AN EXTENSION OF BANACH’S MAPPING THEOREM
RICHARD A. BRUALDI!

The following mapping theorem of Banach [1] is well known. It is
the basis of most proofs of the Schroder-Bernstein equivalence theo-
rem.

If X and Y are setsand f: X— Y and g: Y—X are injective mappings,
then there exists partitions? X =X1+X, and Y=Y+ Y, such that
f(Xl) =Yiand g( Yg) =X,

The conclusion of this theorem can be rephrased in the following

waLye;tAgX X Y be the relation between X and YV defined by
A= AU A~
where
Ar = {(z, f(@)): x € X}, the graph of f,
and

A= {0, 9):y € Y},  the graph of g

T'hen there exists a bijection h: X—Y with graph A, A. With this, we
are now prepared to state the main result of this paper which extends
the above theorem of Banach. For sets U and V, U\V is the set con-
sisting of those elements of U which are not in V.

1. Theorem. Let X and Y be sets with given partitions D cr X
and Y= ;e; Y;where I and J are arbitrary index sets. For each iE1,
let integers a; and a! be specified with 0=<a;<a!. For each jEJ, let
integers b; and b} be specified with 0=<b;<b]. Suppose f: X°—Y¥Y4s a
bijection where X°C X and Y°C Y with

¢y e s | X\X| GeED,
©) | YAY| =8;  GEN,
and suppose g: *Y—X is a bijection where ° YT VY and °X C X with
A3) | X\X| =0/  GED,
) L2 YNY] Ge.

Let A =ANJA;1where Ay and A, are the graphs of f and g=! respec-
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* X =X,;+ X, is a partition of X if X =X;\UX, and XyN\X.= .
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tively. Then there exist X' C X and Y'C Y with

(5) us |X\X'| 20/ GED,
(6) s | YAV 28 (GE ),
and a bijection h: X'— Y’ with graph A,CA.

REMARKS. (a) X = D_ser X is a partition means X =U;e; X; and
X,f\X,v =Q’ for all 754 in I.

(b) It is possible that the cardinalities IX AX°| and | Y\°V l be
infinite.

(c) If I={1} and J= {1} so that the partitions of X and Y are
trivial and if a;=a{ =b;=b{ =0, then the above theorem reduces to
Banach’s mapping theorem. For under these circumstancesg—!: X—Y
and f-1: Y—X are injective mappingsand X'=X, ¥’ =Y.

2. Proof of the theorem. If we restrict the injective mapping f to a
subset of X9 then condition (1) will still be satisfied. Hence we may
assume at the start that

b = | YAY| 28/ GED.

Let 1€1. If a;<|X\X°| <a!, then define X} =. If on the other
hand | X\X°| >a/, then from (3) we conclude that |(XAX?)\°X|
<a!, so that there exists X; C(X,\X°)MN°X such that
6 s | XAXPUXY| < al.
Define X! and P! by X!'=Pl1=U;e X} and define U'= ¥, so that
u= | XN(X\UYVUPY| 2ad  (GED.

Note that P1CX\ X If P'=¢f, then X' =X0, V' =Y° h=f satisfy
the conclusion of the theorem. Hence we can assume Plz . We
proceed inductively. Let =1 and suppose the following six families
of sets have been defined, each family consisting of mutually disjoint

sets:

(N {X*CX:1=2k<n} withX'COX\XandX*CX° (1<k<n),
(8) {PrCOX\X%:1 £k <},

©) {UFC XO\X:1 Sk < n},

(10) {rrCov:1 £k <ml,

(11) [QFC oV\V: 1 S k < n},

(12) {VEC YO\V:1 £ k < n},

with
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0 S| X: <<X°\ U U’°>U U Pk) el GEID
k=1 k=1
and
n—1 n—1
b; < Y,\((IfO\ §] V")U U Q") <y (GED.
k=1
(If n=1, then U3~} V*=U}Z] Q= &.) We then define
(13) Y = g 1((X\U™) U P~),
(14) Qi =(r"NYN\P (GEJ),
(15) o = U Q] S or\ro.

