AN EXTENSION OF KAKUTANI'S THEOREM ON
INFINITE PRODUCT MEASURES TO THE
TENSOR PRODUCT OF SEMIFINITE w*-ALGEBRAS

BY
DONALD BURES

Suppose that (%), is a family of semifinite w*-algebras and that p, is a normal
state of &4 with u(1)=1 for each i€l Let =R (, 1) and let 4, — 4,
denote the natural injection of % into . (The notation is explained in §3 below; &
is the (u;)-incomplete direct product of (o4): see [9], [12] or [1].) Given a normal
state v; of % for each i € I, a normal state v of & is written (X),.; v, when

v (H Z,) =TT »4)

ieF ieF

for all 4, € o and all finite subsets F of I.

Our main result (Theorem 4.1) is that i, v; exists on & if and only if
Yier [d (s, v)]? converges, or, equivalently, if and only if [T, p(u, v;) converges.

Here d is a metric on the set of normal states of a w*-algebra 4. d is defined
essentially by d(u, v)=inf {|x— |}, the infimum being taken over all vectors x and
y inducing p and v relative to a representation of # as a von Neumann algebra.
p is a kind of inner product defined by

2p(p, v) = p(1)+¥(1) = [d(p, »)].
We show that d and p correspond to Kakutani’s d and p [6] when & is abelian (and
normal states are made, in the usual fashion, to correspond to measures absolutely
continuous with respect to a fixed measure). Thus our result reduces to Kakutani’s
[6] when each 2 is abelian.

We give two applications of our main result. First, suppose that ¢; is an iso-
morphism of the w*-algebra &4 onto the w*-algebra %,;. Then we show that an
isomorphism ¢ from ) (4, u;) to & (%, v, such that

#(4) = (A4, forall 4;eFand all il
exists if and only if

> (A, vio $)P < oo

Secondly, we show that if each 4 is a finite factor with normalized normal trace ;,
then X) (A, ) is finite if and only if

> [d(u, )PP < co.

This result generalizes results in [1] and [7].
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Further applications, concerning unitary equivalence of representations of
(weak) infinite product groups and unitary equivalence of representations of infinite
c*-tensor-products, will be discussed elsewhere.

We begin, in §1, with the definitions and fundamental properties of d and p on an
arbitrary w*-algebra. In §2 we prove the product formula for p on a finite tensor
product of semifinite w*-algebras. In §3 we establish our notation for infinite tensor
products and summarize some of the properties of the tensor product that we need.
§3 contains no new results. We conclude, in §4, with the main results and applica-
tions.

1. Definition and properties of p and d. Throughout this section &/ will denote
a w*-algebra and X will denote the set of normal states of <7, By a representation ¢
of &« on H we mean an isomorphism of &/ onto a von Neumann algebra acting
on H. (Notice that ¢(1) is necessarily the identity operator on H.)

DEerINITION 1.1. Suppose that ¢ is a representation of & on H. For each peX
define S(¢, ) by:

S($, w) = {xe H : ($(A)x|x) = u(A) for all 4 e «}.

We will say that a vector x € S(¢, n) induces the state p of & relative to ¢.

DErINITION 1.2. Suppose that ¢ is a representation of 7 and that x and v are
in X. If either S(¢, n) or S($,v) is empty define py(u, v)=0 and dy(u,v)
=[u(1)+v(1)]*2; otherwise define

PdJ(l"’ V) = Sup {l(x|y)| ‘XE S(‘ﬁ) .u') and Y€ S(¢a V)}:
dy(u, v) = inf {|x—y| : x € S($, &) and y € S, V)
DeFmiTION 1.3. For all g, v € X define:
P(.u’ v) = sup {Pd’(ll'a V) : qs € A}’ d(f‘" V) = inf {dd’(f“’ V) : ¢ € A}:
where A is the set of all representations of /.
LemMMA 1.4. For all p, v € X and all representations ¢ of <
[d(p, D2 = p(1)+ (1) = 2p0(x, ¥),
[d(, )P = p(1)+v(1)—2p(k, »).
Proof. Obvious.

LemMA 1.5. For all p,veX and all real k= 0:
0 < d(p,v) = [w(M)+¥(DF2 0= plp,v) S [w(D)+(1)]Y2,

d(p,v) = d@v, p), plp, v) = plv, 1),
d(p, p) = 0, plu, p) = p(1),
d(kp, kv) = kd(u, v), plkp, v) = kp(p, v).

