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Liapounoff2 established in 1940 that the range of a countably addi-

tive finite measure with values in a finite-dimensional real vector

space is bounded and closed and in the nonatomic case convex. A

simplified proof of this result was given by Halmos* in 1948. The

aim of the present paper is to extend this result to the following

case. Let ßa, l^i^k, 1^/^Mí, be a set of countably additive,

finite measures. If {(Eu E2, ■ ■ ■ , Ek)} is the totality of decompositions

of a space X into k pairwise disjoint measurable sets, the range R of

the vectori/'withcomponents/i,i(£j), t = l, 2, • • • ,k,t = l,2, • ■ •, n,-,

is bounded, closed, and in the nonatomic case convex.

Let X be any set and let S be a <r-field of subsets of X (called the

measurable sets of A). A measure ß (one-dimensional) is non-negative

if ß(E) 2:0 for every EES ; ß*(E) will denote the total variation of ß

on E.4 The measure ß is absolutely continuous with respect to the

measure v if ß and v are defined on S and ß*(E) =0 for every EES

for which v*(E)=0. A necessary and sufficient condition that ß be

absolutely continuous with respect to v is that for every e>0 there

exist a 5>0 such that ß*(E) <e for all EES so that v*(E) <b. {£,},

¿=1,2, • • • , k, is said to be a decomposition of F if the E¡ are pair-

wise   disjoint   measurable  subsets   of  X  and   Ui£< = F.   Let ju«,
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1 The extension of Liapounoff's result was obtained by a different method and

previous to the writing of this paper by A. Dvoretzky, A. Wald, and J. Wolfowitz as

a by-product of the proof of another theorem. A generalization of this other theorem

in the case of finite measures was also obtained by the author before discovering the

work of Dvoretzky, Wald, and Wolfowitz. See their papers, Elimination of randomiza-

tion in certain problems of statistics and of the theory of games, Proc. Nat. Acad. Sei.

U.S.A. vol. 36 (1950) pp. 256-259; also, Relations among certain ranges of vector meas-
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tained by D. Blackwell. See On a theorem of Lyapunov, Ann. Math. Statist, vol. 22

(1951) pp. 112-115 and The range of certain vector integrals, Proceedings of the

American Mathematical Society vol. 2 (1951) pp. 390-395.

2 A. Liapounoff, Sur les fonctions vecteurs complètement additives, Bull. Acad. Sei.

URSS. Sér. Math. vol. 4 (1940) pp. 465-478.
3 P. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. vol. 54 (1948)

pp. 416-421. (Much of our notation is taken from this paper.)

4 For classical definitions and results of measure theory we refer to S. Saks,

Theory of the integral, Warsaw, 1937, and P. Halmos, Measure theory, Nostrand, 1950.
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i = i, 2, ■ • • , k, t = l, 2, • • • ni, be a set of countably additive finite

measures defined on S • We define yp on the decompositions of X as the

vector whose components are ju,í(£¿),¿=1, 2, • • ■ ,k, t=\,2, ■ ■ ■ ,nt.

The range of yp is R.

Note 1. Since all the ¿u<( are obviously absolutely continuous with

respect to the non-negative measure v(E) = 2~li.t Pu(E), the Radon-

Nikodym theorem permits us to represent the pu as integrals, that

is, Pit(E) =fEfit(x)dv(x).
A measurable set £ is an atom of a measure p. if p(E) 9^0 and if for

every measurable set FC£ either u(F) =0 or u(F) = p(E). A measur-

able set £ is said to be an atom of yp if the vector faE) whose com-

ponents are p.u(E), i=\, 2, • • • , k, t = \,2, ■ ■ ■ , ni, is not zero and

if for every measurable FC£ either faF)=<p(E) or 0(F) =0. yp is

said to be nonatomic on FCS if none of the measures pu has an atom

on a subset of F. yp is said to be purely atomic on F if there is a de-

numerable sequence {F<}, where the F¿ are pairwise disjoint atoms

of ypand F=U<F<.
Note 2. It is easy to see that corresponding to any atom £ of any

of the measures pit there is an atom FC£ of yp, and that X may be

expressed as the union of two disjoint sets Xi, X2 where yp is non-

atomic on Xi and yp is purely atomic on X2.

Lemma 1. Ifyp = (un(Ei), pu(Ei), • • • , pknk(Ek)) is nonatomic on X,

the range R of yp is convex.

Proof. Suppose that yp=*a for the decomposition £i, E2, • • • , Ek

and yp = b for the decomposition Fi, F2, ■ ■ • , Fk. Suppose O^À^l.

Consider the vector measure whose components are pTt(E), r = i, j,

t = l, 2, ■ ■ -, Mr, for the measurable subsets £ of EiC\F¡. By the

Liapounoff Theorem the range of this vector measure is convex and

hence £¿P\Fy may be decomposed into two disjoint measurable sets

Vi}, Wn so that Urt(Vij) =XMri(£,nFy), r = i, j, t = l, 2, ■ ■ ■ , nr, and

hence Ujt(Wij) =(1—X)/iyi(£<nF;), t — l, 2, • • ■ , n¡. Consider the de-

composition Gi, G2, ■ ■ ■ , GkwhereGi = [Jj[Vij{JWji]. It is easily seen

that for this decomposition yp=~Ka+(l— X)Z>.

Our proof that R is closed will consist of showing that any terminal

point of the closure of R is in F.6

Lemma 2. For a given set of constants an, the function of yp,

2~2i,t ctitßit(Ei) attains its maximum.

