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Suppose that (s%)if¡, is a family of semifinite w*-algebras and that /¿( is a normal
state of sft with /¿¡(1) = 1 for each i el. Let s/=0ls, (s/u /¿¡) and let AK-+Ax
denote the natural injection of ^ into si. (The notation is explained in §3 below; si
is the (/¿^-incomplete direct product of (s¿¡): see [9], [12] or [1].) Given a normal
state vt of s/t for each i e I, a normal state v of s/ is written (x)je/ vt when

" in ï) = n "«(^o
for all Aiesii and all finite subsets F of /.

Our main result (Theorem 4.1) is that Ç§ie,vi exists on sé if and only if
2»6í \d(p,, v¡)]2 converges, or, equivalently, if and only if Y}ie, p(p¡, v¡) converges.

Here d is a metric on the set of normal states of a w*-algebra 38. d is defined
essentially by d(p, v) = inf{\\x—y\\}, the infimum being taken over all vectors x and
v inducing p. and v relative to a representation of ¿% as a von Neumann algebra.
p is a kind of inner product defined by

2p(p,v) = p(l) + v(l)-[d(p,V)]2.

We show that d and p correspond to Kakutani's d and p [6] when J1 is abelian (and
normal states are made, in the usual fashion, to correspond to measures absolutely
continuous with respect to a fixed measure). Thus our result reduces to Kakutani's
[6] when each sfx is abelian.

We give two applications of our main result. First, suppose that fa is an iso-
morphism of the w*-algebra s/¡ onto the w*-algebra ^¡. Then we show that an
isomorphism <j> from (g) (s/t, p¡) to (g) (äS{, v¡) such that

</>(Â~i) = <f>i(Ai)   for all At e s/t and all i e I
exists if and only if

2 [d(p¡, vt ° fa)]2 < oo.
Secondly, we show that if each s/¡ is a finite factor with normalized normal trace t¡,
then (x) (s/h /¿¡) is finite if and only if

2 [¿(m, r,)]2 < oo.

This result generalizes results in [1] and [7].
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Further applications, concerning unitary equivalence of representations of
(weak) infinite product groups and unitary equivalence of representations of infinite
c*-tensor-products, will be discussed elsewhere.

We begin, in §1, with the definitions and fundamental properties of d and p on an
arbitrary w*-algebra. In §2 we prove the product formula for p on a finite tensor
product of semifinite w*-algebras. In §3 we establish our notation for infinite tensor
products and summarize some of the properties of the tensor product that we need.
§3 contains no new results. We conclude, in §4, with the main results and applica-
tions.

1. Definition and properties of p and d. Throughout this section si will denote
a H>*-algebra and 2 will denote the set of normal states of si. By a representation <j>
of si on H we mean an isomorphism of si onto a von Neumann algebra acting
on H. (Notice that <f>(l) is necessarily the identity operator on H.)

Definition 1.1. Suppose that <f> is a representation of si on H. For each p e 2
define S(<f>, p) by:

S(<f>, p) = {xeH: (<f>(A)x\x) = p(A) for all A esi}.

We will say that a vector xe S(<f>, p) induces the state p of si relative to <f>.
Definition 1.2. Suppose that <f> is a representation of si and that p and v are

in £. If either S(<f>, p) or S(<f>, v) is empty define p0(p,v)=O and d^^v)
= [p(l)+v(l)]112; otherwise define

P«(p, ") = sup {|(x| v)| : x e S(<b, p) and y e S(<f>, *)},
d<t,(p-, v) = inf {\\x-y\\ : xe S(<f>, p) and y e S(<f>, v)}.

Definition 1.3. For all p,vell define:

p(p, v) = sup {PA[p, v) : <f> e A},   d(p, v) = inf {d0(p, v) : <f> e A},

where A is the set of all representations of si.

Lemma 1.4. For all p,veY> and all representations <f> of si:

KG",")]2 = p(i)+v(i)-2p,(p,v),
[d(p,V)]2 = p(l) + v(l)-2p(p,v).

Proof. Obvious.

Lemma 1.5. For all p, ve£ and all real k=0:

o = d(p, v) = [Ml)+KO]1'2,     o < p(p, v) ̂  [p(i)+Ki)]1'2,
d(p, v) = d(v, p), p(p, v) = p(v, p),

d(p, p) = 0, p(p, p) = p(l),
d(kp, kv) = kd(ji, v), P(kp, v) = kp(p, v).