Proof. Obvious.
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PROPOSITION 1.6. There exists a representation ¢ of £ on H such that
(A) For all p,veX: d(p, v)=dy(n, v) and p(u, v)=po(p, v).
(B) For a fixed p € 3, there exists x, € S(¢, p) such that

d(u,v) = inf{||xo—y| : y€ S($,v)} for all ve Z.

(C) Suppose that E is a projection of & and that ¢’ is the representation of <
taking EAE into the restriction of ¢(EAE) to $(E)H. (We call ¢’ the restriction of
& to ;) Then, for all normal states u’ and v' of g, d(p', v)=d,(1', v") and p(p', v')
= po(p', v).

Proof. It is well known that there exists a representation ¢,: 4 — 4; of & on
H, with the property that S(é,, #) is nonempty for all u € Z. Furthermore it is easy
to see that the restriction ¢; of ¢, to &% will also have this property. Let ¢ be the
representation

$1 D A—> A4, D4

of &/ on the Hilbert space H=H, @ H,. Evidently the restriction ¢’ of ¢ to <%
equals ¢7 @D ¢1. Therefore, if we can prove that (A) holds for ¢ of the above form,
(C) will follow.:

Let us proceed with the proof of (A). Let u and v be in Z, let ¢,: 4 — 4, be a
representation of &/ on H, and let x, € S(¢,, 1) and y, € S(¢,, ). To prove (A),
it suffices to demonstrate the existence of vectors x and y in H, with x € S(¢, ) and
y € S($, v), such that

(L.1) Ix=yl = [xa=pel.
Let x; be in S(¢, n). Then
l,l’: A]_xl —> A2X2 fOI‘ all A € M

is an isometry which extends to an isometry  from [ x,] onto [#x,]. Let E, be
the orthogonal projection of H, onto [#x,]; evidently E, commutes with 7,
Let yo=E,;y, and y5=y,—ys. Then, relative to ¢,, y; induces v’ and y; induces »”
with v=v"4++". Let yi=4"(p3); then y; induces »' relative to ¢, because 4 is
interlacing. Let y” be in S(¢g, v"). Take x=x; @ 0 and y=y; @ y;. Then we have
x € S(¢, n)yand y € S(¢, v), and furthermore

[x=217 = Ix =22l + 1 ¥5)2
=[x =]+ | y2]?
= [x2=ya|*+ | y2]® = [x2—pal®

That demonstrates (1.1) and completes the proof of (A).
(B) follows immediately from the observation that x=x, @0 was chosen
independently of v and ¢,.

ProrosiTiON 1.7. d: (1, v) — d(u, v) is a metric on Z.
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Proof. Let p be given in X. Take the ¢ and x, € S(¢, ) of Proposition 1.6.

Then d(u, v)=0 implies
(1.2) inf {{xo—y| : ye S($,»)} = 0.
Since S(¢, v) is clearly a closed subset of H, (1.2) implies that x, is in S{¢, ») or that
p=v. We have shown that d(u, v)=0 implies p=v.

To prove the triangle inequality, suppose that v and w are in Z. Then:

d(v, w) = inf{|y—z| : y € S(¢, v), z€ S($, w)}
< inf {y—xol + [Xo—2{} = d(v, 1) +d(p, w).
ProprosITION 1.8. (A) For all p,veZ, d(u, p+v)S@(1)Y2.
(B) For all p,veX with u(1),v(1)<1 and for 0=e<1,
A, )= (o, (L= v+ ep)| < 2612

Proof. (A) Let ¢,: A — A, be a representation of &/ on H, such that vectors
x, and y, exist with x; € S(¢,, ) and y, € S(¢;, v). Let ¢ be ¢, @ ¢,. Then x=x,
@ 0€e S(p, w) and z=x, @ y; € S(¢, p+v). Therefore

dp+v,p) £ |z—x] = 3] = D)=
(B) Using the triangle inequality for d and (A), we obtain:
|, v) =, (1 =+ )] < dv, (1= e+ o)
<d,(1—ew)+d({(1—¢e), (1 —ev+ep)
< (en ()2 + (ep(1))2 S 2617,

ProposITION 1.9. (A) For p,v e with u(1), (D)2 1, |pu(1)—v(1)| £2d(u, v).