Proof. Let

* We use terminal point of a convex set to mean boundary point with respect to

the lowest-dimensional hyperplane containing the set.
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n< ni

Vi(E) = E aitßit(E),       gi(x) = E «.</«(*)•
t—i t=i

Then

n(E) =  f gi(x)dv(x).
J ¡s

Let

rtl,-,...ir = [x:gh(x) = g;s(x) = • • • = gir(z) > gi(x)

for all; €E {iu i2, • • • , ir}}.

It is easily seen now that not only is this lemma true, but that a nec-

essary and sufficient condition that a decomposition maximize

E*.< otitßit(Ei) is that except for a set of v measure 0, T^...,-,

E(Eil\JEii\J - - ■ \JEir).
In the nonatomic case the closure R of the convex set R is convex

and a supporting plane II of R may be written E»'.' °;tiX,( = c where

not all ait are zero and c = sup { E<.« otußit(Ei)}. Hence we have the

following corollary.

Corollary l.Ifip is nonatomic with range R and n is a supporting

plane of R, ïï.i\R?±0.

Lemma 3. // \p is nonatomic, every point of RiSH. is a limit point

of RÍMI.

Proof. If {a„} is a sequence of points of R converging to a point

a of RC\H and the decomposition corresponding to an is given by

£m, E2n, • • • , Ekn, we have E<-i »'¿(-Ein) = E*-i jE^gi(x)dv(x)-^c

= max { E«'.< aitßit(Ei)}. It follows that the v measure of the set

{x: xETixit...ir and x£E(Ei,nU • • • W£,-r„)} must approach zero.

If the decomposition corresponding to a„ is modified to Fin, F2n, • • • ,

Fkn by adjusting the elements of the £,„ so that xETilit...ir implies

xEFhn\JFiinyJ ■ • ■ WF<r„, then Em on^it(Fin)=c and ßit(Fin)

—ßit(Ein)-^0 which gives us our result.

Lemma 4. // \p is nonatomic its range R is closed.

Proof. Through any terminal point of R there is a supporting

hyperplane II so that E<.« a<tßit is not identically constant for all

points of R. It suffices to show that 2?fMI is closed. We shall proceed

by induction on k and the number « of non-null measures involved in

\p. Case 1. k — 1. This case is trivial. Case 2. k>l, n = l. The closure

follows from the Liapounoff theorem for one-dimensional measures.

Case 3. k> 1, «> 1. Let &t<t.. -ir be the range of \p on the decomposi-
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tions of F.'iij.. .,-r where £, = 0 if iE {*ii ¿2, ■ ■ • , *'r}. It will suffice to

show that the Rí^-.-í, are closed. The induction establishes this

immediately for all sets except Ri2...k. On this set gi=g2= • • •

= gk. Corresponding to one of the non-null measures p¡, there is a

nonzero ajs. By induction the range R'l2.. .k, of the vector yp' which

has all components of yp except juy„ is closed. u¡, is a linear function of

the components of yp' since ¿J*.* mh^í^ frl¡2¡. ..¡hgi(x)dv(x). Hence

F12...* is closed.

Lemma S.Ifyp is purely atomic, its range R is closed.

Proof. This proof is an obvious extension of Liapounoff's. Con-

sider the sequence of atoms {F„} of yp. If £,• contains F„ (except

possibly for a null set), let a¡„ = 2 and otherwise 0. Let a

m (ai, a2, ■ ■ ■ , an) where ö,= E"-i ß»n3-n. This relation gives a one-

to-one correspondence with the decompositions of X (excepting

deviations by sets of measure zero) and a bounded closed set of

vectors, yp considered as a function of a is continuous and hence R is

closed.

Theorem 1. The range R of yp = (pn(Ei), un(Ei), • • • , /**»»(£»)) on

the decompositions of X is bounded and closed and in the nonatomic case

convex.

Proof. Lemma 1 gives the convexity, Lemmas 4 and 5 give the

closure when considered in connection with Note 2. The boundedness

is trivial because the measures are finite.

Corollary 2. The range of the vector $> = (/¿ii(£i), ui2(Ei), • • • ,

Pknh(Ek)), where theEiare pairwise disjoint measurable sets, is bounded

and closed and in the nonatomic case convex.

Proof. Let £t+i = X — U?„ iE(. The range of yp on the decomposi-

tions Ei, E2, • ■ ■ , Ek+i has the desired property. The range of $ is a

projection of the range of yp and also has the desired property.

A more trivial result would arise in the case where the assumption

of disjoint sets is removed.

Let I be the unit interval (0, 1), and m the Lebesgue measure on I.

The measures un on X may be extended to 77,1 = uuXm on XXI. Let

<p be the vector whose components are ??•((£<) where Fi, F2, • • • , Fk is

a decomposition of XXl into k measurable pairwise disjoint sets.

Theorem 2. The range H of <j> is the convex hull of the range R of

ypf

6 This theorem is the generalization of the result of Dvoretzky, Wald, and Wolfo-

witz referred to in footnote 1.
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Proof. H is convex because the r\u are obviously nonatomic. It is

evident that HZ)R. Hence it suffices to show that

Sup     E ttiflit   á   SUp    E <*itßit-
*6fl    i.t *GR    i.t

Since ßit(E)=fBfu(x)dv(x), Vit(F)=fFfit(x, y)d[vXm](x, y)   where

fit(x,   y)=/i{(x).   Then   g{(x,   y) = E«   «.-</"(*.   y)=gi(x).   Hence
E'.< aitVit attains its maximum when

{*> y'giM = gh(x) =-= giÁx) > gi(x)

for all i E {*ii ii, • • • » ir\} C FtI if ii < i2 < • • • < it-

But this defines a decomposition oí XXI which corresponds to a

decomposition of X for which E.*.< <*<*M« = E'.« Uiflif
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