
An Extensible Modeling Language

for the Representation of Work Processes
in the Chemical and Process Industries

Ri Hai, Manfred Theißen, and Wolfgang Marquardt

AVT – Process Systems Engineering, RWTH Aachen University,
Templergraben 55, 52056 Aachen, Germany

Abstract. Expressive models of the work processes performed in the
chemical and process industries provide a basis for diverse applications
like work process documentation, analysis, and enactment. In this con-
tribution, we present a generic modeling language for different types of
work processes to allow for their integrated representation in the life
cycle of a chemical plant. Further, the generic language allows for ex-
tensions specific to certain types of work processes. For two important
types – design and operational processes – such extensions have been
elaborated. These extensions enable the adequate representation of the
context of a work process that strongly depends on the process type: for
instance, the specification of a chemical plant is a product of a design
process, whereas the plant takes the role of a resource during an opera-
tional process. This contribution also briefly introduces a modeling tool
developed by our group for applying the modeling language in industrial
practice.

Keywords: work process, design process, operational process, process
modeling language, ontology.

1 Introduction

A work process is a collection of interrelated actions in response to an event that
achieves a specific result for the customer of the work process. This definition was
originally proposed by Sharp and McDermott [1] for business processes. How-
ever, the term business process is ambiguous as there are different definitions
in different communities such as in business process engineering (e.g., [2]) or in
workflow management (e.g., [3]). Moreover, the term is typically applied exclu-
sively for work processes which are completely determined and therefore can be
planned in a detailed manner. Examples include the processing of a credit trans-
fer in a bank or of a claim in an insurance company. In consequence, many work
processes in chemical engineering, in particular design processes, are commonly
not considered as business processes. To overcome the ambiguities, we prefer the
term work process as defined above.

In the life cycle of a chemical plant, several types of work processes are per-
formed, including design processes and operational processes. Whereas design

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 655–682, 2010.
� Springer-Verlag Berlin Heidelberg 2010

656 R. Hai, M. Theißen, and W. Marquardt

processes aim at the specification of chemical products, production processes,
or operating procedures for a plant, operational processes target at establishing,
maintaining or preventing certain process conditions during production. Typical
examples of operational processes are the start-up of a continuously operated
plant or the operation of a multi-purpose batch plant. Our research group has
investigated work processes in the chemical industry for more than a decade [4].

An important result of this work is the insight that there is a need for sub-
stantial support for engineers and technicians with a background in chemical
engineering to create simple and informal models of work processes (e.g., oper-
ational procedures for a plant), to enrich these models with further details next
and to finally increase their level of formality (e.g., in order to automate an
operational procedure). We have performed several case studies focusing on the
modeling of both design and operational processes [5,6]. The empirical results
of these case studies have motivated the specification of a modeling framework
comprising

– a modeling procedure as a guide for modelers that need a work process
model for a certain application such as documentation, analysis, or (partial)
automation of a work process [5];

– a modeling language, i.e., a meta-model providing the modeling elements to
represent work processes;

– prototypical modeling tools as a prerequisite for the practical application
and validation of our research results in an industrial environment.

The modeling procedure proposes several iterations with increasing levels of
generality, detail, and formalization, as required by the application. The level of
generality refers to the number of different work processes covered by a model,
whereas the level of detail refers to the amount of information captured. Finally,
the level of formalization refers to the representation of this information (e.g., by
means of textual annotations or by using some model elements with well-defined
semantics). A more elaborated description of the levels of generality, detail, and
formalization has been published elsewhere [8].

The representation of work processes requires an adequate modeling language,
which is the focus of this contribution. In Sec. 2, we discuss the requirements for
such a modeling language. An overview of existing modeling languages as well as
their evaluation with respect to industrial requirements is given in Sec. 3. We will
see that existing languages partially meet the requirements, but none of them, to
our knowledge, satisfactorily fulfills the requirements in a comprehensive man-
ner. The following two sections introduce the Work Process Modeling Language
(WPML), a language developed by our group based on existing approaches such
as the C3 language [5,7,8] and the activity diagram of the Unified Modeling Lan-
guage (UML, [9]). Sec. 4 deals with the behavioral aspect of work processes and
the modeling elements offered by WPML that go beyond existing languages;
these modeling elements are independent of the type of the work process under
consideration. Sec. 5 is about WPML’s support for the functional aspect of work
processes, which is neglected by most existing languages. The function of a work

An Extensible Modeling Language for the Representation of Work Processes 657

process, and consequently the modeling elements required for representing func-
tional aspects, strongly depend on the process type. For two important types of
work processes in chemical engineering, namely design processes and operational
processes, functional modeling elements have been elaborated. An overview on
a prototypical modeling tool is given in Sec. 6.

2 Requirements for a Modeling Language

An adequate modeling language for work processes must fulfill several require-
ments which result not only from the characteristics of the work processes under
consideration, but also from the modeling procedure sketched above. These re-
quirements are discussed in the following.

2.1 Expressiveness

The expressiveness of a modeling language refers to the different aspects of or
views on an object—a work process in our case—that can be represented by
the language. The focus of this contribution is on behavioral and functional
aspects of a work process. Further aspects, such as the actors performing a work
process, the technical resources required for their execution (e.g., see [8]), or the
complex decisions typically involved in engineering design processes [10,11], are
not discussed in this paper.

Behavioral aspects. The focus of most work process models is the representa-
tion of process behavior, i.e., the dependencies between the elementary steps—
called actions in the following—with respect to causal conditions (e.g., if action
A is executed, then action B must also be executed) and temporal restrictions
(e.g., B is executed after A is finished). Existing modeling languages often force
the modeler to create a complete behavior specification from the beginning of
the modeling process.

As an example, we consider Aspen Batch Process Developer [12], an engineer-
ing software tool for the simulation of operational processes in a batch plant. In
industrial practice, this simulation tool is also often used as a modeling tool to
create a first draft of a batch process. At this stage, many details of the batch
process are still undefined. For instance, a chemical engineer may want to pro-
vide the information that a reactor should be charged with two reactants A and
B in a yet undefined order. When creating a model in the tool, the engineer
is forced to specify a certain order because the underlying modeling language
does not allow to omit that information. In consequence, the work process model
is likely to be enriched with uncertain or even accidental content, while other
feasible alternatives are excluded.

During the design of an operational process, incomplete behavior specifica-
tions are useful intermediate steps on the way towards a complete specification,
which is required to realize process automation system and ultimately to operate
a chemical plant. In case of work process models in engineering design, complete

658 R. Hai, M. Theißen, and W. Marquardt

behavior specifications are infeasible in general because design is an inherently
creative process, which cannot be predetermined in principle.

In conclusion, a modeling language has to allow the representation of work
process models with an incomplete behavior specification. In particular, there is a
need for two kinds of abstraction [8]: Structural abstraction refers to the freedom
to omit information about the conditions under which an action is performed,
and temporal abstraction refers to the freedom to omit information about the
temporal relations between actions if they are executed (e.g., by permitting a
partial overlap of two subsequent actions).

Functional aspects. According to the definition of the term work process in the
introduction, the function of a work process is to create a specific result. However,
most modeling languages focus on the behavioral aspect of a work process and
pay little attention to the representation of the function of an entire work process
or of the actions within it. Usually, the functional aspect is exclusively specified
by means of auxiliary constructs such as textual annotations.

Textual descriptions of functional aspects are advantageous in the early stages
of a modeling process because a modeler can phrase a text more easily than
choose a specific modeling concept and insert it into a model. There are also
model applications in which a functional representation beyond textual descrip-
tions does not provide any additional benefit. An example is the model of a
simple operational process for a lab-scale plant, which only serves as a reference
for the operator to execute the process.

However, explicit representations of functional aspects enable more advanced
applications of work process models, including automatic model checks and
model transformations for target applications that strongly depend on func-
tional aspects. Automatic model checks rely on the level of formalization as
discussed below. As for model transformations, we consider the example of an
operational process that includes the heating of some process material. If the
heating function is represented by explicit modeling elements rather than by
ambiguous textual annotations, a transformation of the model into a simulation
model for Aspen Batch Process Developer is possible.1

The function of a work process (or of an action) is typically associated with
certain objects as prerequisites or outcomes; consequently, a complete modeling
of the functional aspect should include these objects (see also [13,14]). To give an
example, the specification of a heating function for an action is rather incomplete
without the specification of the process material to be heated.

