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Deep learning (DL) has achieved breakthrough successes in various tasks, owing to its layer-by-layer information processing and
sufcient model complexity. However, DL sufers from the issues of both redundant model complexity and low interpretability,
which are mainly because of its oversimplifed basic McCulloch–Pitts neuron unit. A widely recognized biologically plausible
dendritic neuron model (DNM) has demonstrated its efectiveness in alleviating the aforementioned issues, but it can only solve
binary classifcation tasks, which signifcantly limits its applicability. In this study, a novel extended network based on the
dendritic structure is innovatively proposed, thereby enabling it to solve multiple-class classifcation problems. Also, for the frst
time, an efcient error-back-propagation learning algorithm is derived. In the extensive experimental results, the efectiveness and
superiority of the proposed method in comparison with other nine state-of-the-art classifers on ten datasets are demonstrated,
including a real-world quality of web service application.Te experimental results suggest that the proposed learning algorithm is
competent and reliable in terms of classifcation performance and stability and has a notable advantage in small-scale dis-
equilibrium data. Additionally, aspects of network structure constrained by scale are examined.

1. Introduction

In recent years, deep learning (DL) has dominated the re-
search feld of artifcial intelligence (AI) and achieved
dramatic successes in terms of speech recognition, protein
structure prediction, drug discovery, image and video
processing, and others. [1]. At present, the mainstream deep
learning models are mostly constructed based upon neural
networks, referring to multiple-layered parameterized
McCulloch–Pitts neurons inspired by the biological neuron
[2]. Neural networks as black boxes are not only extensively
studied in the feld of artifcial intelligence but also highly
applied to the industry of information technology [3, 4]. Te
appearance of deep neural networks pushes the development
of neural networks to a new peak. However, given the
numerous difculties and problems they face, including the
lack of a theoretical foundation for explanation [5, 6],

fairness [7, 8], and causal discovery [9, 10], neural networks
tend to become stuck in a relatively inert state. In pace with
the increasing attention of interpretative theory, it is es-
sential to urgently require newer and better discoveries and
more valuable research orientations to avoid blindness for
the promotion of scientifc and technological progress.

From the perspective of understanding the mechanics of
artifcial neural networks, various methods and contribu-
tions are introduced [11, 12]. Trough the application of the
Monte Carlo simulation for quantifying the variable’s im-
portance, Olden et al. justifed the rightness of the con-
nection weight calculation method in neural networks [13].
Statistics pointed out that Sarle et al. proclaimed the rela-
tions between neural networks and the generalized linear
model, maximum redundancy analysis, projection tracking,
clustering analysis, and other statistical models and also
transformed terms in neural networks into statistical terms
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[14]. Similarly, certain relations between artifcial neural
networks and statistical methods were proposed in [15].

Despite putting forward the abovementioned studies, the
bottleneck of neural networks is not addressed. Originating
from the simulation of neurons in biological concepts, the
artifcial neural network takes artifcial neurons as nodes to
construct a complete conduction structure. As a basic infor-
mation processing unit, the neuron is formed by a dendrite, cell
body (soma), axon, and synapse, as shown in Figure 1(a). To be
specifc, the dendrite receives information from the outside
world, the cell body processes the information, and the axon
and synapse transmit the signal and pass it on to other neurons,
respectively [16]. Te structure of biological neurons can be
traced back to the 1940s, when McCulloch and Pitts jointly
published the abstract neuron model McCulloch–Pitts (MP)
[17] for the frst time, as illustrated in Figure 1(b).Ten, in 1949,
the Hebb rule [18] was proposed based on the theory of the
variability of synapse connections of neurons within the human
brain. Te adjusting weight method was introduced into ma-
chine learning, thereby laying the foundation for the learning
algorithms.

