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Introducing infinite number of fields, we construct an extended version of the topological 
Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) 
are discussed from standpoint of the covariant canonical quantization. It is shown that the 
ETYMT becomes a cohomological topological field .theory or a theory equivalent to a 
quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions 
imposed on state-vector space. On the basis of the ETYMT, we may understand a transition 
from an unbroken phase to a physical phase (broken phase). ' 

§ 1. Introduction 

57 

In recent years, "cohomological" topological field theories (CTFT's)1
)-s) have 

been studied by many people as an interesting application of quantum field theory to 
mathematics. Main interest in the CTFT's has been directed to describing 
topological invariants associated with low dimensional manifolds in terms of quan
tum field theory and examining mathematical properties of the invariants. For 
example, Donaldson's topological invariants have been represented as correlation 

. functions in the topologicaf Yang-Mills theory (TYMT).1
),s) 

The TYMT, which is the prototype for the CTFT's, is characterized by the 
Lagrangian6

) 

(1) 

with F= dA + iqAA and fD =£7 + iq[A, · ], where A is a Yang-Mills connection one
form, ¢ 1 an anticommuting one-form, B a commuting self-dual two-form, x an 
anticommuting self-dual two-form, (j)- 2 a commuting zero-form, and c an anticom
muting zero-form: These fields are defined on a Riemannian four manifold M 4 with 
a metric gp.v and take values in the Lie algebra !1 of a gauge group G. The covariant 
exterior derivative [7 is defined from the Riemannian connection on M 4

, and a and q 
are a gauge parameter and a coupling constant, respectively. The ERST transforma
tion a is defined by 

aA=¢1 +D¢}, 

ax=iB-iq{x, (P}, 

a¢1=- iD¢i- iq{¢\ <P1
}, 

aB= iq[B, <P1
]- iq[x, <P2

], 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.110.57/1936494 by guest on 20 August 2022



58 

8c=ib, 

8if)-2=?J-1+iq[?J-2, <P], 

S. Deguchi 

8b=O, 

8¢-1 =-iq{if}-I, cP}+q[if}-2
, cp2]' (2) 

where D=d + iq[A, ·]. Here if} and ¢~1 are Q -valued anticommuting zero-forms, 
and b and ¢i Q -valued commuting zero-forms. We can verify the nilpotency 82 =0. 
After being carried out the ERST transformation in (1), .J: TYMT is written as 

.J: TYMT= ;g Tr[ ~ Bfl.J) Ffl.v + ixfl.v Dfl.<Pt- iif)-1 fD p<ft1f1.- ?J-2(fD fl.Df1.¢i- q{ ¢~, ¢1!1.}) 

Now we assume that the asymptotic fields of the relevant fields are governed by 
the quadratic part of .J:TYMT.7) Then, from (2) and (3) in the q=O case, we can show 
that, in the Lorentz frame ftp=(IPal, 0, 0, Pa), each of (Aas i, <P'~s i; Xas i3, Bas ia), (Aas a, 
<P'~s a; Cas, bas) and ( ¢~s, ¢~s; f;.'t, f;.i) forms ERST quartet. Here <P'~s p- <P~s fl.+ OpcP~s 
and J-l=Ci, 3) (i=O, 1, 2). The subscript "as" has been used to.denote the asymptotic 
fields of the corresponding fields. Noting the absence of ERST singlets in the 
TYMT, we find that, as a result of the Kugo-Ojima quartet mechanism/> the subspace 
C{l={l(])>; QI<P>=O} restricted by the ERST charge Q corresponding to 8 does not 
contain nontrivial states corresponding to observable particles. The same results are 
also shown in the other CTFT's. Thus, from a physical standpoint, it seems that the 
CTFT's are not suitable for description of usual physical phenomena. 