2.2 Formalization

A model is formal if it’s semantics is defined by a mathematical formalism.
Formalization refers to the transformation of an informal model into a formal
one. A trivial prerequisite for a formal work process model is a formal modeling

1 The tool does not support an abstract ‘general’ process step, but only concrete types
such as heating and cooling.

An Extensible Modeling Language for the Representation of Work Processes 659

language, where the semantics of the modeling elements are defined formally.
At the same time, a modeling language should not compel the user to a certain
level of formalization. Rather, a set of modeling elements should be provided at
a level of formalization that is imposed by the intended application of the model.
In particular, it should be possible to represent some aspects formally, but other
aspects informally, e.g., by means of simple textual annotations.

Formal representations facilitate advanced applications of work process mod-
els like automatic model checks or the derivation of implicit knowledge from
explicitly defined knowledge. As an example, we reconsider the modeling of a
heating function, which could be defined as a modeling element for a tempera-
ture change resulting in an end temperature higher than the start temperature.
Based on a formal representation of this definition, the automatic detection of a
semantic error in a model with a heating step from 80�C to 60�C is possible. In
a similar way, it could be derived that a temperature change step from 60�C to
80�C is actually a heating step; such derived knowledge would then be available
for applications like model transformations.

3 Modeling Languages for Work Processes

There is a plethora of modeling languages for work processes, and a complete
review of the existing approaches is beyond the scope of this contribution. In-
stead, some representative languages are discussed and evaluated with respect
to the requirements above. First, generic languages are addressed which have
been developed for any type of work process (or at least a wide range of types),
followed by specific languages for operational and design processes.

3.1 Generic Modeling Languages

The activity diagram of UML [9] is probably the best-known graphical model-
ing language for work processes. The language specification comprises typical
modeling elements like actions and control flows as well as concepts to repre-
sent parallel or alternative branchings of the control flow (i.e., split and decision
nodes).2 The behavioral semantics of UML activities is defined by an informal
textual description of the token flow in an activity diagram. Hence, the activity
diagram can be interpreted as a kind of Petri net, but is not formally defined as
such.

2 In addition to the general action element, more specific subclasses are defined in UML
such as CreateObjectAction or WriteVariableAction. Given that UML is rooted in
software engineering, these specific action types are not suitable for the representa-
tion of work processes in chemical engineering. However, usage of the special action
types in UML is not mandatory, and in practice it is restricted to rather advanced
applications like Model Driven Architecture [15], which aims at the automated gener-
ation of code based on UML models. This justifies the classification of UML activity
diagrams as a generic modeling language.

660 R. Hai, M. Theißen, and W. Marquardt

Petri nets are a widely-used family of graphical modeling languages [16,17].
Their strengths include the inherent support of concurrency and resource allo-
cation concepts and the formal mathematical foundation, which eliminates any
ambiguity and allows the application of Petri nets for the automated analysis
and execution of work processes. The direct application of Petri nets to model
complex work processes is often not practical, but they have been applied to
specify the semantics of other modeling languages. Störrle and Hausmann [18],
for instance, propose formal behavioral semantics for (part of) UML activities
by means of a well-defined translation to Petri nets. Furthermore, the semantics
of Yet Another Workflow Language (YAWL, [19]) is based on a direct mapping
of its modeling elements to Petri nets.

The Process Specification Language (PSL, [20]) is an ontology-based language
for the automatic exchange of information about work processes between differ-
ent applications and to enhance their interoperability. The semantics of PSL is
defined explicitly in first order logics. An outline of a formal specification of UML
activities by means of PSL has been published [21] to illustrate its formalization
capabilities.

The graphical representation and semantics of the Business Process Modeling
Notation (BPMN, [22]) are similar to that of UML activity diagrams. Even
though its name suggests a focus on business processes, the language is rather
generic and allows to represent different types of work processes. In particular,
BPMN addresses the creation of process models for workflow execution and
automation; for this purpose mappings from BPMN to executable languages
like the Business Process Execution Language for Web Services [23] or XML
Process Definition Language [24] have been defined [22,25].

IDEF0 of the IDEF family (Integrated Definition Methods, [26]) is also widely
used for work process modeling, especially in the manufacturing domain. IDEF0
contains a set of generic modeling concepts and allows a “structured representa-
tion of the functions, activities or processes within the modeled system or subject
area” [27]. Temporal relations between actions are not included in IDEF0.

Batres and Naka [28] propose a process plant model which can be used to rep-
resent the structure of a plant and the processed material, including its physical
behavior. Further, the process plant model contains a management and opera-
tion ontology which provides concepts such as plan, activity, action or activity-
performer for describing work processes. Although the process plant model is
mainly used for representing operational processes, it can be used to represent
different kinds of work processes. The process plant model is implemented in
a development environment called Ontolingua [29], which enables to define the
semantics of modeling concepts explicitly and formally.

3.2 Specific Modeling Languages for Operational Processes

Currently, diverse modeling languages are used to represent operational pro-
cesses (cf. [30]). These languages can be divided into two groups. The first group
contains generic modeling languages such as Petri nets or UML. The focus of

An Extensible Modeling Language for the Representation of Work Processes 661

this subsection is on the second group, which includes languages developed ex-
clusively or primarily for operational processes.

The IEC 61131-3 standard [31] defines several textual and graphical languages
for the automation of operational processes. These languages are considered
primarily as programming languages rather than modeling languages.

The VDI/VDE 3682 guideline [32] seeks to facilitate the formal representa-
tion of a production process throughout its life cycle. To keep the process rep-
resentations simple and understandable for engineers from different disciplines
as well as for plant operators, the guideline covers only a small set of modeling
elements. Further, this guideline also supports the representation of the objects
involved in a process and their relations by means of UML.

ANSI/ISA-S88 [33] addresses batch process control. The standard defines a
layered structure for physical models of plants, process models, and procedural
control models. Four types of recipes are defined, including general, site, master,
and control recipes. Although the standard itself does not define a modeling
language, it provides a useful frame for representing batch process operations.

Beyond these well established standards, current and recent research efforts
also deal with the representation of operational processes. For example, on the
basis of the ANSI/ISA-S88 standard, Viswanathan et al. [34] propose an ap-
proach for the synthesis of control recipes. The approach enables to capture
the behavioral aspect of an operational process by using Grafchart, a variant of
Petri nets. Moreover, domain specific knowledge about chemical plants, chemical
processes, and operational processes is included.

Gabbar et al. [35] describe a recipe formal definition language (RFDL) to sup-
port the development of operating procedures of chemical batch plants. RFDL
statements are composed of classified keywords, which are linked to domain
knowledge, including knowledge about chemical plants, process materials, and
operational procedures.

3.3 Specific Modeling Languages for Design Processes

The representation of design processes has been an active research area in the
past. Some approaches aim at a framework for analyzing and understanding
design processes (e.g., [36,37]). Other approaches focus on detailed models of
design artifacts to facilitate design processes, but do not directly address the
design process itself [38,39]. Further, there are some guidelines for design pro-
cesses in the domain of chemical engineering (e.g., [40,41]). In the following, some
representative modeling languages for design processes are introduced briefly.

Gorti et al. [42] have developed a generic model for representing domain inde-
pendent design processes. On the one hand, artifacts produced during a design
process can be represented under functional, structural, and behavioral aspects.
On the other hand, design processes can be represented as process objects con-
taining process-related components like goal, plan, or context.

The Knowledge Based Design System (KBDS, [43]) has been developed to
support the design of chemical plants. Based on an exploration-based model of
design and the hierarchical decision procedure of Douglas [41], design processes

662 R. Hai, M. Theißen, and W. Marquardt

are represented as networks of design objectives, alternatives, and models. De-
sign alternatives of chemical plants can be represented on different levels of
detail. Further, design alternatives are related to both the design objectives and
simulation models.