Inspired by the structure of biological neurons and MP,
Todo et al. proposed the dendritic neural model (DNM) [19].
Diferent from the traditional neural network model, the
dendritic neural model is designed based on neuron con-
duction and single neuron. DNM obtains the support of the
biological theory to simulate the biological neuron. Fur-
thermore, DNM compensates for some defects of the ho-
mologous perceptron model, such as the inability to solve
the XOR problem. At the same time, the novel study of the
human brain [20] is also brought about.

As a classifer, shown in Figure 1(c), DNM has been
applied to various classifcation problems. For example, Sha
et al. classifed the breast cancer dataset, and Jiang et al.
detected the liver disorder [21] for assisted disease diagnosis.
Apart from the development of medical aid applications, an
unconventional method was also applied to the fnancial
feld. To improve the classifcation performance, meta-
heuristic algorithms were introduced to train the hyper-
parameters of DNM [22, 23].Trough the use of the decision
tree, Luo et al. initialized the model to realize better efec-
tiveness [24]. For solving a generalized large-scale classif-
cation problem, Jia et al. suggested a reconciliation method
with DNMby using a particle antagonismmechanism, and Ji
et al. proposed a DNM-based multiobjective evolutionary
algorithm [25]. In terms of feature selection, Song et al.
addressed the high-dimensional challenge [26], and Gao
et al. also showed the expansibility and fexibility of DNM for
diverse applications [27]. Utilizing the multiplication op-
eration that is useful to the information processing for a
single neuron, the computing in synapses is imaginatively
described using sigmoid functions. It is advantageous to
establish the morphology of a neuron by determining the
values of the parameters in synapses since the output of
synapses can efectively represent signals. Nevertheless, it is
noted that the single neuron is limited in partial application
scenarios. In [28], the binary classifcation results of DNM
were incorporated to undertake multiple classifcation tasks
and thus recognize the multiclassifcation datasets.

By adopting the quality of service (QoS) as the evaluation
dataset, this study implements the multiclassifcation of web
service selection. QoS is defned as the fact that a network
utilizes a range of basic technologies to provide superior
service capabilities for the designated network communica-
tion [29]. As a security mechanism of the network and a
technology, QoS is carried out to deal with network delay [30],
blocking [31], and other problems. For a general situation, the
common network bandwidth as a signifcant metric is in-
stanced in order to illustrate QoS. When the standard of
service quality has not appeared, the network environment
treats all services and applications in an equal way, resulting in
a disordered situation, as shown in Figure 2(a) where the
colored area stands for diferent web services and applica-
tions. In other words, when a network device does not have
the capacity of QoS, the network environment will be
threatened, and a bottleneck will be created [32]. As shown in
Figure 2(b), prioritization from the perspective of QoS pro-
vides a more orderly, efcient, and stable network environ-
ment. QoS contains a set of nonfunctional attributes, which is
the measure and criteria of such characteristics of the web
services, such as reliability and response time, to efectively
classify and sort diferent services.

Web services refer to some software modules running on
the network, which are service-oriented and based on dis-
tributed programs. Due to the fact that the web service employs
general Internet standards, such asHTTP andXML (a subset of
the standard generalizedmarkup language) [33], human beings
then have access to data on the web via various terminal devices
in various places. In this article, the described web service is
diferent from the common network application. It generally
refers to some application modules, such as the network
protocol and method, which is the basis of network applica-
tions. With the development of the Internet, many candidate
services have implemented the same task, and most of them
have the same functions but diferent nonfunctional charac-
teristics. As a result, these services are divided into diferent
service quality levels. Overlapping is seen to be inevitable
because of the existence of a wide range of web services on the
network. Based on the QoS, web service selection is considered
an efective solution [34]. As network technology and opera-
tion concepts develop rapidly, web services are becoming the
latest technology and development trend for constructing
distributed, modular, and service-oriented applications.