However, as is mentioned in Witten's articles,1)'5> the CTFT's are fit to describe 
an "unbroken phase" in which general covariance and higher gauge symmetries are 
unbroken and hence all of degree of freedom are gauged away.*> Meaningful objects 
in the unbroken phase are topological ones alone. Since the unbroken phase is 
believed to be realized at extremely short distances, it is natural to consider how 
observable particles and local physical degree of freedom arise in a transition from 
the unbroken phase to a physical phase (broken phase) which is described by usual 
field theories. To understand this mechanism, it will be necessary, as a first step, to 
construct a theory that is applicable to both the unbroken and broken phases. 

In the present paper we propose an extended version of the TYMT which, in a 
certain subspace of state-vector space, is a CTFT and which, in another certain· 
subspace, is equivalent to a quantum anti-self-dual Yang-Mills theory, in which the 
Yang-Mills field would satisfy the anti-self-dual equation only on shell.9> (In abelian 
case, we can make an extended version that becomes equivalent to the usual quantum 
Maxwell theory.) The extended topological Yang-Mills theory (ETYMT) may be 
important for construction of a dynamical model that describes, from viewpoint of the 
CTFT, a transition from the unbroken phase to a physical phase (broken phase) 
containing a Yang-Mills field. · 

*> Independent of Witten's works, Shintani has discussed the large distance phenomena of the strong 
interactions on the basis of a certain type of CTFT.8

l 
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An Extended Topological Yang-Mills Theory 59 

Introducing infinite number of fields, we construct the ETYMT. The fields form 
half-infinite chain representation10

> of the BRST algebra that consists of BRST and 
anti-ERST transformations. In field theories studied so far which possess both 
BRST and anti-ERST symmetries,7>'10>-12> the anti-ERST symmetry is only useful to 
discuss technical parts in the theories. However, in the ETYMT, anti-BRST symme
try has essential role, since ERST and anti-ERST transformations in the ETYMT are 
represented in a nonequivalent manner. We can obtain the quantum anti-self-dual 
Yang-Mills theory by virtue of confinement of surplus ghost fields based on the 
anti-BRST symmetry. Of course, the ERST symmetry is important for the ETYMT 
to obtain a topological situation. 

In § 2, we give the classiCal Lagrangian of the ETYMT and,. taking gauge 
symmetries into account, we define ERST and anti-BRST transformations. Introduc
ing additional ERST transformations, we carry out in § 3, gauge fixing for the gauge 
symmetries. In § 4, we classify asymptotic fields following the representation theory 
of the BRST algebra and, using this result, we discuss properties of the ETYMT from 
standpoint of the covariant canonical quantization. The additional remarks are 
given in § 5. 

§ 2. Lagrangian and symmetries 

We begin our discussion with the following Lagrangian: 

where the cp2ms are Q -valued commuting one-forms on M\ and the x-2n-lls Q -valued 
anticommuting self-dual two-forms on M 4

• For the sake of convenience, we may 
hereafter use ¢0 to denote A. The· topological ERST transformation af is defined by 

af¢2n=¢2n+1, af¢2n+1=0, afX-2n-1=ix-2n, afx-2n=O, 

(n=O, 1, 2, 3, ···) (5) 

where the ¢2n+1's are Q -valued anticommuting one-forms and the x-2ms Q -valued 
commuting self-dual two-forms. The superscripts of the fields refer to T ghost. 
numbers of the corresponding fields. Carrying out the topological BRST transforma
tion in (4), we obtain 

_[1 =/gTr[ ~ Xop.vFp.v+ i:
1
X- 2 np.v( Dp.cp~n+ ~ iq ~)¢~\ ¢~<n-i>]) 

(6) 

In addition to af, we also define topological anti-ERST transformation Rf by 

Fr -n _ ~' -n-2 
UTX -uTX . (7) 

Then each of the two sets ¢ms and x-ms forms the half-infinite chain representation10
> 

of the ERST algebra a?= Rf2={af, Rf}=O. We note that although J:1 cannot be 
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60 S. Deguchi 

written in the form of anti-ERST coboundary term, such as K"f ( * ), it is invariant 
under K"f. 