The C3 language (cooperation, coordination, and communication) is a simple
graphical modeling language with a special focus on the requirements imposed
by weakly-structured design processes [5,7,8]. In the interest of high usability,
C3 provides a rather restricted number of modeling elements. However, the user
is free to extend the language if needed. In addition to conventional modeling
concepts for predetermined processes, C3 provides concepts for temporal and
structural abstraction.

CLiP [13,44] is an information model providing a conceptualization of the
domain of chemical process design. Process Models is a partial model of CLiP
covering different types of work processes, such as the development of mathe-
matical models or the design of chemical processes [45]. The model comprises a
meta class layer which provides the concepts required for generalized processes,
and a simple class layer, which enables the representation of more concrete de-
sign processes. Design processes are modeled as iterations of synthesis, analysis,
and decision activities, linked by auxiliary activities [46].

3.4 Evaluation

Several of the modeling languages introduced above enable the representation
of process behavior, but only a small subset provides a formal foundation (Petri
nets, PSL, the languages of IEC 61131-3, and the approach by Viswanathan et
al.). Only C3 supports temporal and structural abstraction, but lacks a formal
definition of these concepts.

The functional aspect of a work process is covered by several approaches
[13,34,28,35,43,44]. Interestingly, most of them also provide a detailed model of
the objects involved in a work process. The approach proposed by Batres and
Naka [28] is the only approach providing a formal specification of the functional
aspect.

In short, the existing approaches are too restrictive with respect to process
behavior, since they do not support behavioral abstraction. On the other hand,
most approaches lack an explicit and formal representation of the functional
aspect of work processes.

4 Behavioral Semantics of WPML

The Work Process Modeling Language WPML has been designed to address
the weaknesses of the existing modeling languages discussed above. The core
of the language provides modeling elements to represent the behavioral aspect
of work processes. This part is independent from any application domain; simi-
lar as UML acitivy diagrams, it contains generic concepts to represent actions,
decisions, concurrency, etc., which are required for any type of work process.

An Extensible Modeling Language for the Representation of Work Processes 663

As argued above, functional modeling is required for diverse applications. Ex-
pressive functional models are domain-specific (e.g., the function to heat some
material in a chemical plant). Thus, the domain-independent core of the lan-
guage does not consider functions beyond the trivial aspect that an action in a
work process serves to fulfil one or several functions.3 Instead, WPML can be
extended with domain-specific modules that enable functional models with the
expressiveness required by an application. This section focuses on the domain-
independant behavioral semantics of WPML. Two examplary domain-specific
extensions are discussed in Sec. 5.

Both the WPML meta model (i.e., the domain-independent core and optional
domain-specific extensions) and WPML instance models (i.e., the work process
models created by a user) are represented in the Web Ontology Language OWL
[47]. OWL is a language for knowledge representation with a formal foundation
in the domain of description logics [48]. So-called reasoners (e.g., Pellet [49]) can
be used to exploit the formal definition of the language for applications like con-
sistency checks for work process models or to derive implicit knowledge (which,
for instance, substantially reduces the effort to implement the transformation of
models into other formats [50]). In the following, we will use a notation similar
to that of UML class diagrams to represent parts of WPML although there are
important differences between the semantics of OWL and that of UML.

4.1 Basic Elements of WPML

One goal of WPML is to give a formal definition of several behavior-related
concepts of the C3 notation for cooperative work processes, which have proven to
be valuable in several academic and industrial case studies [5,6], but that suffer
from their ambiguous semantics. An informal description of WPML has been
published elsewhere ([8], called Process Ontology there), including a discussion of
its capabilities with respect to temporal and structural abstraction. The following
discussion focuses on the formal specification of process behavior. It is restricted
to a simplified subset of WPML, which nevertheless demonstrates the basic idea
of the chosen approach. A more detailed introduction to WPML can be found
in [50]. In addition, a complete specification of the language is in preparation; it
will also cover the roles by which actions are executed, the objects produced or
consumed in actions, and the object flows that link actions with objects.

In Fig. 1 the basic structure of a WorkProcessModel in WPML is shown.
It is a graph that isComposedOf WorkProcessElements, i.e., WorkProcessNodes
and WorkProcessArcs. Each arc is from exactly 1 WorkProcessNode to exactly 1
WorkProcessNode4. The only subclass of WorkProcessArc discussed here is the
ControlFlow. Table 1 lists several concrete subclasses of WorkProcessNode and

3 To a certain extent, functions could be represented on a domain-independent, but
very abstract level (e.g., production, transformation, or consumption of material or
information).

4 The notation used in Fig. 1 and Table 1 (e.g., from exactly 1) is the Manchester OWL
Syntax proposed in [51] as a human-readable alternative for OWL class expressions.

664 R. Hai, M. Theißen, and W. Marquardt

WorkProcessModel

WorkProcessNode

WorkProcessElement
isComposedOf

to

WorkProcessArc
from exactly 1
to exactly 1

from

ControlFlow

Fig. 1. The basic elements of a WorkProcessModel in WPML

ControlFlow. For the nodes, restrictions for their connection by ControlFlows are
given; for instance, an Action must be the origin of exactly one ControlFlow (it
must be the from node of exactly 1 ControlFlow), and a final node must not be
the origin of a ControlFlow.

4.2 An Introductory Example

Figure 2 shows an example of a simple WorkProcessModel in a graphical notation
similar to that of UML activities (the symbols for nodes and arcs are given in
Table 1). The model describes the development process for chemical processes
in an R&D department on a very coarse-grained level. The first Action a1 is to
create a block flow diagram (BFD), a schematic representation of a chemical
process. In a BFD, blocks or rectangles represent the unit operations or groups
of unit operations in the chemical process. Next, more detailed process flow
diagrams (PFD) must be made for the different parts of the BFD. This can
either be done by a contractor or in the same R&D department. For the former
case, only a single Action a2 (Outsource PFD creation) is given; further details
on how the PFDs are created are left to the contractor. For the latter case, two
Actions explicitly require that a PFD for the reaction unit (a3) and another PFD
for the separation unit (a4) are created.

In WPML, like in other flow diagrams such as UML activity diagrams, a
ControlFlow between two Actions expresses a causal dependency (if the first
Action is executed, then also the second one must be executed). Conventional
languages only include a single control flow, which, in addition to the causal
dependency, expresses a temporal dependency (when the first Action is finished,
the second starts5). This is often an unacceptable restriction for models of design
or development processes. To this end, there are several types of ControlFlows
in WPML, each resulting in different temporal relations between the Actions
connected by a flow. In Fig. 2, two different types of control flows are used.
The StrictControlFlow is the WPML equivalent of conventional control flows,
which require the previous action to be completed before the subsequent action
starts; it is drawn as a simple directed arrow. The OverlappingControlFlow allows

5 It is often ill-defined whether the second Action must start immediately or whether
there may be a temporal gap between the Actions.

An Extensible Modeling Language for the Representation of Work Processes 665

Table 1. Concrete subclasses of WorkProcessNode (first section) and WorkProcessArc
(second section)

Class Symbol Restrictions

Action
inv(from) exactly 1 ControlFlow and
inv(to) exactly 1 ControlFlow

InitialNode
inv(from) exactly 1 ControlFlow and
inv(to) exactly 0 ControlFlow

FinalNode
inv(from) exactly 0 ControlFlow and
inv(to) exactly 1 ControlFlow

DecisionNode
inv(from) min 2 ControlFlow and
inv(to) exactly 1 ControlFlow

MergeNode
inv(from) exactly 1 ControlFlow and
inv(to) min 2 ControlFlow

ForkNode
inv(from) min 2 ControlFlow and
inv(to) exactly 1 ControlFlow

JoinNode
inv(from) exactly 1 ControlFlow and
and inv(to) min 2 ControlFlow

StrictControlFlow

OverlappingControlFlow

a1
Create BFD

a3
Create PFD
(reaction unit)

a2
Outsource
PFD creation

a4
Create PFD

(separation unit)

Fig. 2. A simple WorkProcessModel

a subsequent Action to begin while the preceding Action is still executed; it is
drawn as a directed arrow decorated with a tilde symbol (~).

This way, the semantics of WPML separates causality from temporal relations.
Causality refers here to the necessary and sufficient conditions for executing an
Action. Causality is treated similarly in WPML and in UML activity diagrams.

