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Summary. The growing use of ontologies in applications creates the need for an in-
frastructure that allows developers to more easily combine different software modules
like ontology stores, editors, or inference engines towards comprehensive ontology-
based solutions. We call such an infrastructure Ontology Software Environment.
The article discusses requirements and design issues of such an Ontology Software
Environment. In particular, we present this discussion in light of the ontology and
(meta)data standards that exist in the Semantic Web and present our corresponding
implementation, the KAON SERVER.

1 Introduction

Ontologies are increasingly being applied in complex applications, e.g. for
Knowledge Management, E-Commerce, eLearning, or information integra-
tion. In such systems ontologies serve various needs, like storage or exchange
of data corresponding to an ontology, ontology-based reasoning or ontology-
based navigation. Building a complex ontology-based system, one may not
rely on a single software module to deliver all these different services. The
developer of such a system would rather want to easily combine different —
preferably existing — software modules. So far, however, such integration of
ontology-based modules had to be done ad-hoc, generating a one-off endeav-
our, with little possibilities for re-use and future extensibility of individual
modules or the overall system.

This paper is about an infrastructure that facilitates plug’n’play engineer-
ing of ontology-based modules and, thus, the development and maintenance of
comprehensive ontology-based systems, an infrastructure which we call an On-
tology Software Environment. The Ontology Software Environment facilitates
re-use of existing ontology stores, editors, and inference engines. It combines
means to coordinate the information flow between such modules, to define
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dependencies, to broadcast events between different modules and to translate
between ontology-based data formats.

Communication between modules requires ontology languages and for-
mats. The Ontology Software Environment presented in this paper supports
languages defined in the Semantic Web because they are currently becoming
standards specified by the World Wide Web Consortium (W3C) and thus
will be of importance in the future. We introduce the term of an Application
Server for the Semantic Web (ASSW), which is a particular type of Ontology
Software Environment, especially designed for supporting the development of
Semantic Web applications.

The article is structured as follows: First, we provide a brief overview about
the Semantic Web and its languages in section 2 and motivate the need for
an Application Server for the Semantic Web by a scenario in section 3. We
derive requirements for such a server in section 4. Sections 5 and 6 describe the
design decisions that immediately answer to important requirements, namely
extensibility and discovery. The conceptual architecture is then provided in
section 7. Section 8 presents the KAON SERVER, a particular Application
Server for the Semantic Web which has been implemented. Related work and
conclusions are given in sections 9 and 10, respectively.

2 The Semantic Web

In this section we want to introduce the reader to the architecture and lan-
guages of the Semantic Web that we use in our Application Server. The Se-
mantic Web augments the current WWW by adding machine understandable
content to web resources. Such added contents are called metadata whose
semantics can be specified by making use of ontologies. Ontologies play a
key-role in the Semantic Web as they provide consensual and formal concep-
tualizations of domains, enabling knowledge sharing and reuse.

The left hand side of figure 1 shows the static part of the Semantic Web3,
i.e. its language layers. Unicode, the URI and namespaces (NS) syntax and
XML are used as a basis. XML’s role is limited to that of a syntax carrier
for data exchange. XML Schema defines simple data types like string, date or
integer.

The Resource Description Framework (RDF) may be used to make simple
assertions about web resources or any other entity that can be named. A sim-
ple assertion is a statement that an entity has a property with a particular
value, for example, that this article has a title property with value “An ex-
tensible ontology software environment”. RDF Schema extends RDF by class
and property hierarchies that enable the creation of simple ontologies.

3 Semantic Web - XML 2000, Tim Berners-Lee,
http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
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The Ontology layer features OWL (Web Ontology Language4) which is a
family of richer ontology languages that augment RDF Schema. OWL Lite
is the simplest of these. It is a limited version of OWL Full that enables
simple and efficient implementation. OWL DL is a richer subset of OWL Full
for which reasoning is known to be decidable so complete reasoners may be
constructed, though they will be less efficient than an OWL Lite reasoner.
OWL Full is the full ontology language which is undecidable.

The Logic layer will provide an interoperable language for describing the
sets of deductions one can make from a collection of data – how, given a
ontology-based information base, one can derive new information from existing
data5.

The Proof language will provide a way of describing the steps taken to
reach a conclusion from the facts. These proofs can then be passed around
and verified, providing short cuts to new facts in the system without having
each node conduct the deductions themselves.