The Lagrangian .£1 is also invariant under the following gauge transformation: 

00 00 

o# x-zn = iq ~ [x-z<n+i> A zi] 
i=O ' ' 

o#x-zn-1 = iq ~ [x-z<n+i)-:1 A zi] 
i=O ' ' 

(8) 

where the A 2ms are Q -valued commuting parameters. We hereafter call the gauge 
transformation o# primary gauge transformation. Furthermore, .£1 is invariant under 
the following gauge transformation generated by Q -valued anticommuting parame
ters A zn+I's: 

n 
o~¢zn+1 = DA zn+1 + iq ~ [ ¢u A zcn-i)+1] 

i=1 ' ' 

(9) 

The transformation o~ arises in association with the primary gauge transformation, 
and we call o~ secondary gauge transformation. As is done in the TYMT,. we modify 
the topological ERST transformation so as to include the primary and secondary 
gauge transformations. This is achieved by combining 81: and ERST transforma
tions which are obtained by replacing the each parameter An of the gauge transforma
tions o# and o~ with a Q -valued zero-form ¢n+~. Here ¢2n+I's are anticommuting and 
¢2<n+l)'s are commuting zero-forms. As a result, we have the "modified" topological 
ERST transformation 

The topological ERST transformation of ¢n+I's is determined to be 

We define "modified" topological anti-ERST transformation K"T by 

K"T¢0 = K"T¢ 1 =0, 5"T¢n+2 =8T¢n, K"Tx-n=8TX-n-z, 

(10) 

(11) 
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An Extended Topological Yang-Mills Theory 

The transformation rules (10) "'(12) satisfy the ERST algebra 

al= 5l={aT, tfT}=O. 

61 

(13) 

Even though af in (4) is replaced with aT, the Lagrangian ..£ 1 itself does not 
change; ..£ 1 can be written as 

Clearly, ..£ 1 is invariant under aT. The invariance of ..£ 1 under aT can readily be seen 
by rewritting ..£ 1 as 

where x'0=-iaTx-1
• The Lagrangian ..£1 includes the first term of ..£TYMT, 

-ijgaTr[(1/2)xttvpttv]. The ERST transformation rules of A, ¢\¢}and¢} in (10) 
and (11) are the same as in (2). From these facts, we can regard our theory as an 
extension of the TYMT. 

§ 3. Gauge fixing 

In order to quantize our theory, we have to carry out gauge fixing for the primary 
and secondary gauge transformations. After determination of gauge conditions, we 
choose between the following two methods to construct gauge fixing terms: 
(i) Introducing antighosts and multiplier fields, we construct a gauge fixing term in the 

, form of topological-ERST coboundary term. (ii) Introducing a new ERST transfor
mation, new ghosts, anti-ghosts and multiplier fields, we construct a gauge fixing term 
in the form of coboundary term with respect to both the topological and new ERST 
transformations. The method (i) has been used in Ref. 6). The method (ii) is the 
procedure that Horne has proposed to fix the Yang-Mills gauge symmetry in the 
TYMT.13> (In § 1, we have used the method (i) for simplicity.) In this section, we 
apply the method (ii) to both of the primary and secondary gauge transformations, 
since the use of (ii) is .essential to our discussion, as we will see in the next section. 

(I) Gauge fixing for the secondary gauge transformation 

Let us introduce new ERST transformation as and {1 -valued commuting zero
forms y2n+1's, f-2n-1's and /3-2<n+1>'s, and Q -valued anticommuting zero-forms r2<n+1>'s, 
f- 2<n+l>'s and /3-2n-1's. We call as secondary ERST transformation. We assign S 
ghost numbers 1, -1 and 0 to rn+1's, f-n- 1's and 13-n-11s, respectively, ~hile to the first 
stage fields, namely ¢ms, x-ms and ¢n+1's, ·We assign S ghost number zero. The 
secondary BRST transformation of the first stage fields is given by 
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(16) 

Here we have defined 8s¢n and 8sx-n by replacing the each parameter A zn+
1 of the 

secondary gauge transformation with the new ghost y2n+I, and hence the Lagrangian 
J: 1 is invariant under 8s. The second stage fields, namely yn+

1's, y--n-bs and 13-n-bs, 
obey the following transforma,tion rules: 