666 R. Hai, M. Theißen, and W. Marquardt

The causal relations between the Actions in the example model are equivalent
to those in the UML activity diagram we would get if we replaced the special
WPML control flows by the standard UML control flow: If the entire work
process is executed, then a1 is executed. If a1 is executed, then either a2 or
both a3 and a4 are executed.

The admissible temporal relations are indicated by the different types of con-
trol flows in WPML. Above, we have stated that a ControlFlow restricts the
temporal relations between Actions connected by the flow. Note that the Over-
lappingControlFlows in the example do not directly connect Actions, but also
control nodes such as the DecisionNode or the ForkNode. However, each Over-
lappingControlFlow is part of one or several control flow paths between Actions.
For instance, the OverlappingControlFlow between a1 and the DecisionNode is
the start of a path of two control flows from a1 via the DecisionNode to a2; the
second control flow is a StrictControlFlow. The temporal restriction between a1
and a2 is defined as the more restrictive one of the two control flows in the path,
i.e., the StrictControlFlow. Hence, the model contains the statement that if a1
and a2 are executed, i.e., if the PFDs are created by a contractor, then there
must be no temporal overlap with the creation of the BFD. Given the obstacles
of concurrent engineering across organizational boundaries, this is a reasonable
restriction.

We get similar statements for the other control flow paths starting at a1: If
a1 and a3 are executed, i.e., if the PFD for the reaction unit is created in-house,
then there may be a temporal overlap—because the most restrictive control flow
is an OverlappingControlFlow. Likewise, if a1 and a4 are executed, then there
may also be a temporal overlap.

This example demonstrates the capibility of WPML for temporal abstraction:
Whereas causal relations between the Actions are represented similar as in other
languages, the temporal relations offered by WPML go farly beyond these lan-
guages. As for structural abstraction, WPML provides a blob element, which
basically specifies a set of Actions and includes constraints for their occurrences
(e.g, at least 2 and at most 3 of the Actions must occur). For further details on
blobs, see [7,8].

4.3 Basic Principles of the Formal Specification of WPML

The complete formal specification of the behavioral semantics of WPML is be-
yond the scope of this contribution. Instead, we describe the basic principles of
the specification, which are based on a combination of Petri nets and axioms
in first-order logics. As the semantics of the different variants of Petri nets are
typically defined in a formal way, it should be possible to create a formal speci-
fication of WPML based exclusively on logical axioms6. However, this is not the
6 A WPML semantics based solely on first-order logics would be similar to the ap-

proach of the Process Specification Language [20]. It may even be possible to define
WPML using PSL, but several concepts of WPML—in particular the idea of over-
lapping control flows—have no equivalent in PSL and, in our opinion, this task would
require substantial extensions or even modifications of several parts of PSL.

An Extensible Modeling Language for the Representation of Work Processes 667

a1

a2 a3 a4

f

j

Fig. 3. State-transition net corresponding to the WPML model in Fig. 2

focus of our work; we are mainly interested in an application-oriented way to
give a precise definition of WPML.

By an approach similar to that of Störrle and Hausmann [18] for UML activ-
ity diagrams, a mapping from WPML models to Petri nets is defined. The Petri
net dialect chosen is the colored hierarchical Petri net as defined by Jensen [17].
To simplify the presentation in this overview, we use a simple state-transition
net here. The state-transition net corresponding to the WPML model in Fig. 2
is shown in Fig. 3: Each Action is transformed in a transition (denoted by a1,
. . . , a4). The DecisionNode has become a place with several outgoing arcs, the
MergeNode node a place with several incoming arcs. Finally, the ForkNode and
the JoinNode are transformed in auxiliary transitions (f, j). It can easily be ver-
ified that the net represents the causal dependencies of the Actions as discussed
above: The topmost place, representing the StartNode of the WPML model, con-
tains a single token. The only active transition is a1; the firing of the transition
represents an execution or occurrence of Action a1. Then both transitions a2
and f are active. The case that a2 fires is interpreted as an occurrence of a2.
Alternatively, f can fire, which will eventually lead to the firing of both a3 and
a4 (in an undefined order).

The semantics of temporal relations is not involved in the Petri net translation
and, in particular, the order in which transitions in the Petri net fire must
not be interpreted as the order in which Actions occur. Instead, an approach
based on axioms in first-order logics is used. These axioms impose restrictions
on auxiliary objects called WorkProcessOccurrences, which can be interpreted
as traces of the transitions fired in the Petri net. Like WorkProcesses, Work-
ProcessOccurrences are graphs composed of elements like ActionOccurrences and
DecisionOccurrences7. An ActionOccurrence has two functional properties start

7 It is essential to distinguish between the modeling elements in WPML, e.g., Action,
and the auxiliary objects, e.g., ActionOccurrence. In more complex work processes
than in the example discussed here, there may be several occurrences of the same
element in the model, for instance several occurrences of a single Action in a loop.

668 R. Hai, M. Theißen, and W. Marquardt

and end, whose range is TimePoint. The concept of TimePoints has been adopted
from PSL [20]; here, the existence of a strict total order before TP on TimePoints
is essential. We require that for any ActionOccurrence, its start must be before TP
its end.

In Fig. 4, several examples of WorkProcessOccurrences are given. wpo1 is com-
posed of a StartOccurrence, two ActionOccurrences ao1 and ao2, an EndOccur-
rence, and three StrictControlFlowOccurrences. To simplify the presentation, the
TimePoints are represented as integers, and we assume that the before TP or-
der is isomorphic to the smaller-than relation of their integer representations
(i.e., 2 before TP 4, . . .). Hence, the ActionOccurrences in the figure respect the
condition introduced above (start before TP end).

ao1
start: 2
end: 4

ao2
start: 5
end: 7

ao1
start: 2
end: 4

ao2
start: 5
end: 7

ao1
start: 2
end: 4

ao2
start: 3
end: 5

ao1
ao2

=

wpo1 wpo2 wpo3

order of TimePoints

 start of an
ActionOccurrence

end of an
ActionOccurrence

ao1
ao2

order of TimePoints

Fig. 4. Graphical depiction of three WorkProcessOccurrences. wpo1 is invalid because
neither of the conditions ao1 before ao2 or ao1 meets ao2 holds. wpo2 and wpo3 are
valid.

We can easily define thirteen relations between ActionOccurrences in an anal-
ogous manner to the time interval relations by Allen [52]. For instance, an Ac-
tionOccurrence ao1 meets an ActionOccurrence ao2 iff the end of ao1 and the start
of ao2 are equal,

∀ao1 , ao2 : ActionOccurrence(ao1) ∧ ActionOccurrence(ao2)
⇒ (meets(ao1 , ao2) ⇔ end(ao1) = start(ao2)) ,

An Extensible Modeling Language for the Representation of Work Processes 669

and similarly

∀ao1 , ao2 : ActionOccurrence(ao1) ∧ ActionOccurrence(ao2)
⇒ (before(ao1 , ao2) ⇔ before(end(ao1), start(ao2))) ,

∀ao1 , ao2 : ActionOccurrence(ao1) ∧ ActionOccurrence(ao2)
⇒ (overlaps(ao1 , ao2) ⇔ before(start(ao1), start(ao2))∧

before(start(ao2), end(ao1))∧
before(end(ao1), start(ao2))) .

The temporal relations imposed by the different ControlFlows are defined by
axioms which restrict the valid time relations between the ActionOccurrences
connected by their corresponding ControlFlowOccurrences. In case of a Con-
trolFlowOccurrence of a StrictControlFlow between two ActionOccurrences ao1 and
ao2, we require that ao1 must be before ao2 or that ao1 meets ao2, i.e.

∀cfo, cf , ao1 , ao2 :
StrictControlFlow(cf) ∧ ControlFlowOccurrence(cfo)
∧ occurrenceOf(cfo, cf)
∧ ActionOccurrence(ao1) ∧ ActionOccurrence(ao2)
∧ from(cfo, ao1) ∧ to(cfo, ao2)
⇒ before(ao1 , ao2) ∨ meets(ao1 , ao2) .