The Semantic Web’s vision is that once all these layers are in place, we
will have a system in which we can place trust that the data we are seeing, the
deductions we are making, and the claims we are receiving have some value.
The goal is to make a user’s life easier by the aggregation and creation of new,
trusted information over the Web6. The standardization process has currently
reached the Ontology layer, i.e. Logic, Proof and Trust layers aren’t specified
yet.
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Fig. 1. Static and dynamic aspects of the Semantic Web layer cake

4 W3C Working Draft, http://www.w3.org/TR/owl-ref
5 A better description of this layer would be “Rule layer”, as the Ontology layer

already features a logic calculus with reasoning capabilities. However, we want to
conform to the official naming here.

6 Building the Semantic Web, Edd Dumbill,
http://www.xml.com/pub/a/2001/03/07/buildingsw.html
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The right hand side of figure 1 depicts the Semantic Web’s dynamic aspects
that apply to data across all layers. Often, the dynamic aspects are neglected
by the Semantic Web community, however, from our point of view, they are an
inevitable part for putting the Semantic Web into practice. It is obvious that
there have to be means for access and modification of Semantic Web data.
According to the the well-known ACID (atomicity, consistency, independence,
durability) of Database Management System (DBMS), transactions and roll-
backs of Semantic Web data operations should also be possible. Evolution and
versioning of ontologies are an important aspect, because ontologies usually
are subject to change [24]. Like in all distributed environments, monitoring
of data operations becomes necessary for security reasons. Finally, reasoning
engines are to be applied for the deduction of additional facts7 as well as for
semantic validation.

3 A Motivating Scenario

This section motivates the needs for the cooperation and integration of dif-
ferent software modules by a scenario depicted in figure 2. The reader may
note that some real-world problems have been abstracted away for the sake
of simplicity.

Assume a simple genealogy application. Apparently, the domain descrip-
tion, viz. the ontology, will include concepts like Person and make a distinction
between Male and Female. There are several relations between Persons, e.g.
hasParent or hasSister. The domain description can be easily expressed with
OWL DL, e.g. Person subsumes both Male and Female concepts. However,
many important facts that could be inferred automatically have to be added
explicitly. E.g., information about the parents’ brothers of a person are suf-
ficient to deduce her or his uncles. A rule-based system is needed to capture
such facts automatically. Persons will have properties that require structured
data types, such as dates of birth, which should be syntactically validated.
Such an ontology could serve as the conceptual backbone and information
base of a genealogy portal. It would simplify the data maintenance and offer
machine understandability. To implement the system, all the required mod-
ules, i.e. a rule-based inference engine, a DL reasoner, a XML Schema data
type verifier, would have to be combined by the client applications themselves.
While this is a doable effort, possibilities for re-use and future extensibility
hardly exist.

The application demands from an Application Server for the Semantic
Web is to hook up to all the software modules and to offer management of
data flow between them. This also involves propagation of updates and roll-
back behavior, if any module in the information chain breaks. In the following

7 E.g., if “cooperatesWith” is defined as a symmetric property in OWL DL between
persons A and B, a reasoner can deduce that B cooperatesWith A, too.
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section, we will discuss requirements for an Application Server for the Seman-
tic Web in more detail. The requirements are derived from the scenario as
well as from the static and dynamic parts of the Semantic Web.

4 Requirements

Basically, the we can establish four groups of requirements. First, an Applica-
tion Server for the Semantic Web should respond to the static aspects of the
Semantic Web layer cake. In particular, it has to be aware of all Semantic Web
languages. The need to translate between the different languages also belongs
to the static aspects. Such a translation increases interoperability between ex-
isting software modules that mostly focus on one language only. Second, the
dynamic aspects result in another group of requirements, viz. finding, access-
ing and storing of data, consistency, concurrency, durability and reasoning.
Third, clients may want to connect remotely to the Application Server for the
Semantic Web and must be properly authorized. Hence, a distributed system
like the Semantic Web needs connectivity and security. Finally, the system is
expected to facilitate a extensible and reconfigurable infrastructure. The last
group of requirements therefore deals with flexible handling of modules. In
the following paragraphs we will investigate on the requirements.

• Requirements stemming from the Semantic Web’s static part

– Language support One requirement is the support of all the Semantic
Web’s ontology and metadata standards. The Application Server for
the Semantic Web has to be aware of RDF, RDFS, OWL as well as
future languages that will be used to specify the logic, proof and trust
layers.