(B) Suppose that ., p', v, v' € Z with u(l), p’'(1), v(1), v'(1)£ 1, that £>0 and that
d(p, p)<e and d(v, v')<e. Then |p(u, v)—p(p’, v')| < Se.

(C) Suppose that p, v € X with p(1)=v(1)=1, and that P and Q are projections of
o with W(P)>1—e and v(Q)> 1 —e¢. Then |p(u, v) — p(pp, vo)| < 5e'/2.

Proof. (A) Suppose that x induces p and y induces v. Then
(D =) = | |x|*—]»]?]
= (x[+1yDlUxl=1x11 £ 2|x=yl.

Since d(g, v) is the infimum of such |x—y|, (A) follows.
(B) Using Lemma 1.4, the triangle inequality for 4, and (A), we obtain:

2|p(, v) = p(ie, V)| = (D) —v' (1) +(d(, v))* ~(d(p, v))?|
< (D) =v'(D)| +(d(w, v) +d(w, v))|d (g, v)—d(u, v)|
< 2d(, vV)+24/2d(v, V) < Se.

Similarly 2|p(u, v")— p(u’, v)| < 5¢ and (B) follows.
(C) We obtain from (A) of Proposition 1.8 that

d(p, pe) = d(up+(p—pp), pp) S [(p—pe)(D]? < £1/2
and similarly d(v, vg) < £'/2.
Hence (C) is a consequence of (B).
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PRroPOSITION 1.10. Suppose that . and v are normal states of &, and that E is a
projection of o with W(E)=v(E)=1.

Let u' and v’ denote the restrictions of p and v to ;. Then p(p, v)=p(u', v') and
d(p, v)=d(',v").

Proof. Let ¢ be a representation of & on H such that the conditions of Proposi-
tion 1.6 hold. Let ¢’ be the restriction (in the sense of Proposition 1.6) of ¢ to 7.
It is easy to confirm that S(é, u)==S(¢’, »") and S(¢, v)=S(¢', v'). From here (A)
and (C) of Proposition 1.6 complete the proof.

DEerINITION 1.11. Suppose that 4 and v are in Z, ={u € Z : u(1)=1}. Define

8(i, v) = 2 sup {|u(E)—w(E)| : E a projection of &/}.

ReMARK. Evidently 8(u, v)< [ — v, the uniform norm of the functional x—» on

7, In fact it is easy to see that
3(p, v) = sup {|(u—v)(4)| : AeZ with 4 = A* and | 4| = 1}.

From here we can conclude that &(u,v)=|u—v| (see [5]or [3, 2.6.4]). For our
purposes here Definition 1.11 is the more suitable.

ProrosITiON 1.12. For all p,ve2,
(1.3) [d(p, v)I? < 8(p, v).

Proof. It is sufficient to find a projection E of &/, a representation ¢ of %, and
vectors x € S(é, ©) and y € S(¢, v) such that
(1.4) Ix=yl? £ 2|p(E)—w(E)|.

Let us suppose, at first, that v<nu for some integer n. Then, by Sakai’s Radon-
Nikodym theorem [10], v=pu for some T € &7+, Let (E,) be the spectral resolution
of T'and take E=E,. Let ¢ be a representation of & such that S(¢, ) is nonempty
and take x € S(¢, p). Take y=¢(T)x; evidently y € S(¢, v). Then, writing T for
&(T) and E for ¢(E), we obtain:

|x=Tx[* = (1 =T)*Ex|x)+(T—1)*(1 - E)x|x)
(1= TX1+T)Ex|x)+(T— 1T+ 1)1~ E)x|x)
= [(Ex|x) = ((1 = E)x[)]+ [((1 - E)Tx|Tx) ~ (ETx|Tx)] = 2[(E) - v(E)].

|x=xl*

IIA

Thus (1.4) holds and from there (1.3) holds, whenever »<nu for some integer n.
Suppose now that . and v are arbitrary in ;. For O<e< 1 let p'=(1—-¢)u+ev.
Then v ap’ for n= 1/, so that, by the preceding paragraph,

(1.5) [d', I £ 8, v).
Clearly
(1.6) (', v) = (1—2)8(u, v).
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By Proposition 1.8 (B)
n |[d@’s v)—d(u, v)| £ 2642,
Combining (1.5), (1.6) and (1.7), we obtain
d(p, v) £ 2612+ [3(p, »)]'2.
Since ¢ is arbitrary with 0 <e< 1, we can conclude that 1 and v satisfy (1.3).