Based on DNM, this article proposes a multiple dendritic
neural network (MDNN) with multiple single neurons to
achieve the multiclassifcation of web service selection based
on QoS. To adjust the multiclassifcation mechanism, the
structure of DNM introduced in Figure 3 is reconstructed.
For the purpose of accelerating the gradient descent and
improving the multiclassifcation accuracy, the back-
propagating algorithm and adaptive moment estimation
optimization are derived for the frst time. Experiments are
carried out on the Quality of Web Service dataset and nine
UCI multiclassifcation datasets [35]. In the comparison
between MDNN and nine state-of-the-art classifers, the
superiority of the proposed method is demonstrated.

Te contributions are majorly classifed into the aspects
as follows: 1) a novel multiple single-neuron neural network
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for multiclassifcation tasks is developed. 2) Te potential
and application scenarios of the dendritic neural network are
explored. 3) A new approach for QoS-driven web service
selection is proposed.

Given as follows is the organization of the remaining
parts of this article: Section 2 presents the structure of the
multiple dendritic neural networks. Section 3 elaborates on
the learning processes of the proposed method and ex-
pounds on the optimization strategies. Te comparison with
other algorithms and experimental results are shown in
Section 4. At last, Section 5 concludes the paper and for-
mulates future work.

2. The Dendritic Neuron Network-Based
Multiclassifier Approach

Te proposed multiclassifer is constructed by multiple single
neurons.Te general architecture is shown in Figure 4. As for
each neuron, xi, the input of the model is preprocessed by
using a nonlinear sigmoid flter. To diferentiate neurons, the

function introduces the subscript j, which is defned as
follows:

Yj,i,m �
1

1 + e
− wj,i,mxi− qj,i,m( 

, (1)

where i is the number of attributes of the sample, m is the
number of nodes within the hidden layer, and j is the
number of classifcations of output results. In addition, the
weight wj,i,m and threshold qj,i,m denote the neural network
parameters in the training stage and are randomly initialized
within (0, 0.01) and 0, respectively.

In contrast to the perceptron model, a quadrature
method is adopted for the hidden layer to not only rule out
the inhibited neuronal excitation but also enhance the ac-
tivated neuronal excitation. Te formula is described as
follows:

Zj,m � 
i�1

Yj,i,m, (2)

Vj � 
m�1

Zj,m. (3)

Eq. (2) means that all of the hidden layers are activated,
which is equivalent to a logical AND. Eq. (3) is equivalent to
a logical OR where all inhibited neuronal excitations from
the former layer are suppressed exclusively and the rest are
reactivated. As a result, the multiclassifcation structure of
multiple neurons is formed.

Apart from the dendritic mechanism, MDNN utilizes
the normalized exponential function to output fnal results.
For ease of consistency in representation, the illustrated style
of the normalized exponential function is followed. To be
noted, the output of multiple neurons is processed by all
information from the previous layer instead of being directly
conveyed, expressed as follows:

(a) (b)

Figure 2: (a) Te network is disordered without QoS rules. (b) Te network is in order with QoS rules.
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Figure 1: (a) Te function of a biological neuron is completely diferent depending on the shape of its dendrites and the location of its
synapses. (b) McCulloch–Pitts neuron model: no interaction in dendrite morphology and dendrites. (c) Single dendritic neural model:
faithful representation of dendrite morphology and dendrites fxated on binary classifcation.
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Figure 3: Multiple dendritic neural networks: applied on com-
prehensive applications based on the dendritic structure.
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Oj �
e

Vj

j�1e
Vj

, (4)

where Oj is the possibility of the prediction for each class.
Te normalized exponential function converts the output
value of the upper layer, Vj, to the probability distribution
with the range of [0, 1], and the sum of the probability values
of each neuron being 1.Te formula frst converts the results
Vj into an exponential function, ensuring the nonnegative
probability, and then normalizes the probability values into
1.

Since the prediction result follows the rules of the
probability distribution, the cross-entropy function as the
loss function is considered a proper substitute for mean
square error, which is defned as follows:

Ej � − 
j�1

Tj ∗ logOj, (5)

where Ej represents the similarity of probability distribution
between the prediction of the model and the actual classi-
fcation and Tj is the actual classifcation label.