– Semantic Interoperation We use the term Semantic Interoperation in
the sense of translating between different ontology languages with dif-
ferent semantics. At the moment, several ontology languages populate
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the Semantic Web. Besides proprietary ones, we have already men-
tioned RDFS, OWL Lite, OWL DL and OWL Full before. Usually,
ontology editors and stores focus on one particular language and are
not able to work with others. Hence, an Application Server for the Se-
mantic Web should allow to translate between different languages and
semantics.

– Ontology Mapping In contrast to Semantic Interoperation, Ontology
Mapping translates between different ontologies of the same language.
Mapping may become necessary as web communities usually have their
own ontology and could use Ontology Mapping to facilitate data ex-
change.

• Requirements stemming from the Semantic Web’s dynamic part

– Finding, accessing and storing of ontologies Semantic Web applications
like editors or portals have to access and finally store ontological data.
In addition, the development of domain ontologies often requires inte-
gration of other ontologies as starting point. Examples are Wordnet or
top-level ontologies for the Semantic Web [4]. Those could be stored
and offered by an Application Server for the Semantic Web to editors.

– Consistency Consistency of information is a requirement in any appli-
cation. Each update of a consistent ontology must result in an ontology
that is also consistent. In order to achieve that goal, precise rules must
be defined for ontology evolution [24]. Modules updating ontologies
must implement and adhere to these rules. Also, all updates to the
ontology must be done within transactions assuring the properties of
atomicity, consistency, isolation and durability (ACID).

– Concurrency It must be possible to concurrently access and modify
Semantic Web data. This may be achieved using transactional process-
ing, where objects can be modified at most by one transaction at the
time.

– Durability Like consistency, durability is a requirement that holds in
any data-intense application area. It may be accomplished by reusing
existing database technology.

– Reasoning Reasoning engines are core components of semantics-based
applications and can be used for several tasks like semantic validation
and deduction. An Application Server for the Semantic Web should
provide access to such engines, which can deliver the reasoning services
required.

• Connectivity and Security

– Connectivity An Application Server for the Semantic Web should en-
able loose coupling, allowing access through standard web protocols, as
well as close coupling by embedding it into other applications. A client
may want to use the system locally or connect to it remotely via web
services, for instance.

– Security Guaranteeing information security means protecting informa-
tion against unauthorized disclosure, transfer, modification, or destruc-
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tion, whether accidental or intentional. To realize it, any operation
should only be accessible by properly authorized clients. Proper iden-
tity must be reliably established by employing authentication tech-
niques. Confidential data must be encrypted for network communica-
tion and persistent storage. Finally, means for monitoring (logging) of
confidential operations should be present.

• Flexible handling of modules

– Extensibility The need for extensibility applies to most software sys-
tems. Principles of software engineering avoid system changes when
additional functionality is needed in the future. Hence, extensibility
is also desirable for an Application Server for the Semantic Web. In
addition, such a server has to deal with the multitude of layers and
data models in the Semantic Web that lead to a multitude of software
modules, e.g. XML parsers or validators that support the XML Schema
datatypes, RDF stores, tools that map relational databases to RDFS
ontologies, ontology stores and OWL reasoners. Therefore, extensibil-
ity regarding new data APIs and corresponding software modules is an
important requirement for such a system.

– Discovery of software modules For a client, there should be the possi-
bility to state precisely what it wants to work with, e.g. an RDF store
that holds a certain RDF model and allows for transactions. Hence,
means for intelligent discovery of software modules are required. Based
on a semantic description of the search target, the system should be
able to discover what a client is looking for.

– Dependencies The system should allow to express dependencies be-
tween different software modules. For instance, that could be the set-
ting up of event listeners between modules. Another example would be
the management of a dependency like “module A is needed for module
B”.

In the following sections 5 to 7, we develop an architecture that is a result
from the requirements put forward in this section. After that we present the
implementation details of our Application Server for the Semantic Web called
KAON SERVER.