COROLLARY 1.13. Suppose that p,veZ; and e>0. Then p(u, v)<e implies that
there exists a projection E of S such that:

(1.8) WE) > 1—¢ and WE) < e.

Proof. Suppose that p(g,v)<e. Then [d(k,v)]2>2(1—¢) and, by Proposition
1.12, 8(u, v)>2(1—¢).
The definition of 8 shows now that there exists a projection P of & such that

(1.9) |p(P)=v(P)| > 1—=.
Take E=P if u(P)>v(P) and E=1—P if u(P) <v(P). Then (1.8) is a consequence
of (1.9).

2. The product formula for p. In this section, we are concerned primarily with
establishing the formula

2.1 Pl ® pa, v @ v3) = [p(py, p2)lp(v1, v2)]

for normal states i, and v, of & and p, and v, of &%, where %/ and < are semi-
finite w*-algebras. Here u; ® ps denotes the normal state of &7 ® = defined by

(1 ® pa)(4; ® Ag) = [11(41)][(42)] for all 4, € &, and all 4, € .

If p is a state of o/ and M e &, we follow the standard usage in defining the state
iy Of o by pp(A)=p(M*AM) for all 4 € o

LeMMA 2.1. Suppose that ¢ is a representation of the w*-algebra </ on H and that
x and y in H induce the same state p relative to ¢. Then there exists a partial isometry
U’ in (¢()) such that U'x=y.

Proof. A standard result (see [2] or the proof of Proposition 1.6).

LEMMA 2.2. Suppose that ¢ is a representation of ¢ and that the vector z induces
a trace relative to ¢. Then if Te &/* and U is a unitary operator of s/, $(TU)z and
&(T)z induce the same state relative to ¢.

Proof. Obvious by direct calculation.

PrOPOSITION 2.3. Suppose that = is a normal finite trace on the w*-algebra £ and
that M and N are in o *. Then p(1y, Ty)=7|MN]|.
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Proof. By assertion 1 of Lemma 1.9 we may, without loss of generality, assume
that 7 is faithful. Then & is finite, so that the polar decomposition of MN yields a
unitary operator U of & such that

2.2) MN = U|MN| and NMU = |MN]|.

Denote 7, by u and 7 by v. Let ¢ be a representation of &/ such that = is induced
by a vector z and

(23) plis v) = polp, v).
(Such a ¢ exists by Proposition 1.6.) Then ¢(M)z induces p, $(N)z induces v, and
#(MU)z also induces p (Lemma 2.2). Therefore, using (2.2), we obtain

plu, v) 2 |[((MU)z|$(N)z)| = |[7(NMU)| = 7| MN|.

To prove the opposite inequality, let ¢ and z be as above and suppose that x
induces p and y induces v. Then (Lemma 2.1) there exist partial isometries U’ and
V' of ($(#))’ such that x=U'¢(M)z and y=V'¢(N)z. Hence, denoting |MN| by P
and using (2.2), we obtain:

Il = |[(V"*Uz|¢(MN)z)|
= |(V"*U'z|p(UPYEP %)) = [(V"*U'$(P2U)z|$(P?)z)|
|$(P2U)z| |$(P2)z|| = [+(U*PU)"*[(P)]'? = =(P) = |MN]|.
Since py(p, v) is the supremum of such |(x|y)|, we obtain from (2.3) p(u, v)= py(g, ¥)
<7|MN|.

IA

LemMA 2.4. Suppose that o7 is a w*-algebra and that  is a faithful normal
semifinite trace on . Let p and v be normal states of o with u(1)=v(1)=1, and let
e>0. Then there exist projections E, P and Q in &/ with P, Q< E such that:

1. 7(E)<oo0,

2. {P)>1—eand v(Q)>1—c¢,

3. pp, vo=< Ktz for some number K.