In wpo1 (Fig. 4), there is a single ControlFlowOccurrence cfo for which the
premises of this axiom can be applied, i.e., the ControlFlowOccurrence between
ao1 and ao2. Thus, we require that ao1 is before ao2 or ao1 meets ao2. As neither
relation holds, the axiom is violated and wpo1 is invalid. In contrast wpo2 is valid,
because ao1 before ao2.

The semantics of an OverlappingControlFlow is defined by an axiom analog to
that of the StrictControlFlow, but where the time relation overlaps is allowed in
addition to before and meets. Hence, wpo4 (Fig. 5) is invalid, because ao3 starts
before ao1. wpo5 is valid because all axioms are respected.

So far, the semantics of ControlFlows has only been defined if their occur-
rences are from and to an ActionOccurrence. Other possibilities are reduced to
this case. As an example, consider wpo3 in Fig. 4, which contains a path of two
ControlFlowOccurrences from ao1 via a DecisionOccurrence to ao2. By definition,
this path is equivalent to the most restrictive single ControlFlowOccurrence, i.e.,
an occurrence of a StrictControlFlowOccurrence in this example. Hence, wpo3 is
equivalent to wpo2 and thus valid. In a similar way, wpo6 in Fig. 5 is equivalent
to wpo5 and also valid. In general, the most restrictive one of a set of Con-
trolFlows is the ControwFlow that allows all time relations allowed by each single
ControwFlow, and no further time relations.

Note that wpo3 and wpo6 directly correspond to the example model in Fig. 2.
wpo3 represents the case that a1 and a2 are executed, and it gives some valid
(but still arbitrary) values for the start and end of the ActionOccurrences. wpo6

670 R. Hai, M. Theißen, and W. Marquardt

ao1
start: 2
end: 5

ao3
start: 1
end: 6

ao4
start: 4
end: 7

ao1
start: 2
end: 5

ao3
start: 3
end: 6

ao4
start: 4
end: 7

ao1
start: 2
end: 5

ao3
start: 3
end: 6

ao4
start: 4
end: 7

=

wpo4

=

ao1
ao3

order of TimePoints

ao4

ao1
ao3

order of TimePoints

ao4

wpo5 wpo6

Fig. 5. Graphical depiction of three WorkProcessOccurrences. wpo4 is invalid because
neither of the conditions ao1 overlaps ao3, ao1 before ao3, or ao1 meets ao3 holds. wpo5
and wpo6 are valid.

represents the case that a1, a3, and a4 are executed. The structure of both wpo3
and wpo6, excluding the time values, can be derived by means of the Petri net
in Fig. 38. Also, if we neglect the time values, wpo3 and wpo6 are the only
WorkProcessOccurrences which can be generated by the Petri net.

The overall semantics of the example model is that it represents all concrete
work processes described by wpo3 or wpo6 with arbitrary time values, provided
the constraints induced by the axioms are respected.

5 Functional Modeling in WPML

In this section, we address the functional aspect of a work process. Each action
in a work process typically serves a function which reflects the required input
and the expected results. In a purely behavioral WPML model as discussed in
the previous section, Actions produce or consume Objects9 (see Fig. 6). To cover
the functional aspect of a work process, Actions can be linked to the Functions

8 The necessity to keep track of the transitions each token passes is one reason to use
a more expressive Petri net variant than state-transition nets.

9 The hasInputObject and hasOutputObject properties are simplifications to emphasize
the analogy between the concepts on the behavioral side and those on the func-
tional side. Actually, Actions and Objects are linked by ObjectFlows similar to the
ControlFlows discussed in Sec. 4.

An Extensible Modeling Language for the Representation of Work Processes 671

they fulfill, and Objects can be linked to States. Sections 5.1 and 5.2 deal with
functional models of two different types work work processes. Finally, Sect. 5.3
elaborates the relation between behavioral and functional aspects in more detail.

In general, the functions that can appear in a work process model depend on
the process type. For instance, within an operational process, the function of an
action may be to change a reactor temperature to 80�C. To describe this function,
concepts such as Reactor and SetPoint are required. Thus, subclasses of Function
for different process types are introduced, such as the OperationalProcessStep
for operational processes and the DesignStep for design processes. Fig. 6 shows
typical function classes for both types of work processes.

WorkProcess
Node

Function

Action

Operational
ProcessStep

Design
ProcessStep

Change
Temperature

GenerateBlock
FlowDiagram

hasFunction

State

Object

correspondsToState

hasOutputState
hasInputState

hasOutputObject
hasInputObject

Fig. 6. Actions can be specified by Functions that serve to change an input State into an
output State. The diagram shows exemplary function classes for design and operational
processes.

The definition of adequate subclasses of Function allows to extend WPML
with domain knowledge. As discussed in Sec. 2, such domain knowledge cov-
ers the function of work processes and the objects involved. This knowledge
is represented as part of OntoCAPE, a comprehensive ontology for the CAPE
(computer-aided process engineering) domain [53]. According to Gruber, an on-
tology is an explicit specification of a conceptualization, while a conceptual-
ization can be seen as an abstract, simplified view of the world for a specific
purpose [54]. By means of an ontology, the semantics of the modeling concepts
is explicitly and formally specified.

Originally, OntoCAPE has been developed by our group to describe the arti-
facts created during the conceptual design of chemical processes. However, the
extensible structure of the ontology allows to integrate concepts related to work
processes seamlessly. That way, many concepts of OntoCAPE can be used to
enrich the representation of the context of work processes. OntoCAPE is de-
scribed comprehensively elsewhere [53,55,56]. In the following, we focus on the
extensions developed for representing operational processes and design processes.
These extensions are implemented as partial models of OntoCAPE.

672 R. Hai, M. Theißen, and W. Marquardt

5.1 Extensions for Operational Processes

During an operational process, a number of operational steps are conducted in
different plant items. These operational steps support the chemical processes to
achieve the desired chemical products. Accordingly, when modeling operational
processes, modeling concepts must cover the operational steps (e.g. OpenValve
or SetControllerParameter), the involved plant items (e.g. Instrumentation, Vessel
or DistillationSystem), the production steps of chemical processes (e.g. Reaction
or Distillation), as well as the materials processed or produced by the chemical
process.

Operational
ProcessStep

operational_process

operational_process_S88

UnitProcedure

Operational
ProcessState

hasInput
State

hasOutput
State

PlantItem
State

hasPlantItem
State

refersTo

Chemical
ProcessState

refersTo

Chemical
ProcessStep

supports
hasOutput

State
hasInput

State

Phase EquipmentModuleUnit

Procedural
ControlStep

Basic
ControlStep

Reaction

actsOnReactionStep ReactorUnit

Notation:

module

property

isPartOf

specialization

concepts
in other

moduels of
OntoCAPE

Plant
Item

GroupOf
Equipment

acts
On

Material

refersToMaterial

Fig. 7. The simplified partial model for operational processes

Moreover, concepts for a structured representation of chemical processes, op-
erational processes, and plant items must be incorporated in order to permit
descriptions on different levels of detail and granularity. In industrial practice,
there are various ways to specify the hierarchies of the aforementioned entities.
For instance, a very generic way to enable the structured representation of plant
items is to specify a PlantItem as a PieceOfEquipment or a GroupOfEquipment.
A more restricted alternative may involve concepts like ProcessCell, Unit, or Sin-
gleEquipment. Bearing in mind that various hierarchies may be needed when
modeling operational processes, we propose an extensible modular structure for
the partial models. The partial model for operational processes consists of the
two modules shown in Fig. 7. While the module operational process contains
concepts for representing operational processes independent from any applica-
tions or standards, the module operational process S88 covers the concepts for

An Extensible Modeling Language for the Representation of Work Processes 673

describing operational process according to the well established ANSI/ISA-S88
standard [33]. In the following, the modules involved in this partial model are
explained in detail.