5 Component Management

Due to the requirement for extensibility, we decided to use the Microkernel
design pattern. The pattern applies to software systems that must be able to
adapt to changing system requirements. It separates a minimal functional core
from extended functionality and application-specific parts. The Microkernel
also serves as a socket for plugging in these extensions and coordinating their
collaboration [14].
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In our setting, the Microkernel’s minimal functionality must take the form
of simple management operations, i.e. starting, initializing, monitoring, com-
bining and stopping of software modules plus dispatching of messages between
them. This approach requires software modules to be uniform so that they
can be treated equally by the kernel. Hence, in order to use the Microkernel,
software modules that shall be managed have to be brought into a certain
form. We call this process making existing software deployable, i.e. bringing
existing software into the particular infrastructure of the Application Server
for the Semantic Web, that means wrapping it so that it can be plugged into
the Microkernel. Thus, a software module becomes a deployed component.
The word deployment stems service management and service oriented archi-
tectures where it is a terminus technicus. We adopt this meaning and apply it
in our setting. We refine it as the process of registering, possibly initializing
and starting a component to the Microkernel.

Apart from the cost of making existing software deployable, the only draw-
back of this approach is that performance will suffer slightly in comparison to
stand alone use, as a request has to pass through the kernel first (and possi-
bly the network). A client that wants to make use of a deployed component’s
functionality talks to the Microkernel, which in turn dispatches requests.

But besides the drawbacks mentioned above, the Microkernel and compo-
nent approach delivers several benefits. By making existing functionality, like
RDF stores, inference engines etc., deployable, one is able to treat everything
the same. As a result, we are able to deploy and undeploy components ad
hoc, reconfigure, monitor and possibly distribute them dynamically. Proxy
components can be developed for software that cannot be made deployable
for whatever reasons. Throughout the paper, we will show further advantages,
among them

• enabling a client to discover the component it is in need of (cf. section 6)
• definition of dependencies between components (cf. section 7)
• easy realization of security, auditing, trust etc. as interceptors (further

discussed in section 7)
• incorporation of quality criteria as attributes of a component in registry

(cf. section 10)

Thus, we responded to the requirement of extensibility. In the following,
we discuss how the discovery of software modules can be achieved.

6 Description of Components

This section responds to the requirement “discovery of software modules”.
As pointed out in the section 5, all components are equal as seen from the
kernel’s perspective. In order to allow a client to discover the components
it is in need of, we have to make their differences explicit. Thus, there is a
need of a registry that stores descriptions of all deployed components. In this
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section we show how a description of a component may look like. We start
with the definition of a component and then specialize. The definitions result
in a taxonomy that is primarily used to facilitate component discovery for the
application developer.

Component Software module which is deployed to the kernel.
System Component Component providing functionality for the Applica-

tion Server for the Semantic Web, e.g. a connector.
Functional Component Component that is of interest to the client and

can be looked up. Ontology-related software modules become functional
components by making them deployable, e.g. RDF stores.

External Module An external module cannot be deployed directly as it
may be programmed in a different language, live on a different computing
platform, uses interfaces unknown, etc. It equals a functional component
from a client perspective. This is achieved by having a proxy component
deployed relaying communication to the external module.

Proxy Component Special type of component that manages the communi-
cation to an external module. Examples are proxy components for infer-
ence engines, like FaCT [15].

Each component can have attributes like the name of the interface it imple-
ments, connection parameters or other low-level properties. Besides, we want
to be able to express associations between components. Associations can be
dependencies between components, e.g. an ontology store component can rely
on an RDF store for actual storage, or event listeners etc. Associations will
later be put in action by the association management component (cf. section
7).

We formalize taxonomy, attributes and associations in a management on-
tology like outlined in figure 3 and table 18. The ontology formally defines
which attributes a certain component may have and places components into
a taxonomy. In the end, actual functional components like KAON’s RDF
Server and the Engineering Server (cf. subsection 8.4) would be instantiations
of RDFStore and OntologyStore, respectively.

Our approach allows us to realize the registry itself as a component. As
explained in section 5, the Microkernel manages any functionality as long as
it conforms to the contract. The registry is not of direct interest to the client -
it is only used to facilitate the discovery of functional and proxy components.
Hence, we can declare it as an instance of system component.

So far we have discussed two requirements, viz. extensibility and discovery
of software components, which led to fundamental design decisions. The next
section focuses on the conceptual architecture.

8 The table shows some exemplary properties of the concept “Component”. We use
the term property as generalization for attribute and association. An attribute’s
range always is a string, whereas associations relate two concepts.
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Concept Property Range

Component Name String
Interface String
... ...
receivingEventsFrom Component
sendingEventsTo Component
dependsOn Component
... ...