Proof. Since 7 is semifinite there exists a family (E;) of projections of < such that
each r(E))<co and } E;=1. Evidently a suitable finite sum E of E;’s will satisfy
7(E) <0, u(E)>1—¢ and »(E)>1—e. Since 7 is faithful, u; and v; are absolutely
continuous with respect to 7z. From there, a weak version of the Radon-Nikodym
theorem in w*-algebras [8, p. 211] tells us that there exist projections P and Q< E
and a number K such that 2 and 3 hold.

THEOREM 2.5. Suppose that s, and <, are semifinite w*-algebras. Then the
product formula (2.1) holds.

Proof. Let =1 or 2. We may assume without loss of generality that (1)
=y (l)=1.

Let = be given >0. Since & is semifinite, there exists a faithful normal semi-
finite trace 7, on 4. Choose E;, P, and Q; to satisfy the conditions of Lemma 2.4.
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Denote by pj; and v; respectively the restrictions of (u,)p, and (vs), to (#)g,. By
Proposition 1.10 and (C) of Proposition 1.9

2.4) |(tas v9)— pi v3)| < Se¥2 for 8 = 1and 2.

We note that, if 7; denotes the restriction of (7,)g, to (&4)g,, then 7; is a finite
faithful trace on (24)g,, and pj, vs< K7; for §=1and 2.

Now let =) @ Ay, p=p1 @ po, v=v1 Q vy, E=E; ® Ey, P=P, ® P; and
0=0, ® Q,. Identify o4 and (#)s, ® (&), in the canonical way. The re-
striction u’ of up to 2 evidently equals pi ® po; similarly v'=v; ® vy wWhere v’
denotes the restriction of v, to 7. We have

#(P) = (1 (P))po(P2)) > (1-2)* > 1-2¢

and »(Q)>1—2¢. Therefore, using Proposition 1.10 and (C) of Proposition 1.9,
we obtain

(2.5) Ip(e, v)—p(', v)| < 5(2e)'72.

Combining (2.4) and (2.5), we see that, since ¢>0 is arbitrary, if the product
formula (2.1) holds for u; and v; then it holds for u, and v, also. The proof of
Theorem 2.5 can be completed, then, by proving the product formula under the
following conditions:

1. For §=1 and 2, % has a faithful finite normal trace 7,.

2. A number X exists such that p, and v, are < K7, for §=1 and 2.

Suppose then that these conditions hold. By a well-known Radon-Nikodym
type theorem [2, p. 91], there exist operators M, and N, of .o/ * such that p,=(7;)u,
and v,=(7,)y,. Then Proposition 2.3 shows that

(2.6) s vs) = 75| MsN,|.

Now it is well known that 7=, ® =, defines a finite normal trace on & = Q .
A direct calculation proves that, if M=M; ® M;and N=N,; @ N, then yt; ® p,
=17y and v; ® v,=r7y. Again Proposition 2.3 applies to give

(2.7 pr @ po, vy ® vo) = 7|MN].
A direct calculation shows that
|[MN| = |M;N,| ® |M.N,|
so that
2.8 7|MN| = (71| M, N, |)(73| MoNy|).

(2.6), (2.7) and (2.8) taken together prove the product formula under conditions
1 and 2. This completes the proof.

COROLLARY 2.6. Suppose that (&)qcr is a finite family of semifinite w*-algebras.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] AN EXTENSION OF KAKUTANI’'S THEOREM 207

Suppose that p, and v, are normal states of 4, for each o € F. Then the product

Jformula holds; that is
P(® Har & Va) = I_I pas va)-

aeF aeF acF

Proof. This is obtained from Theorem 2.5 by induction and the fact that the
tensor product of two semifinite w*-algebras is semifinite [2].

REMARK. A direct proof could be given by complicating the proof of Theorem
2.5.

PROPOSITION 2.7. Suppose that & is a o-algebra of subsets of X and that n and v
are finite measures on &, Let A be a o-finite measure on & such that . and v are
absolutely continuous with respect to A, and let < be the w*-algebra L (X, &, A).
Then integration with respect to p and v defines two normal states of & which we
denote by p' and v’ respectively. Then Kakutani’s p(u, v) and d(u, v) [6] are identical
with our p(u', v") and d(u', v").

Proof. Take w=p+v and o'=p'+v’, and compare (6) and (7) of [6] with
Proposition 2.3 above. Bear in mind that if p'=(w"),y and M20 then M is the
square-root of the Radon-Nikodym derivative of u with respect to w.

