
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.4(33)

AN EXTENSION OF HYBRID GENETIC ALGORITHM FOR
THE QUADRATIC ASSIGNMENT PROBLEM♣

Alfonsas Misevičius
Kaunas University of Technology, Department of Practical Informatics,

Studentų st. 50−400a/416a, LT−51368 Kaunas, Lithuania

Abstract. Genetic algorithms (GAs) are modern population based heuristic approaches. Recently, GAs have be-
come very popular by solving various optimization problems. In this paper, we discuss an extension of a hybrid genetic
algorithm for the well-known combinatorial optimization problem, the quadratic assignment problem. This extension is
based on a promising genetic-tabu search policy. An enhanced tabu search is used in the role of the local improvement
of solutions, whereas a robust mutation (reconstruction) strategy is "responsible" for maintaining a high degree of the
diversity within the population and for avoiding a premature convergence of GA. We tested our algorithm on a set of
the QAP instances. The results obtained show the outstanding performance of the proposed algorithm.

Keywords: combinatorial optimization, heuristic algorithms, genetic algorithms, tabu search, quadratic assignment
problem.

Indroduction

The quadratic assignment problem (QAP) can be
formulated as follows. Let two matrices A = (aij)n×n
and B = (bkl)n×n and the set Π of the permutations of
the integers from 1 to n be given. The goal is to find a
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-
mizes

.)(
1 1

)()(∑∑
= =

=
n

i

n

j
jiijbaz πππ (1)

♣ This work is supported by Lithuanian State Science and Studies Foundation through grant number T-04078.

One of the interpretations of the QAP is that of
Koopmans and Beckmann [14]. In this case, one deals
with locating n facilities on n locations with some
physical products flowing between the facilities, and
with distances between the locations. The element aij
is the flow from the facility i to facility j, and the
element bkl is the distance between the locations k and
l. The permutation π = (π(1), π(2), ..., π(n)) represents
an assignment of facilities to locations (here, π(i)
(π(i) ∈ {1, 2, ..., n}) denotes the location facility i is
assigned to). Solving the QAP means searching for an
assignment that minimizes the "transportation cost"
between facilities, z.

It has been proved that the QAP is NP-hard [23],
therefore heuristic approaches [18] are used for
solving medium- and large-scale QAPs in reasonable
times, among them, ant algorithms [8], greedy

randomized adaptive search procedures [15], iterated
local search [24], scatter search [4], simulated
annealing [2], tabu search [20,25]. Starting from 1994,
several authors applied the genetic algorithms to the
QAP, first of all [1,6,7,16,17,19,28].

The QAP is a representative (instance) of combi-
natorial optimization (CO). CO may be described in
the following way. Let S be the set of (feasible)
solutions (the solution space); furthermore, let f: S→ℜ
be the objective function (we presume that f seeks a
global minimum). Solving an instance of CO problem
(S, f) means searching for a solution sopt ∈ S such that

 ==∈

∈

∇∇)(minarg|optopt sfssSs
Ss

. (2)

The solution sopt is called a globally optimal solu-
tion (global optimum), and the set Sopt ⊆ S denotes the
set of global optima. In addition, a neighbourhood
function Θ: S→2S may be defined. It attaches for each
s∈S a set Θ(s)⊆S − a set of neighbouring solutions of
s. Each solution s′∈Θ(s) can be reached from s by an
operation called a move, and s is said to move to s′
when such an operation is performed. The 2-exchange
neighbourhood function, Θ2, is widely used in the
environments of permutation-based solutions, like the
QAP. For the solution s, Θ2 gives the set

}2),(, | {)(2 =′∈′′= ssSsss ρΘ , where),(ss ′ρ is the
"distance" between solutions s and s′. The natural way

53

A. Misevičius

1.2. Hybrid genetic algorithms of defining the "distance" between solutions-permuta-
tions is counting the items that are assigned to diffe-
rent positions of the solutions, i.e.

