIIRS-like NTL data in 2012

The extended NPP-VIIRS-like NTL data (Fig. 11.IV) and the

composited NPP-VIIRS NTL data (Fig. 11.III) show signif-

icant spatial variations in NTL intensity and less saturation

and blooming problems than the calibrated DMSP-OLS data

and EANTLI data (Fig. 11.I and II). In Fig. 11, the calibrated

DMSP-OLS data have severe saturation and blooming prob-

lems in all three selected cities: Shanghai, Los Angeles, and

Cape Town. By fusing the calibrated DMSP-OLS data and

EVI data, the quality of the produced EANTLI data has a

significant improvement, but it is still suffering a blooming

problem. For example, in the periphery of the urban area,

many pixels that are supposed to be dark have low NTL in-

tensity, which makes the lit areas much larger than the reality.

Compared to the EANTLI data, the composited NPP-VIIRS

NTL data and our extended NPP-VIIRS-like NTL data have

already obtained a great improvement. Firstly, the main road

network can be easily found from the composited or ex-

tended NPP-VIIRS NTL data, which indicates that these two

datasets can provide more spatial details of the NTL inten-

sity. Secondly, the urban hierarchy structure is much clearer,

and each lit area can be identified due to the effective elimi-

nation of the blooming problem.

The fluctuation of extended NPP-VIIRS-like NTL data

(solid or dashed line) agrees well with that of the compos-

ited NPP-VIIRS NTL data (gray part) from the six profiles

across Shanghai, Los Angeles, and Cape Town in Fig. 12. In

these three cities, the general trends of extended NPP-VIIRS-

like NTL data are consistent with the those of composited

NPP-VIIRS NTL data, especially within the urban core area,

even though these extended NPP-VIIRS-like NTL profiles

showed a small overestimation. Parts of the extended NPP-

VIIRS-like NTL profiles in Shanghai have an underestima-

tion when compared with the composited NPP-VIIRS NTL

data. This situation mostly appeared within the urban periph-

ery region (e.g., ID: 80–90 in Fig. 12c) and could be caused

by some extreme situations, such as dramatically unbalanced

development which leads to specific pixels with an abnor-

mally high NTL intensity, while the surrounding pixels have

a relative low NTL intensity. Under such a situation, the sur-

rounding pixels might lower the centric pixel’s NTL intensity

when the convolutional and deconvolutional operations were

conducted.

5.2 Evaluation of temporal consistency of the time

series (2000–2018) of NPP-VIIRS-like NTL data

We compared the extended time series of NPP-VIIRS-like

NTL data with the time series of census data and analyzed

the range of the NTL intensity change near the temporal join-

ing point (that is, the final year of simulated NPP-VIIRS-like

NTL data and the first year of the composited NPP-VIIRS

NTL data; see the rectangular box in Fig. 14). The results

show that the extended time series of NPP-VIIRS-like NTL

data has a consistent temporal trend at both global and re-

gional scales.

Firstly, our NPP-VIIRS-like NTL data have a similar trend

with the population from 2000 to 2018 (see Fig. 13). The

census data of the entire world and seven countries were

collected from World Bank Open Data (Table 1). A linear

regression model was conducted to compare the population

and total NTL intensity. The R2 at the global scale is 0.84

(Fig. 13a), and the R2 of seven selected countries (Fig. 13b)

ranges from 0.65 (in the United States and France) to 0.90 (in

China). This result illustrated that the NPP-VIIRS-like NTL

data (2000–2018) have a reasonable temporal trend. Also, in

China and Afghanistan, the extended NTL data have a better

performance (R2 is larger than 0.8) of population estimation.
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Figure 10. The dynamics of total NTL intensity from 2000 to 2018 in each continent.

Figure 11. Spatial patterns of NTL intensity in 2012 of (I) calibrated DMSP-OLS data, (II) EANTLI data, (III) composited NPP-VIIRS

NTL data, and (IV) our extended NPP-VIIRS-like NTL data in three cities (a) Shanghai, China, (b) Los Angeles, United States, and (c) Cape

Town, South Africa.

Secondly, our extended time series (2000–2018) of NPP-

VIIRS-like NTL data has a smooth temporal change even

near the temporal joining point (the year of 2012) between

the simulated NPP-VIIRS-like NTL data and composited

NPP-VIIRS NTL data. In Fig. 14a, the total NTL intensity

and lit pixels (NTL intensity greater than 1 nW cm−2 sr−1)

were measured at the global scale from 2000 to 2018. The

total NTL intensity and lit pixel increased steadily in the first

10 years (2000–2010). From 2010 to 2014, the changes in

total NTL intensity and lit pixels both increased much faster

than before but were still stable, and no sudden jumps were

found during the period (the rectangular box in Fig. 14). In

the last 4 years (2014–2018), the increases in total NTL in-

tensity became small and slow, while the lit pixel has a “U”
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Figure 12. Profiles of composited NPP-VIIRS NTL data and extended NPP-VIIRS-like NTL intensity (unit: nW cm−2 sr−1) across (a,

b) Los Angeles, United States, (c, d) Shanghai, China, and (e, f) Cape Town, South Africa.

Figure 13. Comparison of total population with total NTL intensity for (a) the globe and (b) seven representative countries.
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Figure 14. Temporal trend of extended time series (2000–2018) NPP-VIIRS-like NTL data for the total NTL intensity and lit pixels at (a) the

global scale and within six selected countries: (b) United States, (c) China, (d) Italy, (e) Brazil, (f) South Africa, and (g) Australia.

shape with the peak in 2017. Consequently, our NPP-VIIRS-

like NTL data source change from simulated NPP-VIIRS-

like NTL data (2000–2012) to composited NPP-VIIRS NTL

data (2013–2018) does not cause any unreasonable change in

NTL intensity during the entire period at the global scale.