REMARK. The formula p(ry, 7y)=7|MN| can be shown to hold for = a normal
semifinite trace and M and N measurable hyperhermitian operators affiliated with
& (see [11] for the terminology and interpretation of |MN|). Hence, by suitable
Radon-Nikodym theorems ([4] and [11]), this formula could be used to define p
on semifinite w*-algebras.

For & a factor of type I, the situation is much simpler. Let tr denote the Hilbert-
Schmidt trace on . Then it is easy to see, by a direct calculation, that every
normal state p of & is of the form try, for M=0 a bounded operator which is
Hilbert-Schmidt. It can be shown fairly easily (without appeal to the techniques of
[11]), that p(try, try)=tr [MN|. Notice that here |[MN| is defined in the usual
fashion, since M and N are bounded.

3. Infinite tensor products: notation. Z. Takeda, using inductive limits, has
given an algebraic definition of the infinite direct product of a family w*-algebras
[12]. It is more convenient here for us to represent the w*-algebras as von Neumann
algebras and to make use of von Neumann’s definition of the infinite direct product
of Hilbert spaces [9]. For a further discussion of the definitions below, and for
proofs of cited results not in [9], see [1].

Let I be an arbitrary indexing set. Suppose that (H,),, is a family of Hilbert
spaces and that for each i € I, x; € H; with | x;|| =1. Then we denote by X),; (H,, x,)
von Neumann’s incomplete direct product of the family (H;) with respect to the
Co-sequence (x;); we call H=), (H,, x;) the tensor product of (H,) with respect
to (x;). Let

I' = {(yt) : each y, € H, andz 1= (el )| + Z 1=yl < °°}~
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Then there is a canonical multilinear mapping (»,) — &) y; from I' into a dense
subset of H with

Xy1Qz) =[] (nlz) forall(p),(z)eT.
We state the following for reference:

LEMMA 3.1. Suppose that x;, y; € H; with |xi||=|»l=1 and 3 |1— (x| y;)| < 0.
Then Q) (H,, x)=Q (Hi, y3).

Let H=@) (H,, x;). Then there exist canonical isomorphisms A;— A, from
F(H) into L(H). We have 4,(X) y)=Q) yi where yi.= Ay, and yi=y; for i#k.
Suppose that &4, is a von Neumann algebra on H,. We define the tensor product of the
Jamily (o4) with respect to (x)), o denoted by & (A, x)), to be the von Neumann
algebra on H generated by the .

LemMa 3.2. (A) If 3 |1 = (x| y)| <oo then ) (o, x) =) (A, ).
(B) &) (A, x;) is a factor if and only if each <4 is a factor.

LeMma 3.3. Suppose that, for each i € I, <4, and %, are von Neumann algebras on
H, and G, respectively, that x; € H, and y, € G, with ||x;| =| y;| =1, and that ¢, is an
(algebraic) isomorphism of <4 onto B,. Suppose that ($(A)yi|y:)=(Ax|x;) for all
A;e &, and all i€ I. Then there exists an isomorphism ¢ of & =) (4, x;) onto
B=Q) (B, ;) which satisfies

#(A) = $(A) forall ;e L andallicl

Proof. This does not seem to appear explicitly in the literature; it can be proved
easily, however, either by a direct proof using [2, p. 57] (the structure of isomor-
phisms), or by appealing to Takeda’s results [11].

Lemma 3.3 enables us to make the following definition:

DEerINITION 3.4. Suppose that (),., is a family of w*-algebras and that g, is a
normal state of &4 with u,(1)=1 for each i € I. Suppose that 7 is a w*-algebra and
that, for each i, o; is an isomorphism of & into &7 Then we will say that 7, together
with («), is a tensor product for the family (&) with respect to (x;) when the
following condition is satisfied:

For every family (¢;, x;), where ¢, is a representation of &4 and x; € S(¢;, w),
there exists an isomorphism A of & onto X) (¢,(4), x;) with

Alaf(4)) = M

for all A, € %/ and for allie L

Evidently the tensor product &7 of (&) with respect to (u;) exists and is unique
up to isomorphism preserving the injections (o;). We write & =) (4, ).