)}()(|{),(isisiss ′≠=′ρ . (3)

Usually, the results obtained by the "pure" genetic
algorithms are of rather poor quality. This fact was a
motivation to embed additional heuristic components
into the standard GAs. The examples of such compo-
nents may be: a) including the construction heuristics
for generation the initial populations; b) designing the
special heuristic crossover (recombination) operators
tailored to the specific characteristics of the problem;
c) incorporating the local search heuristics to be
applied to the solutions built by the crossover ope-
rator. Other enhancements are possible, for example,
using a so-called restart mechanism in the cases of a
loss of the diversity. These additional components
(features), plus the standard genetic algorithm are
what one calls a hybrid genetic (memetic) algorithm
(HGA) [21].

We will use the compact notation mij (i, j = 1, 2,
..., n) for the move from s to s′∈Θ2(s), which ex-
changes ith and jth elements in the solution s to get s′.
(In this case, the expression means that

 is obtained from s by applying m
ijmss ⊕=′

s′ ij.)
The remaining part of this paper is organized as

follows. In Section 1, the principles of standard and
hybrid genetic algorithms are outlined. The new pro-
posed extension of the hybrid genetic algorithm for
the quadratic assignment problem is discussed in Sec-
tion 2. In Section 3, we present computational results
obtained by examining some instances of the QAP.
Finally, Section 4 completes the paper with conclu-
ding remarks.

Very roughly, the typical steps of HGA are as
follows. The first step is to create an improved initial
population by means of the known constructive and/or
local search algorithms. The result of this step is a po-
pulation which represents a collection of locally op-
timal solutions. After the creation of the optimized
initial population, the standard procedures take place.
Like in the standard GAs, the selected individuals
undergo the crossover for creating new individuals.
The important feature of HGA is that one operates
with the optimized solutions as the inputs to the cross-
over operator. Although the crossover operator is high-
ly "responsible" for the efficiency of genetic algo-
rithms, many researchers came to the conclusion that
it is insufficient to achieve competitive performance.
The reason is that the offspring produced by the cross-
over is in general not locally optimal. The way out is
just incorporating a post-crossover (local improve-
ment) procedure to be applied to each offspring to
obtain again locally optimal solutions.

1. Genetic algorithms
1.1. Standard genetic algorithms

The original concepts of genetic algorithms
(GAs), which are based on the biological process of
natural selection, were developed by Holland [13] in
1975. Genetic algorithm operates with a group P
(called a population) of solutions s1, s2, ..., sPS (called
individuals) from S. Each individual (si) is associated
with some fitness corresponding to the objective func-
tion value (f(si)). In the case of minimization problem,
the less the objective function value, the more fitting
the individual, and the larger is the probability that the
individual will survive in evolution process. During
many generations, best fitting individuals tend to do-
minate, while less fitting ones tend to die off.

The mutation is then performed on the locally opti-
mized offspring. Regarding the mutations, the fol-
lowing should be said. The solution perturbed by the
mutation operator is again transformed into an opti-
mized solution to keep the local optimality of the po-
pulation; so, the mutations are highly desirable to be
strong enough to minimize the possibility of a possible
falling back into previous local optima.

The general framework for the standard genetic
algorithm can be described in the following way. A
fraction of P is chosen to be parents by use of the
selection function (it can formally be defined as a
mapping φ: 2S→S×S). New individuals (i.e. offspring)
are created by combining the information contained in
the parents (this recombination operator is known as a
crossover, ψ: S×S→S). Afterward, some members of
the population undergo random perturbations (called
mutations, ζ: S→S) to prevent a premature loss of the
individuals’ diversity within the population. Finally, a
replacement (culling) scheme, ϕ: 2S→2S, is applied to
determine which individuals survive to form the next
generation. This process is to be repeated until some
termination criterion is met.

The population replacement scheme within HGA
is also specific. It must guarantee a sufficient degree
of the diversity of the population, which is very
important by avoiding a premature convergence of
GA.

To conclude, the hybridization of GA is an essen-
tial improvement over the standard GA. This is mainly
due to the fact that, in HGA, the population solely of
local optima is maintained. So, we can view the hyb-
rid genetic search as the search over an optimized,
high quality solution space — this appears to be much
more effective process than when searching in a
random (or slightly improved) solution space.

There exists a great variety in the choice of the
particular selection, crossover, mutation, and other
related procedures. The detailed material on this topic,
as well as the foundations and applications of GAs can
be found in [5, 12, 22].