The module operational process. This module is simple, yet contains essen-
tial concepts for describing operational processes. The most important concepts
within this module are OperationalProcessStep and OperationalProcessState. An
OperationalProcessStep acts on PlantItems and supports a ChemicalProcessStep.
Intentionally, only a very generic specification for OperationalProcessStep is in-
cluded in this module: an OperationalProcessStep can be a BasicControlStep or a
ProceduralControlStep. A BasicControlStep is a simple elementary step such as to
open a valve, to set the parameters for a controller, or to switch on a pump. A
ProceduralControlStep, on the contrary, consists of several operational steps. For
instance, a charging step may contain a set of basic operational steps such as to
open a block valve or to start a pump. An OperationalProcessStep changes the
OperationalProcessState which captures all relevant states during an operational
process, including

– PlantItemStates such as the position of a valve or the level of a tank,
– ChemicalProcessStates such as the temperature or pressure of the processed

material in a reactor, and
– ExecutionStates of an operational process step like running, aborted or com-

plete (not shown in Fig. 7).

The module operational process S88. Because of the generic character of the
operational process module, additional modules for the further specification of
operational processes based on certain standards or guidelines can be included
with minor effort. For illustration, we choose the ANSI/ISA-S88 standard as an
example for further specification of the operational process module. This stan-
dard provides a solid foundation for a hierarchical representation of plant op-
erational processes and plant items. The structure defined in ANSI/ISA-S88 is
partially adopted in this work (cf. Fig. 7). The module operational process S88
enables to represent plant items on four levels—ProcessCell, Unit, Equipment-
Module, and ControlModule—to refine the modules incorporated in OntoCAPE.
Furthermore, the concept ProceduralControlStep is specified into Procedure, Unit-
Procedure, Operation, and Phase. Relations between these concepts are also de-
fined. For instance, a UnitProcedure can only take place on a Unit.

The modules operational process and operational process S88 provide sufficient
expressiveness to describe operational processes on different levels of granularity
and detail. For instance, the module operational process defines that an Oper-
ationalProcessStep acts on PlantItems and that an OperationalProcessStep sup-
ports a ChemicalProcessStep. This can be further specified as, for instance, a
ReactionStep supports a chemical process step of type Reaction carried out in a
ReactorUnit. By decomposing the ReactionStep into some Phases, more details
of the ReactionStep can be captured. Another possibility for the structured rep-
resentation of plant items and operational processes has been reported in [57].

674 R. Hai, M. Theißen, and W. Marquardt

When necessary, this can be defined in an additional module to extend the
operational process module. When modeling an operational process, one of the
extensions can be applied.

An adequate representation of operational processes can be used not only to
improve the quality of plant operations, but also to support the design of the
operational specifications, as shown in the next section. For a more compre-
hensive description of the partial model for operational processes as well as its
application, see [58].

5.2 Extensions for Design Processes

Currently, both conceptual design processes and the design of operational pro-
cess specifications are considered the design process module. For representing the
conceptual design process, we have adopted and extended the Douglas method-
ology [40]. The Douglas methodology uses a hierarchical approach where design
decisions are taken on a set of predefined levels of abstraction. We have applied
the Douglas methodology to represent conceptual design processes hierarchically.
In a similar way, modeling concepts for design processes of operational specifica-
tions have been developed based on the hierarchy defined in the ANSI/ISA-S88
standard.

As typical objects involved in a design process, documents contain information
about a chemical process or parts of the process. Representing the content of the
involved documents is crucial for describing design steps with sufficient detail,
because only then it is possible to describe the required information for carrying
out a design step and the outcome of that design step. Using concepts defined in
OntoCAPE, a chemical process system can be described under different aspects
from the abstract process level to the concrete plant item level. Such a detailed
model of domain objects provides an essential base for representing design steps
on different levels of abstraction.

As shown in Fig. 8, the partial model for representing design processes contains
several modules. Whereas the module design process contains concepts for mod-
eling design steps, the module document model can be used to describe the doc-
uments created or modified by a design step. A number of further modules may
be involved to represent the content of the documents. Two of these modules,
chemical process Douglas and operational process S88 are shown in Fig. 8. While
the module operational process S88 has been already introduced in Sec. 5.1, we
discuss the other three modules in Fig. 8 in the following.

The module document model. This module plays a crucial role to relate the
design steps to the domain knowledge about objects within the domain of chemi-
cal engineering. On the topmost level, a Document is required, produced or mod-
ified as an input or an output of a DesignStep. The content of a Document can be
described by concepts representing domain objects. As a further specification, a
set of documents in chemical engineering, represented by the concept ChemEng-
Doc and its subclasses, has been identified and related to the corresponding con-
tent. For instance, a BlockFlowDiagram hasContent about ReactionSystems, an

An Extensible Modeling Language for the Representation of Work Processes 675

chemical_process_Douglas

ChemEngDoc Document

InitialProblem
Statement

Master
Recipe

DesignStep

design_process

hasInput
Document

hasOutput
Document

Design
Basis

BlockFlow
Diagram (BFD)

Raw
Material

Product

document_model

operational_process_S88

ModifyBFD
GenerateInput

OutputStructure

Reaction
System

SingelReaction
Step

ChemicalProcess
System

Description
Object

InputOutput
Structure

hasContent

Generate
DesignBasis

GenerateRecipe
ReactionProcedure

Notation:

module

property isPartOfspecialization

concepts in
other modules
of OntoCAPE

Reaction
Step

Charging
Material

Change
Temperature

Unit
Procedure

Phase

Operational
ProcessStep

Fig. 8. The simplified partial model for representing design processes

InitialProblemStatement hasContent about RawMaterials and Products, or a Mas-
terRecipe hasContent about a ReactionStep. The document model module also
captures a further aspect dealing with the management of document versions.
More details about the document model can be found in [59].

The module chemical process Douglas. This module includes a hierarchy
based on the Douglas method to represent chemical process systems on different
levels of abstraction. A chemical process system can be described on the following
levels:

– The process level corresponds to the input-output structure in the Douglas
hierarchy. On this level, only input and output materials are considered. Also
recycle streams and purge streams can be investigated. Typical documents
involved on this level are InitialProblemStatement and DesignProcessBasis.

– The process system level corresponds to the recycle structure of the Douglas
hierarchy. On this level, reaction systems or separation systems are consid-
ered. Separation systems can be further classified as vapor separation sys-
tems, liquid separation systems, and flashes. Reaction system can be further
specified into single reaction steps. Typical documents involved on this level
are DesignProcessBasis and BlockFlowDiagram.

– The standard unit level is not included in the Douglas hierarchy, but is useful
to describe standard unit operations and single reaction steps. Typical docu-
ments involved on this level are BlockFlowDiagram and ProcessFlowDiagram.

676 R. Hai, M. Theißen, and W. Marquardt

The module design process. The topmost concept in this module is Design-
Step which is further specified by typical design activities like generate, modify
or refine, combined with the associated design product such as a block flow di-
agram or a master recipe. ModifyBlockFlowDiagram and GenerateMasterRecipe,
for instance, are two specific DesignSteps. Representing design steps by combin-
ing design activities and the corresponding design products is a straightforward
and intuitive way which helps to identify design steps in terms of the related de-
sign content. We intentionally avoid using typical terminology from the design
research area like syntheses, analyze, induction, abduction etc. There are two
main reasons for doing so. Firstly, design activities in industry are usually de-
scribed by referring to the target product. For instance, generate a flow sheet is
a typical design activity. Secondly, each design activity can be seen as an aggre-
gate activity containing a synthesis step, an analysis step, and a decision step (cf.
[46]). Hence, synthesis, analysis, and decision may be used as elementary build-
ing blocks for more expressive concepts, but are not sufficient for representing
design processes.

For each DesignStep the required input and output documents are defined,
both with the corresponding content. A DesignStep can be further decomposed
into other DesignSteps. For the conceptual design process, design steps are intro-
duced according to the levels defined in the module chemical process Douglas
and the involved documents in chemical engineering. A similar approach is
used for the design process of operation specifications. The modules opera-
tional process S88 is used to describe the content of the design steps in a plant
operation design process. For illustration, two simple examples are given in the
following.

Example 1: A design step during plant operation specification. A design step
of type GenerateRecipeReactionStep requires a certain MasterRecipe (see Fig. 9).
After this design step, the second version of this MasterRecipe is created. The sec-
ond version contains information about a ReactionStep for the reactor R3. This
ReactionStep contains two Phases: Charging reactant 1 of type ChargingMaterial
and Heating of type ChangeTemperature.