3. Learning Mechanism and
Optimization Strategies

Te existing learning algorithms cannot be directly applied
since MDNN is a new dendritic neuron model containing
multiplication operators in its calculation. Accordingly, in
this section, we for the frst time derive the learning algo-
rithms for our proposed MDNN, specifcally one is the
traditional error backpropagation, and the other is an
Adam-like learning algorithm.

3.1. Backpropagation. In the course of learning samples, the
model is promoted by the stochastic gradient descent of
parameters wj,i,m and qj,i,m, which is described as follows:

w
t
j,i,m � w

t−1
j,i,m − η∆wj,i,m,

q
t
j,i,m � q

t−1
j,i,m − η∆qj,i,m,

(6)

where η as the learning rate is a positive constant. t and t − 1
denote the current iteration and the previous iteration in the
training stage, respectively.

Te error of the proposed MDNN is calculated by the
cross-entropy function. According to the calculated error,
the error backpropagation algorithm is introduced as the
learning scheme. In backpropagation, all the samples or a
batch of samples are involved. To better realize intuition, the
relation among layers is shown in Figure 5.
∆wj,i,m and ∆qj,i,m are expressed by the partial diferential

form as follows:

∆wj,i,m �
zEj

zOj

zOj

zVj

zVj

zZj,m

zZj,m

zYj,i,m

zYj,i,m

zwj,i,m

,

∆qj,i,m �
zEj

zOj

zOj

zVj

zVj

zZj,m

zZj,m

zYj,i,m

zYj,i,m

zqj,i,m

.

(7)

Since the model is trained by batches, ∆wj,i,m and ∆qj,i,m

obtained by the gradient descent are fnally calculated as
follows:

∆wj,i,m �
∆wj,i,m

N
,

∆qj,i,m �
∆qj,i,m

N
,

(8)

where N denotes the size of input data within the current
iteration.

Following the chain rule, the derivation procedures and
results are presented according to the backpropagation.
Firstly, the partial diferential of error E is calculated. By the
empirical evidence of normalized exponential function,
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Figure 4: Te structure of the proposed MDNN. Te framed rectangle represents the structure of a single neuron.
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zEj/zOj and zOj/zVj are computed collectively instead of
computing them separately.

Te forward propagation for the multiclassifcation is
not directly corresponding. Tus, the derivation of error E is
discussed in Cases (1) and (2). To avoid confusion, the
subscripts of V and O are redefned as m and n, respectively.
Teir relation is simplifed as follows:

Vm⟵On⟵En. (9)

On the basis of Equations. (5) and (4), when n � m, there
is Case (1):

zEn

zVm

�
zEn

zOn

zOn

zVm

,

� −Tn

1
On

On 1 − On(  ,

� −Tn 1 − On( .

(10)

When n≠m, there is Case (2):

zEn

zVm

� − 
n≠m

Tm

1
Om

−OnOm( 

� 
n≠m

TmOn.

(11)

We incorporate Cases (1) and (2) into the following
formula:

zEn

zVm

� −Tn 1 − On(  + 
n≠m

TmOn,

� −Tn + TnOn + 
n≠m

TmOn,

� On Tn + 
n≠m

Tm
⎛⎝ ⎞⎠ − Tn,

� On − Tn.

(12)

Tus, zEj/zVj is expressed as follows:

zEj

zVj

�
zEj

zOj

zOj

zVj

� Oj − Tj. (13)

For the rest layers of MDNN, they are derived according
to Equations. (3) and (2) as follows:

zVj

zZj,m

� 1, (14)

zZj,m

zYj,i,m

�
Zj,m

Yj,i,m

. (15)

Taking the derivative of Equation. (1) with the sigmoid
function, zYj,i,m/zwj,i,m and zYj,i,m/zqj,i,m are obtained as
follows:

zYj,i,m

zwj,i,m

� xi · Yj,i,m 1 − Yj,i,m ,

zYj,i,m

zqj,i,m

� −Yj,i,m 1 − Yj,i,m .