Proof. Obvious.
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Proposition 1.6. There exists a representation <pofs/onH such that
(A) For all /¿, v e 2 : d(p, v)=d<p(p, ¡>) and p(p, v) = pjji, v).
(B) For a fixed p e 2, there exists x0 e S(<f>, /¿) such that

d(p, v) - inf {||jc0 — v|| : y e S(</>, v)} for all veZ.

(C) Suppose that E is a projection of si and that </>' is the representation of siE
taking EAE into the restriction of<j>(EAE) to </>(E)H. (We call <f>' the restriction of
<j> to siE.) Then, for all normal states /¿' and v ofsiE, d(p, v') = d^(p!, v) and p(p', v')
= p^(p',v').

Proof. It is well known that there exists a representation </>x: A-^ Ax of si on
Hi with the property that S((/>i, /¿) is nonempty for all /¿ e 2. Furthermore it is easy
to see that the restriction <f>x of j>x to siE will also have this property. Let <f> be the
representation

<f>x © <f>x: A ̂  Ax © Ax

of si on the Hubert space H=HX © Hx. Evidently the restriction </>' of <f> to siE
equals <f>'x ©<f>'x. Therefore, if we can prove that (A) holds for <f> of the above form,
(C) will follow.'

Let us proceed with the proof of (A). Let p and v be in 2, let </>2: A -> A2 be a
representation of si on H2 and let x2 e S(</>2, p) and y2 e S(<f>2, v). To prove (A),
it suffices to demonstrate the existence of vectors x and y in H, with x e S(<f>, p) and
yeS((f>, v), such that

(1.1) \\x-y\\ i \\x2-y2\\.

Let xx be in S(<f>, /¿). Then

0: Axxx -> ^2^2   for all A e si

is an isometry which extends to an isometry \fi from [^Xi] onto [si2x2]. Let E2 be
the orthogonal projection of H2 onto [si2x2]; evidently E2 commutes with sJ2.
Let y'2 = E2y2 and y2=y2—y'2. Then, relative to (f>2, y2 induces v and y2 induces v"
with v=v' + v". Let >'í=irv~10'8); then vi induces v relative to <f>x because >p is
interlacing. Let v" be in S(<f>2, v"). Take x=xx © 0 and y=y'x © y"x. Then we have
x e S(</>, /¿)and y e S(<f>, v), and furthermore

lk-v||2=||x1-vi||2+||vi||2

= ll^i)-^(vi)ll2+||v2||2
= ||^-v2||2+||v2||2= |x2-v2||2.

That demonstrates (1.1) and completes the proof of (A).
(B) follows immediately from the observation that x=xx©0 was chosen

independently of v and <j>2.

Proposition 1.7. d: (/¿, v) -> d(p, v) is a metric on 2.
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Proof. Let p be given in 2. Take the </> and x0 £ S(<f>, p) of Proposition 1.6.
Then d(p, v) = 0 implies

(1.2) inf{||x0-y|| :yeS(<f>,v)} = 0.
Since S((f>, v) is clearly a closed subset of H, (1.2) implies that x0 is in S(<f>, v) or that
P = v. We have shown that d(p, v) = 0 implies p=v.

To prove the triangle inequality, suppose that v and w are in 2. Then:

d(v, w) = mf{\\y-z\\:ye S(<f>, v), z e S(<j>, co)}

g inf{||>>-Xo|| + ||xo-z||} = d(v, p) + d(p, w).

Proposition 1.8. (A) For all p, ve2, d(p, p+v)^(v(l))112.
(B) For allp,vel, with p(l), v(l)S 1 and for 0=e= 1,

\d(p,V)-d(p,(l-e)v + ep)\ S2»1'2.

Proof. (A) Let <px: A -> Ax he a representation of si on Hx such that vectors
X! and yx exist with xx e S((f>x, p) and yx e S(<j>x, v). Let </> be <f>x © <^. Then x = Xi
© 0 £ S(c^, /x) and z = xx © yx e S(<f>, p + v). Therefore

d(p + v,p)ú \\z-x\\ = \\yx\\ =(Kl))1/a.
(B) Using the triangle inequality for d and (A), we obtain :

\d(p,v)-d(p,(l-e)V + ep)\ S d(v,(l-e)v + ep)

S d(v, (1 -e)v) + d((l -e)v, (1 -e)v + ep)

<, (ev(l)y2 + (ep(l))112 = 2e112.