54

An Extension of Hybrid Genetic Algorithm for the Quadratic Assignment Problem

55

2. An extension of hybrid genetic algorithm
for the QAP

In this section, we describe an extended hybrid
genetic algorithm (EHGA) for the quadratic assign-
ment problem. The algorithm starts with the creation
of an initial population P. This is done in two steps:
firstly, PS=|P| permutations are generated in a pure
random way; secondly, all the individuals of the popu-
lation just produced are improved by a local search.
Eventually, the population members are sorted accor-
ding to the increasing values of the objective function.
A tabu search (TS) [9,10,11] based algorithm, namely
a so-called enhanced tabu search (ETS) procedure is
used in the role of the local improvement technique
(for the details of ETS, see below). So, the input for
the further genetic operators is a population that
consists of PS locally optimal solutions.

The algorithm then proceeds in the following way.
Two solutions are selected to be parents of a new
individual (child). For the parents selection, we apply
a rank based selection rule [28]. The position, u, of the
parent within the sorted population is determined by to
the formula u = vσ, where v is a uniform random
number from the interval [1, σ1PS], where PS is the
population size, and σ is a real number in the interval
[1, 2] (it is referred to as a selection factor). It is
obvious that the better the individual, the larger
probability of selecting it for the crossover.

For the parents merging, we use a variant of the
crossover operator proposed in [28] (it is entitled as a
uniform like crossover (ULX)). ULX works as

follows. First, all items assigned to the same position
in both parents are copied to this position in the child
(i.e. ci=ai=bi, where ci, ai, bi are the values in the i-th
position of the permutations-parents and the
permutation-child, respectively). Second, the unassig-
ned positions of a permutation are scanned from left to
right: for the unassigned position, an item is chosen
randomly, uniformly from those in the parents if they
are not yet included in the child (i.e.

, where r is a random number with-

in the interval [0,1]). Third, remaining items are
assigned at random (this step is needed to preserve the
feasibility of the resulting permutation). The ULX
operator implies a high degree of randomness. Even
the same pair of parents may produce lots of quite
different children, especially, when the "distance" (see
formula (3)) between parents is large. So, we can
extend the functioning of the crossover by making it
create "m-plets" (m>1, typically m=O(n)) instead of a
single child. Some kind of tournament among m
pretenders takes place to determine the best candidate
for survival. The "winner", usually the child which has
the smallest objective function value is the only output
of the crossover (see Figure 1). We call this type of
proceeding an elitist crossover (EX). The search could
often be improved even more if the crossover is
applied more than once at the same generation. In our
implementation, the number of EXs per one gene-
ration is controlled by the parameter N

 <

=
otherwise,

5.0,

i

i
i b

ra
c

cross (as a rule,
the value of Ncross depends on the population size).

Figure 1. Example of producing a child in the "triplet" crossover

As mentioned in Section 1.2, genetic algorithms
succeed in search if only they dispose of a robust local
search based procedure. Ideally, such a procedure
should be both fast and produce good quality solu-
tions. Practically, these features hardly "intersect". A
quite good candidate to meet the conflicting require-

ments is the tabu search, the method which has been
proven to be extremely effective [11]. This is especial-
ly true for the quadratic assignment problem. So, we
have chosen this approach as a perfect compromise
between the opposites mentioned. Namely, we use the
enhanced tabu search algorithm [20], a quite

Offspring 1
6 3

4 5 6 7

4
4 5 7

1 24 7

4 5 72

Offspring 3

1 2 3 4 5 6 7

4

3

1 23 45 6 7

465 172

465 172 3

Parents

Offspring 2

 Choose the best

2 3 6 5 41
3

3
6

2
3

5
7

6
1

7

7

2

7

1Parents
5

2 3 41Parents
5 3 6 4

4
5 3 6 1 2 6 41

2
1

A. Misevičius

56

promising approach for the QAP. ETS plays the
central role in our hybrid genetic algorithm. The idea
behind ETS is that the classical TS (it serves as an
intensification mechanism) is combined with the
appropriate perturbations of solutions (as a robust
diversification mechanism). The intensification itself
is based on the robust tabu search procedure due to
Taillard [25]. Very roughly, this algorithm can be
outlined in the following way. Initialize the tabu list T,
and start from the current permutation π. Then,
continue the following process until a predetermined
number of steps, τ, have been performed:

a) find a neighbour π ′′ of the current solution π in
such a way that)(minarg

)(2

ππ
ππ

′=′′
′∈′

z
N

 ijm

, where

ˆ ,)(ˆ | ˆ{)(22 ΝΝ ⊕=∈=′ ππππππ and is not

tabu) or where π

 ij((m

})))∗ ()ˆ ((< ππ ff ∗ is the best so far
solution;

b) update the tabu list T by including the move
muv, where muv is the move from the solution π to the
solution π ′′ ;

c) replace the current permutation π by the neigh-
bour π ′′ , and use as a starting solution for the next
step.

In EHGA, we usually apply the short runs of the
tabu search (we call this strategy a limited tabu search
(LTS)). Firstly, LTS allows saving the computation
time; on the other hand, LTS in combination with
other genetic operators is quite enough to seek for
high quality solutions.

Regarding the diversification mechanism, we use
the permutation mutations which can be seen as
sequences (strings) of random moves ,

. The larger the length of the sequence (i.e.

the mutation level) µ, the stronger the mutation, and
vice versa. In turn, the stronger the mutation, the more
the probability that the "distance" ρ between the
current solution and the mutated one is also large. One
can add more robustness to the diversification process

4321
, rrrr mm

µµ 212
..., rrm

−

by performing "concentric" mutations. In this case, the
mutation level µ varies as follows: at the beginning, µ
is equal to some minimum value µmin; further, µ is
increased gradually, step by step, until some limit is
reached (this means that the new produced solutions
are more and more "far" from an imaginary "center-
solution"); once the maximum level µmax has been
reached (or a better local optimum has been found),
the current value of µ is immediately dropped to µmin,
and so on.

Note that, as the solutions already undergo pertur-
bations in the ETS procedure, there is no need in any
mutations within GA itself (except the special case
discussed below).

As to the way in which the candidates for the sub-
sequent mutation are chosen, a so-called exploration
strategy is applied. The idea of exploration is that
every new locally optimal solution (obtained by the
intensification procedure), no matter its quality, is ac-
cepted for the reconstruction. The advantage of this
strategy is allowing to search in many possibly promi-
sing regions of the solution space.

Some remarks on the way the combination of in-
tensification and diversification is done should be
mentioned. We rely upon so-called (Q,τ,1)-scheme. In
this scheme, the total number of the iterations of ETS
(i.e. global iterations) is equal to Q. At each global
iteration, τ steps (local iterations) of TS, and one call
to the mutation procedure are performed. The value of
aspect ratio Q/τ is of high importance. It may be
viewed as a measure for the mutation frequency.
(Suppose, Qτ=const; in this case, the larger the value
of Q/τ, the larger the mutation frequency, and vice
versa.) The optimal value of Q/τ can only be revealed
empirically. Some results of the experiments on the
autonomous runs of ETS show that this value depends
on the nature of the problem being solved. For random
data (n=40), we found that the optimal value is
somewhere between 0.05 and 5; for real world data,
the situation is different: the higher the mutation
frequency, the better the results (see Figure 2).

0

2

4

6

8

10
12

14

16

18

20

0.02 0.09 0.36 1.8 6.25 25 400

av
g.

 s
ol

ut
. q

ua
lit

y
ex

ce
ss

 o
ve

r o
pt

im
um

,%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.02 0.09 0.36 1.8 6.25 25 400

av
g.

 s
ol

ut
. q

ua
lit

y
ex

ce
ss

 o
ve

r o
pt

im
um

, %

 Q/τ Q/τ
(a) (b)

Figure 2. Solution quality (objective function value) versus the mutation frequency:
a) random problem, b) real world problem