(16)

3.2. Adam-Like Optimization. For improving the conver-
gence and classifcation ability of the proposed model, in-
spired by the well-known adaptive moment estimation
(Adam) [36], an Adam-like learning algorithm forMDNN is
also introduced to accelerate the gradient descent without
diverging. Te way of updating weights in each iteration is
optional. Te traditional way mentioned in Section 3.1 or
Adam can be altered according to the user’s setting.

As an extended optimization strategy of stochastic
gradient descent (SGD) [37], momentum [38, 39] is in-
troduced to reduce the oscillation and accelerate the gradient
descent. Te fundamental concept of gradient descent with
momentum lies in updating the weight by calculating the
exponentially weighted average of the gradient as follows:

v∆wj,i,m
� αv∆wj,i,m

+(1 − α)∆wj,i,m, (17)

v∆qj,i,m
� αv∆qj,i,m

+(1 − α)∆qj,i,m, (18)

where α is a positive constant to smooth out the gradient
descent process. Intuitively, ∆wj,i,m and ∆qj,i,m are inter-
preted as the acceleration in physics. v∆wj,i,m

and v∆qj,i,m
are

regarded as the velocity, and α is seen as the friction. In
addition, ∆wj,i,m and ∆qj,i,m accelerate the gradient descent
and gain the velocity ∆wj,i,m and ∆qj,i,m, and the friction α
prevents the acceleration.

In this case, the updates of parameterswj,i,m and qj,i,m are
modifed as follows:

w
t
j,i,m � w

t−1
j,i,m − ηv∆wj,i,m

, (19)

q
t
j,i,m � q

t−1
j,i,m − ηv∆qj,i,m

. (20)

Serving as a crucial part of Adam, the root mean square
prop (RMSprop) [40] auxiliary accelerates the gradient
descent as follows:

u∆wj,i,m
� βv∆wj,i,m

+(1 − β)∆w
2
j,i,m, (21)

where β is a positive constant similar to α. wj,i,m is calculated
as follows:

Yjim Zjm Vj Oj

Ej

wjim

qjim
Xi

Figure 5: Te relation among layers.
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w
t
j,i,m � w

t−1
j,i,m − η

∆wj,i,m
�����
v∆wj,i,m

 . (22)

Similarly, u∆qj,i,m
is obtained by

u∆qj,i,m
� βv∆qj,i,m

+(1 − β)∆q
2
j,i,m, (23)

q
t
j,i,m � q

t−1
j,i,m − η

∆qj,i,m
�����
v∆qj,i,m

 . (24)

In order to avoid the bias of exponentially weighted
average in the initial learning stage, Equations. (17), (18),
(21), and (23) are modifed to obtain more accurate results as
follows:

v
∆wj,i,m

corr �
v∆wj,i,m

1 − αt ,

v
∆qj,i,m

corr �
v∆qj,i,m

1 − αt ,

u
∆wj,i,m

corr �
u∆wj,i,m

1 − βt ,

u
∆qj,i,m

corr �
u∆qj,i,m

1 − βt .

(25)

For the acceleration of the gradient descent, Adam
combines RMSprop with momentum. Tus, based on
Equations. (23) and (24), the parameter updating equations
optimized by Adam are expressed as follows:

w
t
j,i,m � w

t−1
j,i,m − η

v
∆wj,i,m

corr
������

u
∆wj,i,m

corr



+ ε

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

q
t
j,i,m � q

t−1
j,i,m − η

v
∆qj,i,m

corr
�����

u
∆qj,i,m

corr



+ ε

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(26)

where ε is an infnitesimal so as to prevent the computation
overfow.