8s r-2(n+1) =- i/3-2(n+1) ' 

The topological BRST transformation of the second stage fields is defined by 

so --2(n+1) _ • --zn-1_ • ~ { --2(n+ i+1) A,2i+1} 
uT r - z r zq "'-.! r , 'P , 

i=O 

8T/3-2n-1 = q ~ ( _ i{/3-Z(n+i)-I, ¢2i+1} + [/3-Z(n+i+l), ¢2(i+1)]) , 
i=O 

(18) 

with which we define the topological anti-ERST transformation of the second stage 
fields by 

(19) 

The transformation rules (18) and (19) satisfy the ERST algebra (13). We can verify 
the relations 

(20) 

for all the first and second stage fields. 
Now we choose a gauge fixing term for the secondary gauge transformation at 

so that it, as one of gauge conditions, gives the gauge condition fD .u¢1.u=o derived from 
(3), and so that it remains invariant under the (anti)ERST transformations 8T, 8T, and 
8s. Such a gauge fixing term is indeed given by 

(21) 

The invariance of J: 1 under at is broken by adding .£ z to .£ 1. Carrying out the ERST 
transformations in (21), we obtain 
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It should be noted that .£ 2, as well as J: 1; does not contain c/J2n+1's and is invariant 

under the primary gauge transformation a# defined by (8) and 

00 

~A --2n-1_ · "'i:'l[ --2(n+i)-1 A2i] 
up r - zq LJ r , , 

i=;O 

a# p-2<n+l) = iq ~ [p-2<n+i+1), Au] . 
i=O 

(23) 

From this fact, .£1 + .£ 2 is a "basic" quantity in the sense of a certain basic co

homology/4)'15) which is important for examining non-triviality of observables (and 

topological invariants) in the ETYMT. 
The gauge fixing term .£2 can be written as 

_[ 2=-;gas Tr[iy'-19) .u¢1P + cfT{ iJ y--2n(g> .u¢2n+lP + iq ± [ ¢~i, ¢2(n-i)+1.U])}] ' 
n=1 i=1 

where y'-1 =- iaT y-2. From (24), we see that .£ 2 is invariant under cfT. 

(II) Gauge fixing for the primary gauge transformation 

(24) 

As is done in (I), we introduce new ERST transformation aP and Q -valued 
commuting zero-forms c2n+1's; c-2n-1's and b-2ms, and Q -valued anticommuting 
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64 S. Deguchi 

zero-forms e2ms, c-2ms and b-2n-lls. We hereafter call Op primary ERST transforma
tion. We assign P ghost numbers 1, -1 and 0 to ems, z;-ms and b-ms, respectively 
and assign S ghost number zero · to them. The first and second stage fields are 
assigned zero P ghost number. The primary ERST transformation of the first and 
second stage fields is defined by replacing the each parameter A 2n of the primary 
gauge transformation with the new ghost e2n. We thus have . 

and 

00 

~ --2n-l_ · ~ [ --2(n+i)-l 2i] up r - zq "'-.! r , e , 
i=O 

(26) 

Here 8P¢2
n+I has been modified by adding - ie2

n+l to the original one.· It is evident 
that ':..f 1 and ..f 2 are invariant under 8p. The third stage fields, namely ems, e--ms and 
b-ms, obey the following transformation rules: 

~ --2n_ 'b-2n upe -z , ~ --2n-l_ b-2n-l upe -- , (27) 

The topological ERST transformation of the third stage fields is defined by 

~ --2n_ 0 UTe - ' 

~ --2n-l --2n 
UTC = c ' 

~ b-2n-l = 'b-2n UT . Z , (28) 

with which we define the topological anti-ERST transformation of the third stage 
fields by 

(29) 

In addition, we set 

(30) 

The transformation rules (28) '""'(30) then satisfy the relations (13) and (20). We can 
verify the relations 
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(31) 

for all the fields. As a result, the (anti)BRST transformations 8T, aT, 8s and 8p are 
off-shell nilpotent and anticommute one another. 