Table 1. Attributes and associations of Component

7 Conceptual Architecture

When a client connects to the Application Server for the Semantic Web it
discovers the functional components it is in need of. That could be an RDF
store or an inference engine etc. The system tries to find a deployed functional
component in the registry fulfilling the stated requirements and returns a
reference.

Surrogates for the functional component on the client side can handle
the communication over the network. The counterpart to the surrogate on
the server side is a connector component. It maps requests to the kernel’s
methods. All requests finally pass the management kernel which dispatches
them to the actual functional component. While dispatching, the properness
of a request can be checked by interceptors that may deal with authentication,
authorization or auditing. An interceptor is a software entity that looks at a
request and modifies it before the request is sent the component. Finally, the
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response passes the kernel again and finds its way to the client through the
connector.

After this brief procedural overview, the following paragraphs will explain
the architecture depicted in figure 4. Note that in principle, there will be
only three types of software entities: components, interceptors and the kernel.
Components are specialized into functional, system and proxy components to
facilitate the discovery for the application developer.
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Fig. 4. Conceptual Architecture

Connectors

Connectors are system components. They send and receive requests and re-
sponses over the network by using some protocol. Apart from the option to
connect locally, further connectors are possible for remote connection: e.g. ones
that offer access per Java Remote Method Invocation (RMI), or ones that of-
fer access per Web Service. Counterparts to a connector on the client side are
surrogates for functional components that relieve the application developer of
the communication details similar to stubs in CORBA.
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Management Core

The Management Core comprises the Microkernel (also called management
kernel or simply kernel in the following) as well as several system components.
The Management Core is required to deal with the discovery, allocation and
loading of components. The registry is a system component and hierarchi-
cally orders descriptions of the components. It thus facilitates the discovery
of a functional component for a client (cf. section 6). Another system compo-
nent called association management allows to express and manage relations
between components. E.g., event listeners can be put in charge so that a com-
ponent A is notified when B issues an event or a component may only be
undeployed if others don’t rely on it. The Management Core is extensible
such that additional functionality may be provided by deploying new system
components.

Interceptors

Interceptors are software entities that look at a request and modify it before
the request is sent to the component. Security is realized by interceptors which
guarantee that operations offered by functional components (including data
update and query operations) in the server are only available to appropriately
authenticated and authorized clients. A component can be registered with
a stack of interceptors in the kernel. Sharing generic functionality such as
security, logging, or concurrency control requires less work than developing
individual component implementations.

Functional Components

RDF stores, ontology stores etc., are deployed to the management kernel as
functional components (cf. section 5). In combination with the registry, the
kernel can start functional components dynamically on client requests.

Table 2 shows where the requirements put forward in section 4 are reflected in
the architecture. Note that most requirements are met by functional compo-
nents. That is because the conceptual architecture presented here is generic,
i.e. we could make almost any existing software deployable and use the system
in any domain, not just in the Semantic Web. In the following section we dis-
cuss a particular implementation, KAON SERVER, that realizes functional
components specific for Semantic Web standards.
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Language Support ×

Semantic Interoperation ×

Ontology Mapping ×

Finding, accessing, storing of ontologies × ×

Consistency ×

Concurrency × ×

Durability ×

Reasoning ×

Connectivity ×

Security × ×

Extensibility × ×

Discovery ×

Dependencies ×

Table 2. Reflections of the requirements in the architecture

8 Implementation

This section presents our implementation of an Application Server for the
Semantic Web, called KAON SERVER. KAON SERVER offers a uniform
infrastructure to host functional components, in particular those provided by
the KAON project.

The KAON SERVER architecture reflects the conceptual architecture pre-
sented in the previous section. In the following, an in-depth description is
given. We will start with the Management Core in 8.1 as it is necessary to
understand Connectors in 8.2, Interceptors in 8.3 and Functional Components
in 8.5. Several of the latter are implementations of the two Data APIs defined
in the KAON Tool suite which are discussed before in subsection 8.4.

8.1 Management Core

The Management Core of an Application Server for the Semantic Web consists
of the management kernel, the registry and association management system
components. We will outline all of their implementations in the subsections
below.
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Kernel

In the case of the KAON SERVER, we use the Java Management Extensions
(JMX9) as it is an open technology and currently the state-of-the-art for
component management.