4. Experimental Evaluation

4.1. Experimental Setup. Te quality of web service (QWS)
dataset [41, 42] is a real-world dataset based on the quality of
service. Several versions of QWS are available. In this study,
experiments use the original version, which consists of 364 web
services. Its quality is described by a total of 10 nonfunctional
attribute indexes.Te QWS dataset divides the web service into
4 levels from the highest to the lowest, which are platinum, gold,
silver, and bronze.

To avoid overftting while improving the accuracy of
results, data preprocessing strategies are adopted in the
experiments. Te raw data are normalized by using the rule
of standardization:

x �
x − x

σ
. (27)

Moreover, the normalized data are randomly divided
into three parts: 70 percent for the training process, 15

percent for the testing process, and the remaining data for
the validation, to reduce unnecessary time consumption.

4.2. Optimal Parameter Settings. All of the hyperparameters
are illustrated in Table 1, which presents their description
and values. Sigmoid, tanh, Rectifed Linear Unit (ReLU), and
Leaky ReLU are available to freely choose the suitable active
function. For large datasets, the samples are divided into
mini-batch and shufed for the gradient descent during the
training stage. If batchsize is equal to the number of samples
during the iteration, then the batch gradient descent will be
executed.

However, it is tricky to determine the epoch size. To
enable the model to reach optimal performance, a self-
adaptive appending training epoch is arranged in the
training stage according to the convergence of the validation
process. Beginning with the default confguration, the epoch
then adaptively increases pivoting on whether the gradient
descent is approaching stagnation. At the same time, the
initial value is set to 100 to avoid a higher epoch causing the
time consumption. For general neural networks, experi-
mental results are highly afected by the combination of
parameters. Terefore, parameters, which are batchsize, M,
η, and precision, are adjusted by the orthogonal experiment
with 4 factors and 3 levels. Te specifc design is listed in
Table 2. Te optimal parameters of MDNN for QWS are
fnally shown in Table 3. Te other parameters comply with
the setting in Table 1.

4.3. Performance andDiscussion. Tis section is divided into
two subsections: experimental results of QWS analyzed by a
variety of evaluation indicators are elaborated in Section
4.3.1, and Section 4.3.2 compares the proposed model with
other multiclassifcation methods to demonstrate the
prominent superiority of the proposed model.

4.3.1. Experimental Results. For the comprehensive per-
formance evaluation of MDNN, the following statistical
indicators are used: precision, recall, F1 score, accuracy, and
area under the curve (AUC) [43]. It is worth noting that the
precision refers to the classifcation precision. For not only
the convenience of the intuitive evaluation but also the
justifcation of the following comparison, the macroaverage,
which is the arithmetic average of performance indicators of
all categories instead of instances, is adopted to statistically
process classifcation results.

Table 4 shows the classifcation results of MDNN on the
4-class QWS dataset. Te average values and optimum
values represent the classifcation performance of MDNN.
Although the dataset is technically unbalanced, such as the
number of classes of QWS in Table 5, the stability and
generalization ability of MDNN are considered to be ef-
fectively validated.

Te fve statistical indicators suggest that the classif-
cation achieved by MDNN for each class is efective, stable,
and reliable. In their mean values, it is indicated that MDNN
has good classifcation performance. Te gradient descent
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optimization strategy efectively reduces the errors. More-
over, MDNN accelerates the gradient descent to maintain a
continuous downward trend, thereby fnally guaranteeing
the generalization and robustness of MDNN.

4.3.2. Comparison of Methods. To further verify the ef-
ciency of MDNN, nine classifers in total are used to
compare with MDNN on nine multiclassifcation datasets
from the UCI machine learning repository and the QWS
dataset. Te information of datasets and parameter settings
of MDNN are listed in Table 5. Te nine classifers consist of
BP, SVM, KNN, CART, naı̈ve Bayes, LDA, QDA, J48, and
random forest [44]. In addition, the ten datasets include Iris,
Wine, Vehicle, Balance scale, CMC, Seed, Vowel, Tyroid,
Robot navigation, and QWS.