As a gauge fixing term for the primary gauge transformation, we take 

(32) 

so as to obtain the Landau gauge condition 17 ~t.t=O. After being carried out the 
ERST transformations, .£3 is written as 

..[ 3 = Ji ~ Tr[ _ b-2n17 t.tcf2nt.t _ ib-2n-117 t.tcf'2n+lP. 
n=O 

with 

Similar to .£1 and .£ 2, .£ 3 can also be written as 

..[ 3 = i/"i ap Tr[ col7 t.tcfOt.t + aT{~ c;-2n+l[7 t.tcf2nt.t}] . 
n=l 

(34) 

We easily find that .£ 3 is invariant under all the (anti) ERST transformations. The 
invariance of .£1 + .£ 2 under the primary gauge transformation is broken by adding 
.£ 3 to .£1 + .£ 2, and hence we can take the total Lagrangian 

.£=.£1 +.£2+.£3 (35) 

as a Lagrangian for quantum theory. 
The total Lagrangian .£ never yields the Yang-Mills equation of A. If 

.£4=-i/"iRTTr[ ~ x'ot.tvx;J ]=JiTr[ ~ x'ot.tvx'~v] (36) 

is added to.£, we can derive from it the Yang-Mills equation after the elimination of 
x'0• However, although .£4 is invariant under 8T, aT and 8s, it is not invariant under 
8P except for the abelian case G=[U(l)]m. For this reason, the use of .£+.£4 is not 
allowed in the case with non-abelian gauge group. 

§ 4. Classification of asymptotic fields and properties of the theory*> 

In a field theory having the ERST symmetry, any asymptotic field is classified into 
ERST-singlet or ERST-doublet according to its BRST transformation property.7>'10> 

*> In this section, we specialize M 4 to an asymptotically flat manifold in order to treat asymptotic fields 
as free fields. 
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It is reasonable to assume that the asymptotic fields are governed by the quadratic 

part of the Lagrangian of the theory.*> If gauge fixing has been completely done in 

a ERST invariant manner, there necessarily exists a ERST-doublet FP-conjugate to 

every ERST -doublet. We can find from the quadratic part of Lagrangian which two 

ERST-doublets constitute FP-conjugate pair called ERST-quartet. In what follows, 

we denote ERST-quartet as (p, d; p', d'), where P and p' (d and d') stand for parent 

fields (daughter fields), and two doublets (p, d) and (p', d') constitute a FP-conjugate 
pair. 

In our theory, the Lagrangian for the asymptotic fields is given by 

00 

r - ""0 Tr[x-znt-tv :1 ,,,zn + z·x-zn-1t-tv :1 ,,,,2n+1_ z·:1 p-2n-1 :lt-t,..!.2n+1 
..L quad- ~ as Ut-t'f'as v as Ut-t'f' as v Ut-t as U 'f'as 

n=O . 

+ ,f,2n :lf-lb-2n- z",f,t2n+1 :lf-lbt-2n-1 + z":l c--2n :lt-tc2n 'f'as pU as 'f' as t-t u as Ut-t as u as 

_ :1 --2n-1 :lf-1. 2n+1] UpCas u Cas , (37) 

where ¢'~~1}- ¢~~1}+ at-t¢~~+ 1 and b';;;n-1= b;;}n-1 + j3;}n-1. From 8T in the q=O case 

and .£quad, we find that, in the Lorentz frame Pt-t=CIP31, 0, 0, P3), ( ¢~~ i, ¢'~~~1 ; x-;;;~3\ 

X-2~ ) (,f,2n ,f,t2n+l. b'-2n-1 b-2n) (...!.2n+1 ,..!.2(n+l). p-2(n+l) p-2n-1) ('Y2n+1 'Y2(n+1). ;y--2(n+l) as z3 , 'f' as 3, 'f' as 3 , as , as , 'f'as , 'f'as , as , as , 1 as , 1 as · , 1 as , 
f;;s2n-1) and (c~~, d~+1 ; c;;s2n-1, c;;fn) are ERST-quartets with respect to 3T. Here f-L 