jeJ

Since for each j€J, | Y\ ¥°| b/ < », Q7 is a finite set. If for jEJ,

by < | y,.\(( Yo\ kUI V") Y ,}jl Q")

we define V] = &. Otherwise

n—1
(T W)U § o)<
k=1 k=1
But then

((eamn G r)nrs)

y,.\(( o\ "Gl V") U kU, Q")

| vi\er| = '((Y\"Y)\ U Vk)n Yo
k=1
n—1
() ge)] <
k=1 k=1
which would be a contradiction. Hence we may choose V7
CUYA'\UiZi TN Y with

Vil =0 I rA((MU UG o).

kw1 k==

=

for otherwise

Define V*=U;es V;C Y\?Y so that
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b < ‘ Y\((Y"\ U V")U U Qk)
k=1 k=1
For n=1 each of the families (7), (8), (9) are families of mutually
disjoint sets. It then follows from definitions (13), (14) and (15) that
if (7), (8) are families of mutually disjoint sets so are { ) CH 1§k§n}
and {Q": 1= kén}. Also it follows from the definition of V» that
if {V*:1<k<n} is a family of mutually disjoint sets, so is
{VE1<kZn).
We now show how to define X»+1, P»+1 and Ur+l, Let

= Gen.

(16) Xt = f1((Y™\Q) U V),
A7) Ut = (Xv N X)\0X,
(18) Ule u ot

el

Since for each 1 &1, ]X.-\°X| <a! <o, UM'isa finite set. If fori&1,

ntl
0 < X;\((X"\ U u) U U P'») <al,
k=1 k=1
then we define P;*! = J. Otherwise
nt+1
> ‘X;\((X‘)\ U U‘)U U P") > af.
k=1 k=1

But then

l<(x,.\xo>\ U pk) Nox

l k=1

—>_— _ailr

XA (X"\ U Uk) U U pk)

k=1

since otherwise

| XX |
2 {Ixaauom] —|(@axon 0 2)nex

nt
+{r((m T ) o § )
k=1 k=1

>d.'/,

whichisacontradiction. Hence we can choose Py Y1 C ((X \X°)\U2._, P¥)
N°X with

- | xA\x U X°|}
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ntl nt+l n
| P = lX.-\((XO\ U Uk)u U Pk) —al.
k=1 k=l
Define P+l =U;cr PF1C0X\ X° so that
n+1 n+1l
e = X.—\((X°\ U U")U U P") Sal GED.
k=1 k=1

It follows from the definitions (16), (17) and (18) thatif { ¥*: 1 <k §n}
and {Q": 1<k=<mn} are families of mutually disjoint sets then since
X1CoX\XO, {X*:1<k<n+1} is a family of mutually disjoint sets.
Also since Ul= &, { U*: 1<k <n-+1} is a family of mutually disjoint
sets by (17) and the above. Likewise from the definitions, it follows
that {Pk:1<k< n+1} is a family of mutually disjoint sets. Now
define

X' = (X"\ U U’°)U U P

k=1 k==1

and

v = (w\ U Vk)U U o
k=1 Em1
Since for each i€ 1, | X \(XOUPY)| <o and PECX\(X'UPY), k22,
all but a finite number of the P} (i fixed) are empty. Likewise since
UFCX\°X and | X\°X| <, all but a finite number of the U} (i
fixed) are empty. Hence

w2 | X\X'| ¢  GED.
In a similar way we derive that
s | YAY| =8 GED.

Let x€X’. If x&€(X"\U»)UP* for some n=1, define h(x)
=g ix)EY*C Y. If x(X~\Ur)UP» for any n=1, define h(x)
=f(x) € ¥Y’. Suppose for x5 x, in X', h(x1) =h(xs). Since both f and g
are injective, we may assume that %, E (X™\ Um)\UP™ for some m =1
and that x, & (X*\U")\UP" for any n=1. Thus h(x:) =g (x1) =f(x2)
=h(x,). But then g l'(x))EY™ and g '(x1)=f(x;)€& V™. Hence
2 Ef(Y™\Q™) CXmH. If x,£°X, then x,& U™+ and hence x.& X',
a contradiction. If x,€°X- then x. U™H and hence x, & (X™+1\ Un+1)
UPmnt1 a contradiction. Thus k is injective.