Experimental results are shown in Table 6 where the best
result for each dataset among all compared methods is
highlighted in bold. According to fve statistical indicators, it
can be found that MDNN has the most optimal values in

comparison with other classifers. On the Iris, Wine, Seed,
and Tyroid datasets, MDNN gives the best performance,
with perfect outcomes of 100 percent correctness. Also,
MDNN performs well with unbalanced data such as Vowel,
Tyroid, and QWS. As a result, MDNN’s classifcation
performance is more constant than that of other methods.
Nevertheless, MDNN appears to have a minor disadvantage
on the large datasets, such as Balance scale, Vehicle, CMC,
and Robot navigation, which seem to be constrained by the
distribution of the network structure. In the comparison
between MDNN and other classifers, the superiority and
efectiveness of the multiple dendritic neuron structure are
verifed.

Te receiver operating characteristic (ROC) curves of ten
multiclassifcation methods show the correct classifcation
coverage of each class of the QWS dataset in Figure 6. It can
be found that MDNN not only has a consistent performance
on each class of QWS but also outperforms the other
classifers, thus indicating the efectiveness and stability of
MDNN for the QWS classifcation and unbalanced multi-
classifcation applications. Besides, experiments also dem-
onstrate the efciency and superiority of MDNN in terms of
classifcation performance and stability.

4.4. Morphology and Logical Circle Realization. For the
display of a data sample, the shufe operation set in the
pretraining period is at disposal. According to the initiali-
zation of wj,i,m and qj,i,m within Section 2, the synapses were
calculated around 0.5 in the previous state. Trough the

Table 1: Hyperparameters in the experiments.

ID Parameters Description Default
1 activation Activation function Sigmoid
2 k Parameter for Leaky ReLU 0.01
3 time Operation times 30
4 η Learning rate 0.01
5 M Number of nodes for the hidden layer 5
6 epoch Training epoch 100
7 batchsize Mini-batch size for training 100
8 precision End the training if reaching the precision 0.1
9 Adam Active or inactive the optimization 1
10 α Parameter for Adam 0.9
11 β Parameter for Adam 0.999
12 epsilon Parameter for Adam 1e-8

Table 2: Orthogonal experimental design of hyperparameters with L9(34) for QWS.

No. batchsize M precision η
1 120 4 0.01 0.005
2 120 5 0.02 0.008
3 120 6 0.05 0.01
4 240 4 0.02 0.01
5 240 5 0.05 0.005
6 240 6 0.01 0.008
7 364 4 0.05 0.008
8 364 5 0.01 0.01
9 364 6 0.02 0.005

Table 3: Optimal parameter settings for QWS.

ID Parameters Optimal Adaptive/Not adaptive
1 batchsize 364 Not adaptive
2 precision 0.01 Not adaptive
3 M 5 Not adaptive
4 η 0.01 Not adaptive
5 epoch 100 Adaptive

Computational Intelligence and Neuroscience 7



training stage, the weights wj,i,m and qj,i,m were gradually
stabilized. As shown in Figure 7, synaptic changes, thus,
yield to accomplish the pruning of the redundant network
structure.

It can be easily observed that neuron 1, neuron 2, and
neuron 4 are fully inhibited in accordance with the rule of

Equation. (2) and Equation. (3). Consequently, the structure
of neuron 1, neuron 3, and neuron 4 is ruled out. To specify
the states of dendrites, a total of four scenarios are listed as
follows:

dendritic state �

constant − 1 connection, when qj,i,m <wj,i,m < 0 or qj,i,m < 0<wj,i,m,

constant − 0 connection, when 0<wj,i,m < qj,i,m orwj,i,m < 0< qj,i,m,

excitatory connection, when 0< qj,i,m <wj,i,m,

inhibitory connection. whenwj,i,m < qj,i,m < 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

For the remainder neuron, the residual dendrite mor-
phology is formed in Figure 8(a), which places the line of
dashes indicating pruning. As mentioned previously in
Section 2, logic-based inherent relations have existed within
dendritic structures. Finally, since constant-1 holds no
substantive impact on the attributes, the connections among

dendrites are equivalent to logic OR. Tus, the hardware
realization is transformed as illustrated in Figure 8(b), where
the multiplexer is a 1 : 2 numerical compactor. In addition to
showing the extendibility of MDNN, the overhead also
indicates that MDNN can avoid overftting by increasing the
dendritic matrix sparsity.