Example 2: A design step in conceptual design. To develop a chemical process for
producing benzene by hydrodealkylation (HDA) of toluene, a number of design
steps are to be carried out (see Fig. 10). This example describes a design step
of type GenerateInputOutputStructure (IOS) which requires a document of type
InitialProblemStatement. This document contains a statement of the involved raw
materials (i.e., Toluene and Hydrogen) and the desired products (i.e., Benzene and
Methane). In addition, information about the ChemicalReaction of interest (i.e.
the hydrodealkylation of Toluene) is also given in the InitialProblemStatement. The
result of this design step is a report of type DesignBasis, which has content about
the InputOutputStructure of this HDA process.

These two simple examples show the strength and necessity to incorporate
detailed models of domains objects such as ChemicalReaction or RawMaterial
when modeling design processes. Knowledge about both, the design processes

An Extensible Modeling Language for the Representation of Work Processes 677

[GenerateRecipeReactionStep]
Generate reaction step for reactor R3

[MasterRecipe]
Master recipe Nr. 123 version 2

[ReactionStep]
Procedure 1 for reactor R3

hasContent

hasOutputDocument

hasInputDocument

[MasterRecipe]
Master recipe Nr. 123 version 1

[ChargingMaterial]
Charging reactant 1

contains

[ChangeTemperature]
Heating to 80°C

contains

Fig. 9. Example of a design step for plant operation on the instance level

[GenerateIOS]
Generate IOS of HDA process

[InitialProblemStatement]
Input information of HDA process

[RawMaterial]
Toluene

[RawMaterial]
Hydrogen

[Byproduct]
Benzene

[Product]
Methane

[DesignBasis]
Report of preliminary study

[IOS]
Structure on process level

hasContent

hasContent

hasContent

hasContent

hasContent

hasOutputDocumenthasInputDocument

[ChemicalReaction]
Hydrodealkylation of Toluene

hasContent

Fig. 10. Example of a conceptual design step on the instance level

and the involved objects, must be encompassed from the coarse-grained level to
the fine-grained level to represent design steps with sufficient information.

5.3 Integrating Process Behavior and Function

So far, we have discussed the behavioral and the functional aspect of work pro-
cesses independent from each other. This section is meant to illustrate the inte-
gration of the two aspects. As a simple (and incomplete) example, consider the
work process model in Fig. 11. The left part of the figure shows part of a design
process for HDA in the concrete syntax of WPML that has been adopted from
UML activity diagrams. In the right part, the same design process is represented
as an object diagram. The two Actions of the process are linked by a ControlFlow
that captures the behavioral aspect of the process. Also, to each Action, an in-
stance of a concrete Function class is assigned to represent the functional aspect.

678 R. Hai, M. Theißen, and W. Marquardt

Note that in the concrete syntax, it is sufficient to display the name of this func-
tion class. As for the functional aspect, it could be further specified as shown in
the examples given in Sec. 5.2.

[Action]
A1

[Action]
A2

[Controlflow]
CF1

from

to

[DetermineProcessType]
DPT1

[GenerateIOS]
GIOS1

hasFunction

hasFunction

Determine process type of
HDA process

[DetermineProcessType]

Generate IOS of HDA
process

[GenerateIOS]

Fig. 11. Example of a conceptual design process on the instance level. Both behavioral
and functional aspects are captured.

6 Implementation and Tool Support

Both WPML and its extensions are implemented in OWL [47]. The formal speci-
fication of process behavior is additionally supported by Petri nets and axioms in
first-order logics. WPML and the extensions can be seen as meta-models which
provide the building blocks for work process models on the instance layer. We
use the OWL editor Protégé [60] to implement the meta-models.

For the creation of work processes on the instance layer in a user-friendly
manner, our research group has developed the Work Process Modeling System
(WOMS+). WOMS+ provides a set of intuitive symbols for the WPML mod-
eling concepts. In addition, meta-models for different types of work processes
(e.g., the module for operational processes) can be imported into WOMS+,
such that the classes and properties defined in these models are offered to the
user, who can select among them for the formal specification of the elements in a
WPML instance model. Moreover, further use of the models created by means of
WOMS+ is also supported by an automated export into certain target formats
of applications like the Aspen Batch Process Developer or a Petri net simulators.

7 Conclusions and Open Issues

This contribution motivates and presents the WPML language, a generic mod-
eling language suitable for different types of work processes, which allows for
further extensions specific to certain types of work processes. Extensions for
design and operational processes have been discussed.

The WPML language supports the formal representation of both, the behav-
ioral and functional aspects of a work process. Domain knowledge can explicitly
be incorporated on different levels of abstraction. Not only the work process
itself, but also the objects involved are covered with sufficient details. Models

An Extensible Modeling Language for the Representation of Work Processes 679

created with this language can easily be translated in different format such that
one model can be used by different applications. This strategy supports the reuse
of a work process model which captures the knowledge of an organization and
thus increases engineering productivity.

Currently, cooperation with several industrial partners is in progress to achieve
a practical evaluation of the modeling framework. These empirical studies aim
at verifying the usability of the tool as well as the usability and expressiveness
of WPML.

Acknowledgments. The authors acknowledge financial support from the Ger-
man National Science Foundation (DFG) under grant MA 1188/29-1.

References

1. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement
and Application. Artech House, Norwood (2001)

2. Davenport, T.H.: Process Innovation. Harvard Business School, Boston (1993)
3. Workflow Management Coalition (WfMC): Terminology & Glossary, Report No.

WFMC-TC-1011 (1999), http://www.wfmc.org
4. Nagl, M., Marquardt, W.: Collaborative and Distributed Chemical Engineering:

from Understanding to Substantial Design Process Support; Results of the IM-
PROVE Project. LNCS, vol. 4970. Springer, Heidelberg (2008)

5. Theißen, M., Hai, R., Marquardt, W.: Design Process Modeling in Chemical En-
gineering. J. Comput. Inf. Sci. Eng. 8(1), 011007 (9 pages) (2008)

6. Theißen, M., Hai, R., Morbach, J., Schneider, R., Marquardt, W.: Scenario-based
Analysis of Industrial Work Processes. In: Nagl, M., Marquardt, W. (eds.) Col-
laborative and Distributed Chemical Engineering. LNCS, vol. 4970, pp. 433–450.
Springer, Heidelberg (2008)

7. Killich, S., Luczak, H., Schlick, C., Weienbach, M., Wiedenmaier, S., Ziegler, J.:
Task Modelling for Cooperative Work. BIT 18(5), 325–338 (1999)

8. Eggersmann, M., Kausch, B., Luczak, H., Marquardt, W., Schlick, C., Schneider,
N., Schneider, R., Theißen, M.: Work Process Models. In: Nagl, M., Marquardt,
W. (eds.) Collaborative and Distributed Chemical Engineering. LNCS, vol. 4970,
pp. 126–152. Springer, Heidelberg (2008)

9. Object Management Group (OMG): Unified Modeling Language, Version 2.0
(2005), http://www.omg.org/uml

10. Theißen, M., Marquardt, W.: Decision Process Modeling in Chemical Engineering
Design. In: 17th European Symposium on Computer Aided Process Engineering,
pp. 383–388 (2007)

11. Marquardt, W., Theißen, M.: Integrated Modeling of Work Processes and Deci-
sions in Chemical Engineering. In: Schlick, C.M. (ed.) Industrial Engineering and
Ergonomics, pp. 265–279. Springer, Heidelberg (2009)

12. Aspen Technology,
http://www.aspentech.com/products/aspen-batch-plus.cfm

13. Bayer, B., Marquardt, W.: Towards Integrated Information Models for Data and
Documents. Comput. Chem. Eng. 28, 1249–1266 (2004)

14. Brandt, S., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., Marquardt, W.:
An Ontology-Based Approach to Knowledge Management in Design Processes.
Comput. Chem. Eng. 32(1-2), 320–342 (2008)

http://www.wfmc.org
http://www.omg.org/uml
http://www.aspentech.com/products/aspen-batch-plus.cfm

680 R. Hai, M. Theißen, and W. Marquardt

15. Object Management Group (OMG): Model Driven Architecture,
http://www.omg.org/mda

16. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für
Instrumentelle Mathematik (1962)

17. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Basic Concepts, vol. 1, 2nd corrected printing. Springer, Berlin (1997)

18. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activi-
ties. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering. LNI,
vol. 64, pp. 117–128. Gesellschaft für Informatik (2005)

19. van der Alst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Inform. Syst. 30(4), 245–275 (2005)

20. National Institute of Standards and Technology (NIST): The Process Specification
Language (PSL): Overview and Version 1.0 Specification, Report No. NISTIR 6459.
Gaithersburg, MD (2000)

21. Bock, C., Gruninger, M.: PSL: A Semantic Domain for Flow Models. SoSyM. 4,
209–231 (2005)

22. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
(2006), http://www.omg.org

23. BEA Systems, IBM, Microsoft, SAP AG, Siebel Systems: Business Process Execu-
tion Language for Web Services, version 1.1 (2003),
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

24. Workflow Management Coalition (WfMC): XPDL 2.0 Specification (2005),
http://www.wfmc.org

25. White, S.A.: XPDL and BPMN. In: Workflow Handbook 2003, pp. 221–238. Future
Strategies Inc., Lighthouse Point (2003)

26. Mayer, R.J., Painter, C.M.K., de Witte, P.S.: IDEF Family of Methods for Con-
current Engineering and Business Re-Engineering Applications,
http://www.idef.com/

27. National Institute of Standards and Technology (NIST): Integrated Definition for
Function Modeling (IDEF0), Report No. NISTIR 183. Gaithersburg, MD (1993)

28. Batres, R., Naka, Y.: Process Plant Ontologies Based on a Multi-dimensional
Framework. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Proceedings
of the Fifth International Conference on Foundations of Computer-Aided Process
Design, pp. 433–437 (2000)

29. Knowledge Systems Laboratory: Ontolingua,
http://www.ksl.stanford.edu/software/ontolingua

30. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Classification and
Evaluation of Description Methods in Automation and Control Technology,
VDI/VDE 3681 (2005)

31. International Electrotechnical Commission (IEC): Programmable controllers – Part
3: Programming languages, IEC 61131-3 Ed. 2.0 (2003)

32. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Formalised Process
Descriptions, VDI/VDE 3682 (2005)

33. International Society of Automation (ISA): Batch control Part 1: Models and ter-
minology, ANSI/ISA-S88.01-1995 (1995)

34. Viswanathan, S., Johnsson, C., Srinivasan, R., Venkatasubramanian, V., Ärzen,
K.E.: Automating Operating Procedure Synthesis for Batch Processes: Part I.
Knowledge Representation and Planning Framework. Comput. Chem. Eng. 22(11),
1673–1685 (1998)

35. Gabbar, H.A., Aoyama, A., Naka, Y.: Recipe Formal Definition Language for Op-
erating Procedures Synthesis. Comput. Chem. Eng. 28(9), 1809–1822 (2004)

http://www.omg.org/mda
http://www.omg.org
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.wfmc.org
http://www.idef.com/
http://www.ksl.stanford.edu/software/ontolingua

An Extensible Modeling Language for the Representation of Work Processes 681

36. Chandrasekaran, B.: Design Problem Solving: A Task Analysis. AI Mag. 11(4),
59–71 (1990)

37. Gero, J.S., Kannengiesser, U.: A Function-Behavior-Structure Ontology of Pro-
cesses. AI EDAM 21(4), 379–391 (2007)

38. Stone, R.B., Wood, K.L.: Development of a Functional Basis for Design. J. Mech.
Des. 122(4), 359–370 (2000)

39. Kitamura, Y., Riichiro, M.: Ontology-Based Systematization of Functional Knowl-
edge. J. Eng. Des. 15(4), 327–351 (2004)

40. Douglas, J.M.: A Hierarchical Decision Procedure for Process Synthesis. AICHE
J. 31, 353–362 (1985)

41. Douglas, J.M.: Conceptual Design of Chemical Processes. McGraw-Hill, New York
(1988)

42. Gorti, S.R., Gupta, A., Kim, G.J., Sriram, R.D., Wong, A.: An Object-Oriented
Representation for Product and Design Processes. Comput.-Aided Des. 30(7), 489–
501 (1998)

43. Bañares-Alcántara, R.: Design Support Systems for Process Engineering – I. Re-
quirements and Proposed Solutions for a Design Process Representation. Comput.
Chem. Eng. 19(3), 267–277 (1995)

44. Bayer, B.: Conceptual Information Modeling for Computer Aided Support of
Chemical Process Design. Fortschritt-Berichte VDI: Reihe, vol. 3(787). VDI-Verlag,
Düsseldorf (2003)

45. Eggersmann, M.: Analysis and Support of Work Processes within Chemical Engi-
neering Design Processes. Fortschritt-Berichte VDI: Reihe, vol. 3(840). VDI-Verlag,
Düsseldorf (2004)

46. Eggersmann, M., Gonnet, S., Henning, G., Krobb, C., Leone, H., Marquardt, W.:
Modeling and Understanding Different Types of Process Design Activities. Lat.
Am. Appl. Res. 33, 167–175 (2003)

47. World Wide Web Consortium: OWL Web Ontology Language. Reference. Recom-
mendation (2004), http://www.w3.org/TR/owl-ref/

48. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

49. Clark & Parsia.: Pellet OWL Reasoner (2010), http://clarkparsia.com/pellet/
50. Theißen, M., Hai, R., Marquardt, W.: A Framework for Work Process Modeling

in the Chemical Industries. Submitted to Comput. Chem. Eng. (2009)
51. Horridge, M., Patel-Schneider, P.F.: Manchester Syntax for OWL 1.1. In: Clark,

K., Patel-Schneider, P.F. (eds.) OWL: Experiences and Directions 2008 DC, Fourth
International Workshop, Washington, DC (2008)

52. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Comm.
ACM 26(11), 832–843 (2009)

53. Marquardt, W., Morbach, J., Wiesner, A., Yang, A.D.: OntoCAPE - A Re-Usable
Ontology for Chemical Process Engineering. Springer, Berlin (2010)

54. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

55. Morbach, J., Yang, A.D., Marquardt, W.: OntoCAPE - A Large Scale Ontology
for Chemical Process Engineering. Eng. Appl. Artif. Intel. 20(2), 147–161 (2007)

56. Morbach, J., Wiesner, A., Marquardt, W.: OntoCAPE 2.0 - A (Re)usable Ontol-
ogy for Computer-Aided Process Engineering. Comput. Chem. Eng. 33, 1546–1556
(2009)

57. Aoyama, A., Yamadai, I., Batres, R., Naka, Y.: Multi-Dimensional Object Oriented
Approach for Automatic Generation of Control Recipes. Comput. Chem. Eng. 24(2-
7), 519–524 (2000)

http://www.w3.org/TR/owl-ref/
http://clarkparsia.com/pellet/

682 R. Hai, M. Theißen, and W. Marquardt

58. Hai, R., Theißen, M., Marquardt, W.: An Ontology Based Approach for Opera-
tional Process Modeling. Submitted to Advanced Engineering Informatics (2010)

59. Morbach, J., Hai, R., Bayer, B., Marquardt, W.: Document models. In: Nagl, M.,
Marquardt, W. (eds.) Collaborative and Distributed Chemical Engineering. LNCS,
vol. 4970, pp. 111–125. Springer, Heidelberg (2008)

60. Stanford Center for Biomedical Informatics Research: The Protégé ontology editor
and knowledge acquisition system, http://protege.stanford.edu

http://protege.stanford.edu

	An Extensible Modeling Language for the Representation of Work Processes in the Chemical and Process Industries
	Introduction
	Requirements for a Modeling Language
	Expressiveness
	Formalization

	Modeling Languages for Work Processes
	Generic Modeling Languages
	Specific Modeling Languages for Operational Processes
	Specific Modeling Languages for Design Processes
	Evaluation

	Behavioral Semantics of WPML
	Basic Elements of WPML
	An Introductory Example
	Basic Principles of the Formal Specification of WPML

	Functional Modeling in WPML
	Extensions for Operational Processes
	Extensions for Design Processes
	Integrating Process Behavior and Function

	Implementation and Tool Support
	Conclusions and Open Issues
	References