An Extension of Hybrid Genetic Algorithm for the Quadratic Assignment Problem

57

The culling (replacement) of the population takes
place every time before going to the next generation.
After adding new solutions and sorting the population,
the solutions with the greatest objective function value
are removed away from the population to keep the
population size constant. After that, EHGA proceeds
with the new population as described above. An extra
dealing with the population (i.e. a so-called restart
mechanism) is applied under some circumstances.
That is, if the situation of a loss of the diversity of the
population is identified, then a specific process (a
"cold restart") is invoked. (A measure of entropy of
the population [7] seems to be an applicable restart
criterion; for more details, see [19].) In fact, there are
two phases at the restart: a) the deep reconstruction
(mutation) of all the members of the population; b) the

local improvement of the reconstructed solutions by
the limited enhanced tabu search. For the reconstruc-
tion, we tried the procedure very similar to that used
in the ETS algorithm. The main difference lies in the
increased mutation level; more precisely, the reconst-
ruction is done in such a way that n=)~,(ππρ , where
ππ ~, are the solutions before and after reconstruction;

n is the problem size. After restart, EHGA goes on in
an ordinary way. The overall process is continued in
an iterative way until a given number of generations
(Ngen) has been performed.

The generalized templates (frameworks) of the
extended hybrid genetic algorithm, as well as the
enhanced tabu search algorithm are presented in
Figures 3 and 4.

procedure ExtendedHybridGeneticAlgorithm;
 // input: A,B − the flow and distance matrices, n − the problem size; output: π∗ − the best permutation found //
 // parameters: PS − the population size, Ngen − # of generations, σ − the selection factor, //
 // Ncross − # of crossovers per generation, Q − # of iterations of ETS, //
 // τ − # of intensification iterations, α1,α2 − the mutation factors //
 µmin := max(2,α1n); µmax := max(2,α2n);
 create the locally optimized population P⊂Π in two steps:
 (i) generate initials solutions of P randomly,
 (ii) improve each member of P by using the (limited) enhanced tabu search;
 ; // π)(ππ

π
z

P∈

∗ = argmin: ∗ is the best so far solution //

 for i :=1 to Ngen do begin // main cycle of the extended hybrid genetic algorithm //
 sort the members of P in the ascending order of their fitness;
 for j :=1 to Ncross do begin // in this cycle, Ncross children will be produced //
 select parents P∈′′′ ππ , ;
 apply elitist crossover EX to π ′ and π ′′ , get the offspring π& ;
 π• := EnhancedTabuSearch(π&); // every offspring is improved by applying Q iterations of ETS //
 add the improved permutation π• to the population P;
 if z(π•) < z(π∗) then π∗ := π• // save the best so far solution (as a possible result of EHGA) //
 end; // for j ... //
 cull the population P by removing Ncross worst individuals;
 if the diversity of P is below the predefined threshold then
 make the "restart" in two phases:
 (i) reconstruct (mutate) all the members of P, except the best one,
 (ii) improve each reconstructed solution by using
 the limited enhanced tabu search
 (save the new best encountered solution if any)
 end; // for i ... //
end.

Figure 3. Template of the extended hybrid genetic algorithm

A. Misevičius

function EnhancedTabuSearch(π);
 // input: π − the current permutation; output: π∗ − the best permutation found //
 // parameters: Q, τ, µmin, µmax //
 apply τ iterations of (standard) robust tabu search to π,
 get the improved permutation π•;
 π := π•; π∗ := π•; µ := µmin − 1;
 for q :=1 to Q do begin // main cycle of the enhanced tabu search //
 accept candidate π for the subsequent mutation (perturbation);
 if µ < µmax then µ := µ + 1 else µ := µmin; // update the mutation level //
 apply mutation to π with the mutation level µ,
 get the new permutation π~;
 apply τ iterations of (standard) robust tabu search to π~,
 get the new improved permutation π•;
 if z(π•) < z(π∗) then begin // new locally optimal solution is found //
 π∗ := π•; // save the best so far solution (as a possible result of ETS) //
 reset the mutation level µ
 end
 end; // for //
 return π∗
end.

Figure 4. Template of the enhanced tabu search

3. Computational results
In order to evaluate the performance of the pro-

posed algorithm, the computational experiments have
been carried out on the QAP instances taken from the
well-known publicly available library of the QAP
instances QAPLIB [3]. The classes of the instances we
examined are as follows:

(a) random instances (these instances are randomly
generated according to a uniform distribution; in
QAPLIB, they are denoted by tai20a, tai25a, tai30a,
tai35a, tai40a, tai50a, tai60a, tai80a, tai100a);

(b) real-life like instances (instances of this type
are generated in such a way that the entries of the data
matrices resemble a distribution from real world
problems; these instances are denoted by tai20b,
tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b,
tai100b, tai150b).