Suppose yEY'. If yE Y™ for some m=1 then g(y)E(X™\U™)
UP"C X' and h(g(y)) =g '(g(y)) =y. Otherwise y&(¥Y\Up.; ¥™)\
U, Vi. Hence f~1(y) & (X"\U")\UP*forany # = 1 and thus f(y) €X'
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with £(f~1(y)) =f(f~1(y)) =y. Thus h: X’> Y’ is a bijection satisfying
the conclusion of the theorem.

3. Consequences. The main result of this paper not only contains
the original theorem of Banach but also an extension of Banach's
theorem given by Knaster and Tarski [4] (cf. [6, pp. 146-147]) and
an essentially equivalent theorem of Perfect and Pym [5]. We state
it as a corollary, and show how it is a special case.

CoROLLARY 1. Let X and Y be sets. Let X1 & X and ViC YV with f:
X1—- Y and g: V1—X injective mappings. Let A=A—1\JA,. Then there
existsets X', V' with X, CTX'CX, TWCY'CYandabijectionh: Y —-X’
with graph A, CA.

Proor. Let the set X\ X, be partitioned into its one element sub-
sets, say X\X;= D :cr X; where I is an index set with 1€£7, so that
X= Eeerum X, is a partition of X. Likewise, let the set Y\Y; be
partitioned into its one element subsets, say Y\ Y;= > ;es ¥; where
J is an index set with 1€ 7, so that Y= D_,csum Y;is a partition of
Y. With 1&1 associate the integers 5;=0, bf =1, and with 1 associate
the integers b;=0, b =0. With j&J associate the integers a;=0,
al =1, and with 1 associate the integers a; =0, a/ =0. Then f-1: f(X,)
— X, is a bijection with

| X\X:| =8/ =0, |X\X:| S0/ =1 (GeED,
0=a 2| VN\(X)|, 0=a=s|YA(X)| GeEI.
Likewise g~!: g(¥1)— Y1 is a bijection with

0=0=|X\g(¥YD|, 0=0b5]|XN\g(YD| GED,
| VA\Vy| Saf =0, |VYAV| e/ =1 (GGEJI).

Hence by the theorem there exists X'CX, Y'C Y and a bijection
h: Y- X' with A,CA~1 \UA, with, in particular,

0=0=|X\X| €8/ =0, 0=a5|V\V| 24 =0

Hence X;C X’ and Y;C V', Thus the corollary is a special case of the
theorem.

We now give an application of the main result to transversal theory.
Let A(I) =(A4;:i€1I) be a family of subsets of a set E. Here I is an
index set, and it is possible that A;=A4 for 544’ in I. A family
(es: 1E1) is a system of distinct representatives of the given family (1)
provided e;E4; (:&1) and the elements ¢; ({E€1) are distinct. The
set {e;:sEI} is a transversal of A(I). If |E| <o and |I] <o and
E= )" E,is a partition of E with associated integers 0<b;<0/,
then A. J. Hoffman and H. W. Kuhn [3] gave necessary and suffi-
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cient conditions that the family 2(Z) have a transversal {e.~: el }
with b;<| E;N{e;: i€I}| b/ 1<j<p).

A consequence of their conditions, as was noted in [2], is that if
there is a transversal {e! : i€ I} with b;<|E,N{e!:i€I}|, 15j<p,
and a transversal {¢/:i€I} with |EN{e/:i€I}| <b/, 15j<p,
then there is a transversal with the above properties. In fact the
Hoffman-Kuhn theorem is a special case of the so-called symmetric
supply-demand theorem [2], which can indeed be used to derive our
main result in case the sets X and Y are finite. It is in fact the sym-
metric supply-demand theorem which led the author to the main
result of this paper. The following corollary extends the aspect of the
Hoffman-Kuhn theorem mentioned above. It is an immediate conse-
quence of the main result.

COROLLARY 2. Let A(I) =(A:: 1€ 1) be a family of subsets of a set E
and let E= E,‘GJ E; be a partition of E. Let integers 0=b; <b} be given
for each jEJ. Suppose there is a subfamily (A::1E 1) of A(I) which
has a transversal {e! : i€ 1o} with

| EN{el:i € I} | = b/ e,
and suppose A has a transversal {e.’ eI } with
b < |ENel':seT}|  GED,
then ¥ has a transversal {e;: i€ 1} with
5 |ENlesi €I} S8/ GED.

Of course, the complete main result may be translated into the
language of transversal theory.
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