Table 4: Average and optimum values of classifcation results of MDNN for QWS.

Platinum Gold Silver Bronze Mean values

Precision (Average) 99.44 98.48 98.92 99.55 99.10
(Optimum) 100.00 100.00 100.00 100.00 100.00

Recall (Average) 96.52 99.72 99.46 98.81 98.63
(Optimum) 100.00 100.00 100.00 100.00 100.00

F1 (Average) 97.73 99.05 99.16 99.15 98.77
(Optimum) 100.00 100.00 100.00 100.00 100.00

Accuracy (Average) 99.58 99.52 99.45 99.52 99.52
(Optimum) 100.00 100.00 100.00 100.00 100.00

AUC (Average) 99.11 99.71 99.92 99.97 99.68
(Optimum) 100.00 100.00 99.85 100.00 99.96

Table 5: Description of datasets and parameter settings of MDNN.

Datasets Instances Number of features Number of classes Size of classes M η
Iris 150 4 3 50, 50, 50 4 0.01
Wine 178 13 3 59, 71, 48 5 0.01
Vehicle 846 18 4 199, 217, 218, 212 10 0.02
Balance scale 625 4 3 49, 288, 288 12 0.01
CMC 1473 9 3 629, 333, 511 20 0.03
Seed 210 7 3 70, 70, 70 5 0.01
Vowel 871 3 6 72, 89, 172, 151, 207, 180 6 0.01
Tyroid 215 5 3 150, 35, 30 4 0.01
Robot navigation 5456 24 4 82, 620, 972, 205, 329 30 0.02
QWS 364 10 4 41, 100, 120, 103 5 0.01
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Figure 7: Dendritic changes in the structure of randomly selected samples before and after network training were applied to the QWS
dataset. Z-axis represents the neuron, and X-axis and Y-axis are attributes and hidden layers, respectively.
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Figure 6: (a) Te comparison of receiver operating characteristic curves for the platinum class of the QWS dataset. (b) Te comparison of
receiver operating characteristic curves for the gold class of the QWS dataset. (c) Te comparison of receiver operating characteristic curves
for the silver class of the QWS dataset. (d) Te comparison of receiver operating characteristic curves for the bronze class of the QWS
dataset.
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5. Conclusion and Future Directions

Tis article puts forward a novel extended network of
dendritic neurons, namely, the multiple dendritic neural
network (MDNN).Te architecture of MDNN is completely
diferent from the previous DL models which are based on
MP neuron models. By deriving its new learning algorithms,
MDNN is for the frst time able to resolve the multi-
classifcation problems in comparison with previous single
dendritic neuron models. Besides, we propose an approach
to improve the interpretability of artifcial neural networks
with the theoretical support of neuroscience. Experiments
are mainly carried out on a QoS-related application. In the
comparison between MDNN and other classifers, the su-
perior performance of the proposed model is shown, and
MDNN is also highly advantageous to small-scale unbal-
anced data. In view of this, the performance and efciency of
the proposed neural network are limited by scale. In the
follow-up work, the defciency of this experiment will be
made up to improve the generalization ability [45, 46] and
study the capabilities and limitations. Meanwhile, the ex-
ploration of applicable domains for MDNN will be con-
ducted in the following aspects: 1) expanding research on
more computer-related data mining to solve practical en-
gineering problems, such as quality of service of mobile
networks [47] and security bug report [48, 49]; 2) practicing
in other forms of data structures, e.g., semantic [50]; 3)
focusing on the unbalanced data [51] and simplifying the
network structure adequately [52] with the practice.
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