We compared our algorithm with other five dif-
ferent heuristic algorithms. The following algorithms
were used: 1) robust tabu search (RTS) algorithm [25];
2) fast ant system (FANT) [26]; 3) genetic hybrid
(GH) algorithm [7]; 4) genetic algorithm due to Lim,
Yuan and Omatu (GA-LYO) [16]; 5) improved hybrid
genetic algorithm (IHGA) [19]. Note that RTS is
among the best heuristic algorithms for the random
instances, whereas IHGA belongs to the most

powerful algorithms for the real-life like problems.
The performance measures are as follows: a) the
average deviation from the best known solution − δ
(%][)(100 zzz ((−=δ , where z is the average objec-
tive function value over 10 restarts (single applica-
tions of the algorithm to a given instance), and z(is
the best known value (BKV) of the objective func-
tion); b) the number of solutions that are within 1%
optimality (over 10 restarts) − C1%; c) the number of
the best known values (solutions) found − Cbkv.

The values of the control parameters of the
algorithms were chosen in such a way that all the
algorithms use approximately the same computation
(CPU) time. The main parameter values of EHGA are
collected in Table 1.

Note that the quite different values of the para-
meter τ were chosen for the problem types (a) and (b).
This is due to the fact that, for the random instances,
more attention should be given (i.e. more time should
be allotted) to the intensification; whereas, for the
real-life like instances, the intensification is relatively
less important than the diversification (see also [20]).
Consequently, for the random instances, the parameter
τ gets larger values than for the real-life like instances.

The results of the experiments are presented in
Tables 2 and 3.

Table 1. Values of the parameters for the algorithm EHGA

Problem
type PS Ngen σ Ncross Q τ α1 α2

(a) n n4
1 1.3 PS4

1 5 2
1 n2 depends on problema depends on problemb

(b) n depends on problemc 1.7 PS2
1 5 n depends on problema depends on problemb

a varies from 0.2 to 0.3; b varies from 0.3 to 0.4; c varies from n4
1 to . n2

1

58

An Extension of Hybrid Genetic Algorithm for the Quadratic Assignment Problem

Table 2. Comparison of the algorithms on randomly generated instances.
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.
 900 MHz PENTIUM computer was used in the experiments

Instance n BKV
δ , C1%/Cbkv

 RTS FANT GH GA-LYO IHGA EHGA
CPU time

tai20a 20 703482 a 0.07 10/ 6 0.90 1/ 0 0.41 10/ 2 1.30 3/ 0 0.06 10/ 8 0 1.3

tai25a 25 1167256 a 0.14 10/ 6 1.34 5/ 1 0.39 10/ 2 1.54 1/ 0 0.08 10/ 7 0 4.4

tai30a 30 1818146 a 0.08 10/ 5 1.11 4/ 1 0.37 10/ 4 1.56 1/ 0 0.02 10/ 8 0 10.0

tai35a 35 2422002 a 0.19 9/ 3 1.28 3/ 0 0.64 10/ 0 1.60 0/ 0 0.05 10/ 7 0 36

tai40a 40 3139370 a 0.46 8/ 0 1.55 2/ 0 0.62 9/ 0 1.95 0/ 0 0.21 10/ 1 0.20 10/ 1 85

tai50a 50 4941410 a 0.79 5/ 0 1.76 1/ 0 0.87 4/ 0 2.01 0/ 0 0.44 9/ 1 0.43 10/ 1 290

tai60a 60 7205962 b 0.84 2/ 0 1.71 0/ 0 1.01 2/ 0 1.93 0/ 0 0.55 8/ 0 0.56 8/ 0 720

tai80a 80 13546960 b 0.62 7/ 0 1.34 5/ 0 0.60 6/ 0 1.30 1/ 0 0.32 10/ 0 0.27 10/ 0 3300

tai100a 100 21123042 b 0.59 8/ 0 1.19 6/ 0 0.51 8/ 0 1.16 2/ 0 0.26 10/ 0 0.23 10/ 0 12000

a comes from [3]; b comes from [20].