As shown in Fig. 14b–g, the number of lit pixels within

each of the six selected countries has a stable trend, while

the total NTL intensity has some fluctuations before 2010.

From 2007 to 2010, an obvious reduction in NTL intensity

was apparent in these six selected countries and even all over

the world. After 2010, most countries had recovered and had

an increase in the NTL intensity. This temporal change in

NTL intensity is consistent with the worldwide Great Re-

cession (2007–2010). This result proves that our extended

NPP-VIIRS-like NTL data can truly detect the NTL intensity

growth or reduction within a country. Meanwhile, we also

found that each country had a different fluctuation range dur-

ing the Great Recession. For example, as shown in Fig. 14b

and c, the United States had a sharp decrease, but the decre-

ment in China is slight, which is similar to the argument pro-

vided by Wen and Wu (2019) that China is able to withstand-

ing the Great Recession. It means that our product has the

capability of revealing the details of NTL intensity change.

5.3 Limitations

The artificial light from the oceans is not a stable light source

(e.g., ship, offshore oil well) and could bring about a mis-

understanding during the AE model training. Hence, a land

area mask was applied to remove the ocean parts even though

this procedure could reduce the ability to detect information

from oceans, such as fishery (Waluda et al., 2008) and boats

(Elvidge et al., 2015). Although our experiments, e.g., for

population estimation, have indicated that the NPP-VIIRS-

like NTL data have great potential in urban research, more

applications are still required to promote this dataset.

Another issue is about the composited NPP-VIIRS NTL

data generation based on its median value. We found some
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abnormal pixels which were not lit in the 2012 median

annual NPP-VIIRS NTL data. This is because the NPP-

VIIRS NTL monthly composite data were only available

from April 2012, and the NTL data in the high latitude re-

gions have been affected (Román and Stokes, 2015; Levin,

2017; Román et al., 2018). In summary, this missing data

(from January to March) and the stray light in summer make

the median NTL intensity become biased (lower than the

usual level or even becoming zero). Thus, the cities or pixels

with no lit issues were removed in the validation procedure.

In this study, we are more concerned about the statistical

relationship between DMSP-OLS NTL data and NPP-VIIRS

NTL data. However, the land cover and land use data could

be useful to mitigate the underestimations in Fig. 12c because

these data can help distinguish the extreme development sit-

uation. Meanwhile, introducing physical parameters during

the preprocessing of data could probably further improve our

extended NTL product because it has been proven that phys-

ical parameters such as viewing angle (Li et al., 2019) and

lunar zenith angle (Román et al., 2018) could influence the

NTL data quality. However, due to the limitation of data ac-

cessibility, the land cover and land use data and physical pa-

rameters were not involved in this study.

6 Code availability

The source code of the AE architecture for this product is

available at https://doi.org/10.7910/DVN/JRM2XE (Chen et

al., 2021).

7 Data availability

The extended time series (2000–2018) of nighttime light

data in the WGS84 coordinate system with a spatial res-

olution of 15 arcsec (∼ 500 m) can be freely accessed at

https://doi.org/10.7910/DVN/YGIVCD (Chen et al., 2020),

which is stored as a zip file (∼ 50 MB) for each year. By un-

compressing the zip file, the annual NPP-VIIRS-like NTL

data are provided in GeoTIFF format (∼ 9 GB). These data

can be processed using open-source software such as QGIS.

We also included two data tables as Microsoft Excel XLSX

files. One contains 40 000 sample points for comparing com-

posited and official annual NPP-VIIRS NTL data in Fig. 8,

and the other is the data used for the temporal trend analysis

of our extended time series of NPP-VIIRS-like NTL data in

Fig. 14.

8 Conclusions

An extended time series (2000–2018) of NPP-VIIRS-like

NTL data was produced in this study. This product includes

two parts: the simulated NPP-VIIRS-like NTL data (2000–

2012) from DMSP-OLS NTL data and the composited an-

nual NPP-VIIRS NTL data (2013–2018). Compared to the

composited NPP-VIIRS NTL data in 2012, our extended

NPP-VIIRS-like NTL data show good accuracy globally at

the pixel (R2: 0.87, RMSE: 2.96) and city (R2: 0.95, RMSE:

3024.62) levels. At the regional scale, all countries show an

acceptable accuracy. The R2 ranges from 0.70 to 0.86, and

the RMSE is lower than 6 nW cm−2 sr−1. DMSP-OLS RNTL

data in 2000, 2004, 2006, and 2010 were compared with the

extended NPP-VIIRS-like NTL data. All R2 are higher than

0.75, which implies that our model is reliable. These evalu-

ations indicate that our extended NPP-VIIRS-like NTL data

have a reasonably good and spatially different quality.

Generally, our extended time series (2000–2018) of NPP-

VIIRS-like NTL data shows a similar spatial pattern as the

composited NPP-VIIRS NTL data with good quality regard-

ing the spatial pattern and temporal consistency. The tempo-

ral trend agrees with the population change and a global eco-

nomic event (i.e., the Great Recession). The NTL intensity of

our product does not fluctuate around neighboring years be-

tween the simulated NPP-VIIRS-like NTL data (2000–2012)

and composited NPP-VIIRS NTL data (2013–2018).

The extended NPP-VIIRS-like NTL data from 2000 to

2018 can be used to better evaluate and analyze the dynamics

of demographic and socioeconomic characteristics during ur-

banization. For example, we can investigate the urban spatial

structure, even the road network and its temporal dynamic,

for a long time period. Our proposed NTL dataset is avail-

able until 2018 so far, but it can be extended in future when

the monthly NPP-VIIRS NTL data for the whole year (e.g.,

2019) become available.
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