=(i, 3) (i=O, 1, 2). We note that there exist no ERST-singlets with respect to 8T. 
From aT in the q =0 case and .£quad, we find that ( ¢~~ntl), ¢'~~~\ x;;f~3\ x-;;;~1§+ 1 >), ( ¢~~n:Jl), 
,f,t2n+l. bt-2n-1 b-2(n+1)) (...!.2n+3 A,.2(n.+1). p-2(n+1) p-2n-3) ('Y2n+3 v2(n+1). ;y--2(n+l) ;y--2n-3) 'f' as 3 , as , as , 'f'as , 'f'as , as , as , . 1 as , 1 as , 1 as , 1 as 
and (c~~n+l), c~~+ 1 ; c;;szn-I, c;;s2<n+~>) are ERST-quartets with respect to aT and that ¢~s t-t, 

X~s i3, ¢~s, "/~s, r;}, f3;;s\ Cgs, Cgs and bgs are ERST-singlets with respect to aT. Similary, 
we find that (¢~i\ r~s+l; r;;sn-1

, /3-;;sn-1) are ERST-quartets with respect to 8s and that 

¢~~ f-1 ¢'~~~;}, x;;sni3, C~s, c;;sn, b;;;n and b';;;n-1 are ERST-singlets with respect to 3s. We 

also find that(¢~~ L, c~~; c;;s2n, b;;s2n) and (¢~~+1, c~~+\ c;;;n-~, b;;s2n-1) are ERST-quartets 

With respeCt to 8P and that ¢~~ T, ¢~~ s, ¢~~j}, X;_sn i3, cP~~n+l), "/:fs+I, f;;sn-1 and /3-;;sn- 1 are 

ERST-singlets with respect to 8P. Here the subscripts L, T and S stand for the 

longitudinal, transverse and scalar components, respectively. Taking into account 

the following constraints in the phase space: 

(7r¢o)~s a.£ quad 0 (Jrxo)~~ 
a.£ quad 

0 ' acao¢gsi) Xas Oi , acaoxgsoi) 

( )as- a.£ quad 
JrbO a( ao bgs) ¢~so, ( )as- a.£ quad 

7Z"¢0 0 a( ao ¢gso) 0, (38) 

we conclude that the genuinely independent ERST-singlets with respect to all of aT, 
8s and 8P are only the transverse components of Yang-Mills field Aas T ( = ¢~s T). 

Let us consider the following two subspaces of state-vector space: -

CV1 ={I@); QTI @) = QTI (J)) = Qsl (J)) = Qpl (J)) =0} , 

CV2={I (})); QTI @) = Qsl (J)) = Qpi (J)) =0} , 

~) We assume that all relevant fields have their own asymptotic fields. 

(39) 
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where QT, QT, Qs and Qp are the ERST charges corresponding to aT, aT, 8s and 8P, 
respectively. The each (anti)ERST charge Q* generates the corresponding (anti) 
BRST transformation 8*: 

(40) 

We assume here that IO>ECV1 and IO)'ECV2. (The vacuum IO>' may be different from 
the vacuum IO>.) As a result of the Kugo-Ojima quartet mechanism7

)'
10) based on the 

subsidiary condition QTI(J)>=O,*) all elements of CV1 are degenerate with the vacuum 
IO>, since there are no ERST-singlets with respect to 8T; the subspace CV1 does not 
contain nontrivial states corresponding to observable particles. On the other hand, 
the subspace CV 2 contains nontrivial states that are constructed by applying the 
creation operators of Aas r to IO>'. The other independent states in CV2 are degener
ate with the vacuum IO>' owing to the quartet mechanism based on the subsidiary 
conditions defining CV 2. Hence, except zero norm parts, the subspace CV 2 has the 
same structure as the physical subspace of the usual quantum Yang-Mills theory. 