Table 3. Comparison of the algorithms on real-life like instances.
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.
 900 MHz PENTIUM computer was used in the experiments

Instance n BKV
δ , C1%/Cbkv

 RTS FANT GH GA-LYO IHGA EHGA
CPU time

tai20b 20 122455319 a 0 0.09 10/ 8 0.05 10/ 9 0.10 10/ 7 0 0 0.1

tai25b 25 344355646 a 0.06 10/ 8 0.01 10/ 9 0 0.01 19/ 8 0 0 0.6

tai30b 30 637117113 a 0.40 9/ 3 0.04 10/ 7 0.01 10/ 9 0.50 9/ 1 0 0 1.2

tai35b 35 283315445 a 0.25 10/ 5 0.20 10/ 1 0.13 10/ 4 0.27 10/ 0 0.00 10/ 9 0 2.5

tai40b 40 637250948 a 0.20 9/ 6 0.01 10/ 9 0 0.60 8/ 0 0 0 5.0

tai50b 50 458821517 a 0.24 10/ 0 0.22 9/ 0 0.03 10/ 7 0.95 5/ 0 0.02 10/ 8 0 18

tai60b 60 608215054 a 0.30 10/ 0 0.18 9/ 3 0.02 10/ 6 0.80 4/ 0 0.01 10/ 9 0 29

tai80b 80 818415043 a 0.29 9/ 0 0.33 6/ 0 0.35 8/ 2 0.95 6/ 0 0.03 10/ 7 0 138

tai100b 100 1185996137 a 0.19 7/ 0 0.11 7/ 0 0.06 9/ 3 0.70 5/ 0 0.01 10/ 3 0 430

tai150b 150 498896643 b 0.39 9/ 0 0.54 7/ 0 0.40 8/ 0 0.55 6/ 0 0.11 10/ 2 0.10 10/ 2 2300

a comes from [3]; b comes from [27].

It can be seen that the quality of solutions depends
on the type of problems being solved. For the random
instances, the results are inferior to those for the real-
life like instances; this indicates that these instances
are much more hard to solve and still remain the great
challenge for the researchers. Regarding the real-life
like instances, they are relatively easy for many
heuristics, among them, the hybrid genetic algorithms.
Our extended hybrid genetic algorithm was able to
find the best known (pseudo-optimal) solutions for all
these instances (except the largest one) surprisingly
quickly. For example, the average time needed to find
the pseudo-optimal solution for the instance tai100b is
equal to 400 seconds on 900 MHz computer. The
results obtained show very promising efficiency of the
proposed extension of HGA. In many cases, EHGA
appears to be considerably superior to other efficient
algorithms for both random and real-life like
instances.

The results of EHGA may be improved even more
by an accurate tuning of the control parameters. Of
course, we can obtain higher quality solutions by
increasing the total number of generations (Ngen), but
at the cost of longer computation time. After an
additional long-lasting experimentation, EHGA was
successful in discovering new record-breaking
solutions for two large random instances, namely,
tai80a and tai100a. The new values of the objective
function, which are better than those reported in [20],
are equal to 13535624 and 21102912, respectively.

4. Concluding remarks

In this paper, an extended hybrid genetic algorithm
(EHGA) for the quadratic assignment problem is
presented. The results obtained by EHGA demonstrate
the excellent performance of the proposed algorithm
with respect to the performance measures used. The

59

A. Misevičius

main features of this algorithm are as follows: a) it
incorporates an efficient tabu search algorithm as a
local improvement procedure; b) the large population
of solutions is not necessary: its compactness is fully
compensated by the outstanding performance of TS; c)
mutation operator is not needed in the GA itself,
because the solutions undergo transformations in the
TS procedure; d) a special restart mechanism
implemented helps to overcome the loss of diversity
within the population and the premature convergence
of GA.