DEFINITION 3.5. Suppose that 7, with canonical injections (), is a tensor prod-
uct for (&) with respect to (1;). A normal state v of &/ will be called a product
state (for the o (24)) if

oI T e(4) = T4

for all 4, € & and all finite subsets F of L.
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For such a v we write v=() v, where, for each i€ I, v(4;)=v(e(4,)) for all
A, € #. Notice that, if ) v, exists for a family (»), it is unique.

LEMMA 3.6. Suppose that (), is a family of w*-algebras, and that u, and v; are
normal states of S, with u(1)=v(1)=1 for each i € I. Suppose that &, with injections
(«), is a tensor product for (4) with respect to (1)); and suppose that #, with in-
Jections (By), is a tensor product for (4) with respect to (v)). If

(3.1) > 1—p(u, w)] <
then: iel
(A) Q) v, exists on .
(B) There exists an isomorphism ¢ of o onto & such that ¢ o ;=P forallie I.

Proof. Suppose that (3.1) holds. For each i € I let ¢, be a representation of 2 on
H; satisfying the conditions of Proposition 1.6. For those i € I for which p(u,, v)#1,
we can choose x; € S(¢;, n;) and y; € S(¢y, »,) such that (x| y;) is real and

(3.2 1-Caly) < 2[1=p(ps, w1

If p(pes, vi)=1, we have d(u,, v;) =0 and therefore p,=p, =v, (Proposition 1.7), so that
we can choose

X, = y1 € S(¢i 1) = Sy, v).
Thus (3.2) holds for all i € I, and (3.1) means that

Z Il—(x;'yi)l < 00,
iel

Then H=Qie; (Hi, x) =1 (H;, 1) according to Lemma 3.1. Therefore both
&/ and # are canonically isomorphic to

@ (¢, x) = & ($(H), »)

tel

and both (A) and (B) hold.

LemMA 3.7. Suppose that (<) is a family of w*-algebras and that p, is a normal
state with p(1)=1 for each i. Let s/ =) (4, ;) and let T'={Q p : each p; a
normal state of o4, and p;=p, for all but a finite number of i}. Then if Ae o« and
p'(A)=0 for all p' €', A must be 0.

LeMMA 3.8. If (z)ie; is a family of complex numbers, [ 1i; z; converges if and only
if Zier 1=z < 0.

ReMark. See [9] for a discussion of infinite products. Recall, in particular, that
convergence of a product is defined to exclude 0 as a value unless some term is O:
a product converges if and only if the altered product obtained by deleting the 0’s
converges to a nonzero number.
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4. The main results.

THEOREM 4.1. For each i€ I, suppose that &4 is a semifinite w*-algebra and that
w; and v; are normal states of &4, with p(1)=v(1)=1. Let & =Xie; (4, p.). Then the
following conditions on (v;) are equivalent:

(A) There exists a normal product state v=_);c; v on .

(B) There exists an isomorphism ¢ of & onto R (4, v;) such that, for each
i€ l, ¢ o ay=p; where o is the canonical injection of 54 into £ and B, is the canonical
injection of &, into Ric; (A, vy).

(O) Jier [d(pis vi)]? < 0.

(D) TTier (s, v1) converges.

THEOREM 4.2. For each i€ I, suppose that S and %, are semifinite w*-algebras,
that y; is a normal state of <4, and v, is a normal state of #; with p(1)=v(1)=1, and
that ¢; is an isomorphism of < onto B;. Let & =Ric; (S, w;) with canonical in-
Jections () and let B=Ric; (B, v;) with canonical injections (B;). Then there exists
an isomorphism ¢ of s/ onto # such that

4.1) $((4) = Bi($:(A4)
for all A;e o and all i e I, if and only if

> (A, vi o $)P? < 0.

THEOREM 4.3. (Cf. [1]1and [7).) Suppose that, for each i€ I, 5 is a finite factor
with finite normal trace =, satisfying v(1)=1. Suppose p, is a normal state of & with
w()=1. Then o =) (4, w) is finite if and only if

4.2) 2. [d(u, W) < co.

Proof of 4.1. (Cf. the proof of Lemma 7in [6].) Since 0= p(u;, ;)< 1 and 1 — p(p;,v))
=1[d(w, v)1? (C) and (D) are equivalent (see Lemma 3.7).