Java Management Extensions represent a universal, open technology for
management and monitoring. By design, it is suitable for adapting legacy
systems and implementing management solutions. Basically, JMX defines in-
terfaces of managed beans, or MBeans for short, which are JavaBeans10 that
represent JMX manageable resources. MBeans are hosted by an MBeanServer
which allows their manipulation. All management operations performed on the
MBeans are done through interfaces on the MBeanServer.

In our setting, the MBeanServer implements the kernel and MBeans im-
plement the components. Speaking in terms of JMX, there is no difference
between a system component and a functional component. Both are MBeans
that are only distinguished by the registry.

Registry

We implemented the registry as MBean and re-used one of the KAON modules
which have all been made deployable (cf. subsection 8.4). The main-memory
implementation of the KAON API holds the management ontology. When
a component is deployed, its description (usually stored in an XML file) is
reflected by an instance of the proper concept. A client can use the KAON
API’s query methods to discover the component it is in need of.

Association Management

The management ontology allows to express associations between components.
E.g., a dependency states that a given component requires the existence of
another component. Therefore the server has to load all required components
and be aware of the dependencies when unloading components. This essen-
tially requires to maintain the number of clients to a component. A component
can only be unloaded, if it does not have any further clients.

The JMX specification does not define any type of association manage-
ment aspect for MBeans. That is the reason why we had to implement this
functionality separately as another MBean. Apart from dependencies, it is
able to register and manage event listeners between MBeans A and B, so that
B is notified whenever A issues an event.

9 http://java.sun.com/products/JavaManagement/
10 http://java.sun.com/products/javabeans/
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8.2 Connectors

The KAON SERVER comes with four system components, i.e. MBeans, that
handle communication. First, there is an HTTP Adaptor from Sun that ex-
poses all of the kernel’s methods to a Web frontend. Additionally, we have
developed Web Service (using the Simple Object Access Protocol) and RMI
(Java Remote Method Invocation) connector MBeans. Both export the ker-
nel’s methods for remote access. Finally, we have developed a local connector
that embeds the KAON SERVER into the client application.

For the client side there is a surrogate object called RemoteMBeanServer
that implements the MBeanServer interface. It is the counterpart to one of the
three connector MBeans mentioned above. Similar to the CORBA stubs, the
application uses this object to interact with the MBeanServer and is relieved
of all communication details. The developer can choose which of the three
options (local, RMI, Web Service) shall be used by RemoteMBeanServer. In
addition, surrogate objects may be developed that relay the communication
to a specific MBean.

8.3 Interceptors

As explained in section 7, interceptors are software entities that look at a
request and modify it before the request is sent to the component.

In the kernel, each MBean can be registered with an invoker and a stack
of interceptors. A request received from the client is then delegated to the
invoker first before it is relayed to the MBean. The invoker object is respon-
sible for managing the interceptors and sending the requests down the chain
of interceptors towards the MBean. For example, a logging interceptor can
be activated to implement auditing of operation requests. An authorization
interceptor can be used to check that the requesting client has sufficient access
rights for the MBean.

Apart from security, invokers and interceptors are useful to achieve other
goals. E.g., when a component is being restarted, an invoker could block and
queue incoming requests until the component is once again available (or the re-
ceived requests time out), or redirect the incoming requests to another MBean
that is able to fulfill them.

8.4 Data APIs

The functionality described so far, i.e. the Management Core, Connectors and
Interceptors could be used in any domain not just the Semantic Web. In the
remaining subsections we want to highlight the specialties which make the
KAON SERVER suitable for ontologies that follow Semantic Web language
standards and the Semantic Web, in particular.

First, the KAON Tool suite has been made deployable. Two Semantic Web
Data APIs for updates and queries are defined in the KAON framework - an
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RDF API and an ontology data-oriented called KAON API. Their implemen-
tations result in functional components that are discussed in subsection 8.5.
Furthermore, we are currently developing functional components that enable
the semantic interoperation of Semantic Web ontologies (cf. section 4) as well
as an Ontology Repository. Several external modules (inference engines in
particular) are also deployable, as we have developed proxy components for
them. All of them are discussed in the remaining subsections. Before talking
about the API implementations and other functional components, the follow-
ing paragraphs describe the APIs briefly.