From (14), (21), (32), (39) and (40), we find that the total Lagrangian .£ is 
equivalent to zero in the subspace CV1: <(J)1I.£I ?Pi)=O for any I(J)1), I W1)ECV1, while, 
from (i5), (24), (34), (39) and (40), we find that.£ is equivalent to /9Tr[(1/2)x'0P

21F.uv] 
in the subspace CV2: <(J)2I.£I W2>=<(J)21/9Tr[(1/2)x'0.uvF.uv]llJJ2> for any l(j)2), I W2)ECV2. 
Thus, the ETYMT based on .£ becomes a CTFT or a theory equivalent to a quantum 
anti-self-dual Yang-Mills theory· according as the subsidiary condition QTI (J))=O is 
imposed or not, in addition to the subsidiary conditions QTI(J)>=Qsi(J)>=Qpi(J)>=O. · 
As for the abelian case, we can adopt .£ + '.£ 4 as an invariant Lagrangian. It is 
obvious that .£ + .£ 4 is equivalent to zero in CV 1 and is locally equivalent to 
/9Tr[( -1/ 4)F.uv Fpv] in CV 2: < (1)21(.£ + .£ 4)1 W2> = < (J)2I /9 Tr[ (1/2) x'o.uv(Fpv +(1/ 4) 
x'~v)]IW2>~<(J)21/9Tr[(-1/4)(FPliF.uv+F,UliFpv)]llJJ2> for any 1(1)2), llJJ2>ECV2, where F 
is the dual of F. Thus, in the abelian case, we can derive the usual quantum Maxwell 
theory. 

§ 5. Remarks 

We found that the ETYMT with the sqbspace CV1 becomes equivalent to the 
quantum anti-self-dual Yang-Mills theory (or the quantum Maxwell theory) when the 
subsidiary condition QTI (J) > = 0 is removed from the conditions defining CV 1. Then, on 
the basis of the ETYMT, we may construct a model that describes, from viewpoint of 
the CTFT, a transition from a topological phase (unbroken phase) having no local 
physical degree of freedom to a physical phase (broken phase) characterized by the 
quantum anti-self-dual Yang-Mills theory (or the quantum Maxwell theory). A 
mechanism by which breaking of the topological ERST symmetry occurs, while 
maintaining the other (anti)BRST symmetries, will be important for the transition.**) 

The energy-momentum tensor, T.uv, derived from .£ (or .£ + .£ 4) is written in the 
following forms: 

*) We assume the asymptotic completeness.7l 

**) The breaking of BRST symmetry has been discussed in relation with the Gribov problem16l and 
non-triviality of observables in the TYMT.17l 
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Tpv={ QT, Apv}= lpv+{ QT, Apv}, (41) 

where Apv and XPv are certain anticommuting tensors. From (39) and (41), we have 

<a>1l Tpvl ?JT1>=0 and <a>zl Tpvl Wz>=<a>zltwl ?P"z). Since tpv depends on the background 

metric gpv, the energy-momentum tensor TPv gets the metric dependence as a result of 

the transition. Similar results are- also shown for other conserved quantities. , 

As mentioned already, we cannot take.£ +.£4 as an invariant Lagrangian in the 

nonabelian case. However, application of the· method (i) in § 3 to the primary gauge -

transformation enables us to construct an invariant Lagrangian such as.£'=.£ 1 + .£4 

+(gauge fixing terms) even in non-abelian case, since the primary ERST transforma

tion is not necessary in the application of the method (i). Unfortunately, there exists 

no appropriate subsidiary conditions defining a subspace of state-vector space in 

which the ETYMT based on.£' can be identified with the quantum Yang-Mills theory. 

The following procedure may be appropriate to obtain an ETYMT which can be 

equivalent to the quantum Yang-Mills theory without constraints: We first construct 

an extended abelian cohomological topological gauge theory in a higher dimension so 

that it, in a subspace of state-vector space, becomes equivalent to the usual abelian 

gauge theory. Fixing the spacetime 'topology on M4 X EN, we next carry out the 

Kaluza-Klein like dimensional reduction for the extended theory. Here EN is a 

symmetric space. Then we will be able to obtain an ETYMT in M4 whose non

abelian gauge symmetry is due to the symmetry of EN. 
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