To show that (A) implies (D), we will demonstrate that for (A) to hold and (D)
to fail is impossible. Assume that v=(X) v; exists on % and that [ ] p(w;, v;) diverges.
The divergence of the infinite product implies that there exists a sequence (F,)zen*
of disjoint finite subsets of I such that:

4.3) [.] e v) < n=2 forallme N*.

ieFy

Let Fo=I—\Jnen* Fy Then & is canonically isomorphic to Qnew (4, 1), Where
Ay =Rer, (i, p) and p,=Qer, ps for all ne N (the associativity of the tensor
product, see [9] or [1]). Let us identify these algebras. Then u=ic; u; is identified
with Rnen pn and v=);; v; is identified with Xnen va- By (4.3) and the product
formula for p (Corollary 2.6), p(g,, vo) <n~2 for all n e N *. Therefore (Corollary
1.13) there exists, for each n € N *, a projection E, in %/, such that

4.4 un(E) <n~?2 and v (E,) >1-n"2 foralilneN*.
Let E=[Tnen yn(E.) Where v, is the canonical isomorphism of 7, into Rnen (H, 1£n)
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which has been identified with & Then E is a projection of 7, and, using (4.4), we
obtain
4.5) v(E) = (@v v,,)(E) = H v(E,) > H (1-n"% > 0.

ne nenN+ neN+
Similarly u(E)=0. Now suppose p'=); i where pi=p; for all but a finite
number of i € I. Then u,=u, for all but a finite number of #n € N, and therefore,
by (4.4) p'(E)=0 for all such p'. Hence (Lemma 3.7) E=0, in contradiction with
(4.5). We conclude that (A) implies (D).

(D) implies (A) and (B) by Lemmas 3.6 and 3.8. Evidently (B) implies (A).

Proof of Theorem 4.2. Let w;=v; o ¢; so that , is a normal state of .. Let
€ =1 (A, w;) with canonical injections (y;). Then ¢, is an isormorphism of &/
onto %, taking w; into v;, and therefore there exists an isomorphism ¢’ of € onto %
satisfying ¢’ o y;=B, o ¢, for all i € I. Evidently, then, there exists an isomorphism ¢
of &7 onto # satisfying (4.1) if and only if there exists an isomorphism ¢” of o onto
€ satisfying ¢” o oy=1; for all i € I. According to Theorem 4.1, that occurs if and
only if

2 1d(u, w)P < oo.

tel

Proof of Theorem 4.3. ./ is necessarily a factor (Lemma 3.2).

Suppose that (4.2) holds. Then r=(X) 7, exists on 2/ and can be shown to be a
trace by standard arguments. Since 7 is a factor, 7 is faithful. Thus < is finite.

To prove the necessity of (4.2), assume that 7 is finite. Then there exists a
finite normal trace = on &/ with 7(1)=1. Let o, denote the canonical injection of %
into & =) (+, ;). We are going to demonstrate the following formula:

(4.6) T(H ai(A,)) = T (49

ieF ieF

for all A4, € .+ and for all finite subsets F of I.
From (4.6) we can conclude that 7=@) =;, and (4.2) is then a consequence of
Theorem 4.1. Therefore the proof of (4.6) will complete the proof of Theorem 4.3.
Observe that (4.6) follows from the following special case:

@.7) T(ﬂ ai(E‘)) =TT &

ieF teF

for all positive integers k;, all projections E; € & with 7,(E,)=2"% and all finite
subsets F of 1.

Fix the finite subset F and the positive integers k; for ieF. Let
J(@#)={1,2,3,...,24}. For a projection E; with 7(E)=2"%, there exists a family
(Ed(J))jesey Of projections of &4 with E(1)=E, 3, E(j)=1, and 7(E(j))=2"%

for all j e J(i).
Given j; and j; in J(i), there exists a unitary U, € & such that
(4‘8) Ui(Ei(ji))Ut* = Et(j;)-
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Now let J=T ;¢ J(i). For each j=(j,) € J, define
E(j) = H a(E(1)-

ieF
Then 3.y E(j)=1. Given j=(j)) and j'=(j;) in J, let
U= H «(U))
ieF

where the U, satisfy (4.8). Then E(j)=U(E(j))U*, and, since  is a trace,
E(j)) = #(E(j)) forallj,j el
Now J has [ ]icr 2% elements. Therefore

WEG) =]]27% foralljeJ

feF

and (4.7) follows. This completes the proof of Theorem 4.3.
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