RDF API

The RDF API consists of interfaces for the transactional manipulation of
RDF models with the possibility of modularization, a streaming-mode RDF
parser and an RDF serializer for writing RDF models. The API features object
oriented representations of entities defined in [8] as interfaces. An RDF model
consists of a set of statements. In turn, each statement is represented as a
triple (subject, predicate, object) with the elements either being resources
or literals. The corresponding interfaces feature methods for querying and
updating those entities, respectively.

Ontology API

Our ontology data-oriented API, also known as KAON API, currently realizes
the ontology language described in [22]. We have integrated means for ontology
evolution and a transaction mechanism. The interface offers access to KAON
ontologies and contains classes such as Concept, Property and Instance. The
API decouples a client from actual ontology storage mechanisms.

8.5 Functional Components

The KAON API is implemented in different ways like depicted in figure 5. All
of the implementations have been made deployable and are discussed subse-
quently in more detail. We also included descriptions of additional functional
components, i.e. Ontology Repository, OntoLift, Semantic Interoperation and
finally external modules.

RDF Mainmemory Implementation

This implementation of the RDF API is primarily useful for accessing in-
memory RDF models. That means, an RDF model is loaded into memory
from an XML serialization on startup. After that, statements can be added,
changed and deleted, all encapsulated in a transaction if preferred. Finally,
the in-memory RDF model has to be serialized again in order to make changes
persistent.
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RDF Server

The RDF Server is an implementation of the RDF API that enables persistent
storage and management of RDF models. It uses a relational database whose
physical structure corresponds to the RDF model. Data is represented using
four tables, one represents models and the other one represents statements
contained in the model. The RDF Server uses a relational DBMS and relies
on the JBoss Application Server11 that handles the communication between
client and DBMS.

KAON API on RDF API

As depicted in figure 5, implementations of the ontological KAON API may
use implementations of the RDF API. E.g., the KAON API can be realized
using the mainmemory implementation of the RDF API for transient access
and modification of a KAON ontology.

Engineering Server

A separate implementation of the KAON API can be used for ontology engi-
neering. This implementation provides efficient implementation of operations
that are common during ontology engineering, such as concept adding and re-
moval by applying transactions. A storage structure that is based on storing
information on a metamodel level is applied here. A fixed set of relations is
used, which corresponds to the structure of the used ontology language. Then
individual concepts and properties are represented via tuples in the appropri-
ate relation created for the respective meta-model element. This structure is
well-suited for ontology engineering, where the number of instances (all repre-
sented in one table) is rather small, but the number of classes and properties
dominate. Here, creation and deletion of classes and properties can be realized
within transactions.

Integration Engine

Another implementation of the KAON API is currently under development
which lifts existing databases to the ontology level. To achieve this, one must
specify a set of mappings from some relational schema to the chosen ontology,
according to principles described in [23]. E.g. it is possible to say that tuples of
some relation make up a set of instances of some concept, and to map foreign
key relationships into instance relationships.

Ontology Repository

One optional component currently developed is a Ontology Repository, al-
lowing access and reuse of ontologies that are used throughout the Semantic
Web, such as WordNet for example. Within the WonderWeb project several
of them have been developed [4].

11 http://www.jboss.org
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Engineering
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Fig. 5. KAON API Implementations

OntoLift

Another component realized in WonderWeb is OntoLift aiming at leveraging
existing schema structures as a starting point for developing ontologies for
the Semantic Web. Methods have been developed for deriving ontology struc-
tures for existing information systems, such as XML-DTD, XML-Schema,
relational database schemata or UML specifications of object-oriented soft-
ware systems. The Lift tool semi-automatically extracts ontologies from such
legacy resources.

Semantic Interoperation

A functional component already developed, realizes the OWL Lite language on
top of a SQL-99 compliant database system [3]. In addition, several others will
later allow semantic interoperation between different types of ontology lan-
guages as a response to the requirement put forward in section 4. We already
mentioned RDFS, OWL Lite, OWL DL and OWL Full in the introduction.
Besides, there are older formats, like DAML+OIL and also proprietary ones
like KAON ontologies [22]. It should be possible to load KAON ontologies
into other editors, like OILEd [11], for instance. Information will be lost dur-
ing ontology transformation as the semantic expressiveness of the respective
ontology languages differ.

External Modules

External modules live outside the KAON SERVER. Proxy components are de-
ployed and relay communication. Thus, from a client perspective, an external
module cannot be distinguished from an actual functional component. At the
moment we are adapting several external modules: Sesame [16], Ontobroker
[6] as well as a proxy component for description logic classifiers that conform
to the DIG interface12, like FaCT [15] or Racer[7].