The idea of hybridization should further be exploi-
ted. The following directions for the possible improve-
ment of EHGA may be proposed: 1) using the reactive
tabu search instead of the straightforward (robust) tabu
search (as a possibly more efficient local improvement
procedure); 2) implementing other, more elaborated
mutation (perturbation) operators within extended TS;
3) designing innovative crossover operators, for exam-
ple, so-called multiple parent crossovers; 4) trying
other restart strategies; 5) maintaining a mixture
("pout-pourri") of different local improvement proce-
dures (like the descent local search, simulated annea-
ling, tabu search, etc.) to allow flexible tuning (or,
even self-tuning) of the genetic algorithm to the speci-
fic problem. Putting these directions into efficient
implementations could be a subject of the future re-
search.

References
 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem.
Computers & Operations Research, 2000, Vol.27,
917–934.

 [2] A. Bölte, U.W. Thonemann. Optimizing simulated
annealing schedules with genetic programming. Euro-
pean Journal of Operational Research, 1996, Vol.92,
402−416.

 [3] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of Glo-
bal Optimization, 1997, Vol.10, 391−403.

 [4] V.D. Cung, T. Mautor, P. Michelon, A. Tavares. A
scatter search based approach for the quadratic assign-
ment problem. Proceedings of the IEEE International
Conference on Evolutionary Computation and Evolu-
tionary Programming (ICEC'97), Indianapolis, USA,
1997, 165–170.

 [5] L. Davis. Handbook of Genetic Algorithms. Van Nost-
rand, New York, 1991.

 [6] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on Compu-
ting, 2003, Vol.15, 320−330.

 [7] C. Fleurent, J.A. Ferland. Genetic hybrids for the
quadratic assignment problem. P.M.Pardalos, H.Wol-
kowicz (eds.), Quadratic Assignment and Related
Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.16, AMS,
Providence, 1994, 173−188.

 [8] L.M. Gambardella, E. Taillard, M. Dorigo. Ant co-
lonies for the quadratic assignment problem. Journal

of the Operational Research Society, 1999, Vol.50,
167−176.

 [9] F. Glover. Tabu search: part I. ORSA Journal on
Computing, 1989, Vol.1, 190−206.

[10] F. Glover. Tabu search: part II. ORSA Journal on
Computing, 1990, Vol.2, 4−32.

[11] F. Glover, M. Laguna. Tabu Search. Kluwer, Dord-
recht, 1997.

[12] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

[13] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[14] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[15] Y. Li, P.M. Pardalos, M.G.C. Resende. A greedy
randomized adaptive search procedure for the quad-
ratic assignment problem. P.M.Pardalos, H.Wolkowicz
(eds.), Quadratic Assignment and Related Problems.
DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol.16, AMS, Provi-
dence, 1994, 237−261.

[16] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic al-
gorithms using simple genes exchange local search po-
licy for the quadratic assignment problem. Computa-
tional Optimization and Applications, 2000, Vol.15,
249−268.

[17] P. Merz, B. Freisleben. Fitness landscape analysis
and memetic algorithms for the quadratic assignment
problem. IEEE Transactions on Evolutionary Compu-
tation, 2000, Vol.4, 337−352.

[18] Z. Michalewicz, D.B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin-Heidelberg, 2000.

[19] A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65−73.

[20] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, in press.

[21] P. Moscato. Memetic algorithms: a short introduction.
D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in
Optimization, McGraw-Hill, London, 1999, 219–234.

[22] H. Mühlenbein. Genetic algorithms. E.H.L.Aarts, J.K.
Lenstra (eds.), Local Search in Combinatorial Opti-
mization, Wiley, Chichester, 1997, 137–171.

[23] S. Sahni, T. Gonzalez. P-complete approximation
problems. Journal of ACM, 1976, Vol.23, 555−565.

[24] T. Stützle. Iterated local search for the quadratic
assignment problem. Tech. Report AIDA-99-03,
Darmstadt University of Technology, Germany, 1999.

[25] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443−455.

[26] E. Taillard. FANT: fast ant system. Tech. Report
IDSIA-46-98, Lugano, Switzerland, 1998.

[27] E. Taillard, L.M. Gambardella. Adaptive memories
for the quadratic assignment problem. Tech. Report
IDSIA-87-97, Lugano, Switzerland, 1997.

[28] D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers & Opera-
tions Research, 1995, Vol.1, 73–83.

60