9 Related Work

Several systems approach some ideas relevant for an Application Server for
the Semantic Web. However, all of them focus on RDF(S) or on ontology

12 Description Logic Implementation Group, http://dl.kr.org/dig/
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languages not specific to the Semantic Web and cannot be extended very
easily.

RDFSuite [10] is provided by ICS-Forth, Greece with a suite of tools for
RDF management, among those is the so-call RDF Schema specific Database
(RSSDB) that allows storing and querying RDF using RQL. For the imple-
mentation of persistence an object-relational DBMS is exploited. It uses a
storage scheme that has been optimized for querying instances of RDFS-based
ontologies. The database structure is tuned towards a particular ontology
structure.

Sesame [16] is a RDF Schema-based repository and querying facility de-
veloped by Aidministrator Nederland bv as part of the European IST project
On-To-Knowledge. The system provides a repository and query engine for
RDF data and RDFS-based ontologies. It uses a variant of the RDF Query
Language (RQL) that captures further functionality from RDFSchema spec-
ification when compared to the RDFSuite RQL language. Sesame shares its
fundamental storage design with RDFSuite.

Stanford Research Institute’s OKBC (Open Knowledge Base Connectiv-
ity) is a protocol for accessing knowledges bases (KBs) stored in Knowledge
Representation Systems (KRSs) [2]. The goal of OKBC is to serve as an inter-
face to many different KRSs, for example, an object-oriented database. OKBC
provides a set of operations for a generic interface to underlying KRSs. The in-
terface layer allows an application some independence from the idiosyncrasies
of specific KRS software and enables the development of generic tools (e.g.,
graphical browsers and editors) that operate on many KRSs.

The Ontolingua ontology development environment [1] provides a suite
of ontology authoring tools and a library of modular, reusable ontologies.
The tools in Ontolingua are oriented toward the authoring of ontologies by
assembling and extending ontologies obtained from a library.

Developed by the Hewlett-Packard Research, UK, Jena [18] is a collection
of RDF tools including a persistent storage component and a RDF query
language (RDQL). For persistence, the Berkley DB embedded database or
any JDBC-compliant database may be used. Jena abstracts from storage in a
similar way as the KAON APIs. However, no transactional updating facilities
are provided.

Research on middleware circles around so-called service oriented archi-
tectures (SOA)13, which are similar to our architecture, since functionality
is broken into components - so-called Web Services - and their localization
is realized via a centralized replicating registry (UDDI)14. However, here all
components are stand-alone processes and are not manageable by a centralized
kernel. The statements for SOAs also holds for previously proposed distributed

13 http://archive.devx.com/xml/articles/sm100901/sidebar1.asp
14 http://www.uddi.org/
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object architectures with registries such as CORBA Trading Services [12] or
JINI15.

Several of today’s application servers share our design of constructing a
server instance via separately manageable components, e.g. the HP Applica-
tion Server16 or JBoss17. Both have the Microkernel in common but follow
their own architecture which is different from the one presented in our paper.
JBoss wraps services like databases, Servlet and Enterprise JavaBeans con-
tainers or Java Messaging as components. HP applies its CSF (Core Services
Framework) that provides registry, logging, security, loader, configuration fa-
cilities. However, whether JBoss nor HP AS deliver ontology-based registries,
association management nor are they suitable for the Semantic Web, in par-
ticular.

10 Conclusion

This article presented the requirements and design of an Application Server
for the Semantic Web as well as an implementation - the KAON SERVER. It
is part of the open-source Karlsruhe Ontology and Semantic Web Tool suite
(KAON). From our perspective, the KAON SERVER will be an important
step in putting the Semantic Web into practice. Based on our experiences
with building Semantic Web applications we conclude that such a server will
be a crucial cornerstone to bring together so far disjoint components.

KAON SERVER still is work in progress. We are currently developing
aforementioned functional components like the Ontology Repository, Semantic
Interoperation, OntoLift. The Web Service connector will be enhanced by
semantic descriptions whose source is the registry. In the future, we envision
to integrate means for information quality - a field of research that deals with
the specification and computation of quality criteria. Users will then be able to
query information based on criteria like “fitness for use”, “meets information
consumers needs”, or “previous user satisfaction” [5]. We will also support
aggregated quality values, which can be composed of multiple criteria.
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