Proposition 1.9. (A) For p, ve2 with p(l), K0=i. Im(0-K0I = 2í/(m, ").
(B) Suppose that p, p, v, v' e2 wi'rA /i(l), /*'('), "(0. v'0)^ 1, that e>0 awo1 iAa?

d(p, p)<e andd(v, v')<e. Then \p(p, v) — p(p, v')\ <5e.
(C) Suppose that /*, v e 2 with p(l) = v(l)=l, and that P and Q are projections of

si with p(P)>l-eand v(Q)>l-e. Then |p(p, v)-P(pP, vQ)\ < 5s112.

Proof. (A) Suppose that x induces p and y induces v. Then

\p(l)-v(l)\ = I Wl2-||y||2l
= (WI + bll)llkl|-H>'lll = 2||x-y||.

Since d(p, v) is the infimum of such ||x—y||, (A) follows.
(B) Using Lemma 1.4, the triangle inequality for d, and (A), we obtain :

2\p(p,v)-p(p,v')\  =  \v(\)-v'(\) + (d(p,V'))2-(d(p,v))2\

=  \v(l)-v'(\)\+(d(p, v') + d(p, v))\d(p, v')-d(p, ,)|

= 2d(v,v') + 2^2d(v,v') < 5e.

Similarly 2\P(p, v')-P(p', v')\ < 5e and (B) follows.
(C) We obtain from (A) of Proposition 1.8 that

d(p,pP) = d(pP + (p-pP),pP) =  [(p-pP)(l)}112 < e1'2

and similarly d(v, vQ) < e1'2.

Hence (C) is a consequence of (B).
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Proposition 1.10. Suppose that p and v are normal states of si, and that E is a
projection of si with p(E) = v(E)=l.

Let p and v denote the restrictions of p and v to siE. Then p(p, v) = p(p', v') and
d(p,v) = d(p', v').

Proof. Let 4> be a representation of si on H such that the conditions of Proposi-
tion 1.6 hold. Let <f>' he the restriction (in the sense of Proposition 1.6) of <f> to siE.
It is easy to confirm that S(<f>, p) = S(<f>', /¿') and S(j>, v) = S(<j>', v'). From here (A)
and (C) of Proposition 1.6 complete the proof.

Definition 1.11. Suppose that p and v are in Zx={p e2 : /¿(1) = 1}. Define

S(/¿, v) = 2 sup {\p(E)-v(E)\ : E a projection of si}.

Remark. Evidently S(/¿, v)S ||/a-i<||, the uniform norm of the functional p - v on
.s/. In fact it is easy to see that

80*, v) = sup {\(p-v)(A)\ : Aesi with A = A* and ||^|| ^ 1}.

From here we can conclude that 8(p,v)=\\p—v\\ (see [5] or [3, 2.6.4]). For our
purposes here Definition 1.11 is the more suitable.

Proposition 1.12. For all p, v e 2X

(1.3) [d(p,,v)]2^8(p.,v).

Proof. It is sufficient to find a projection E of si, a representation <f> of si, and
vectors x e S(<j>, p) and v e S(<f>, v) such that

(1.4) |x-v||2 Ú 2\p(E)-v(E)\.

Let us suppose, at first, that v^np for some integer «. Then, by Sakai's Radon-
Nikodym theorem [10], v=pT for some Tesi + . Let (FA) be the spectral resolution
of Fand take E=EX. Let <j> be a representation of si such that S(<j>, p) is nonempty
and take xeS(<f>, /¿). Take v = ^(F)x-; evidently yeS((f>, v). Then, writing T for
$(F) and F for <j>(E), we obtain :

|x-v¡2 = ||x-F^||2 = ((l-T)2Ex\x) + ((T-l)2(l-E)x\x)

á ((1 -F)(l +T)Ex\x) + ((T- 1)(T+ 1)(1 -E)x\x)
= [(Ex\x)-((l-E)x\x)] + [((l-E)Tx\Tx)-(ETx\Tx)] = 2[p.(E)-v(E)].

Thus (1.4) holds and from there (1.3) holds, whenever v¿np for some integer «.
Suppose now that p and v are arbitrary in 2X. For 0<e< 1 let p' = (l-e)p + ev.

Then v^np for «^ 1/e, so that, by the preceding paragraph,

(1.5) [¿(/¿', v)]2 è %', v).

Clearly

(1.6) 8(p',v) = (l-e)8(p,v).
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By Proposition 1.8 (B)

(1.7) \d(p',v)-d(p,v)\ ^2e1'2.

Combining (1.5), (1.6) and (1.7), we obtain

d(p,v)ú2eU2+[8(p,v)Y'2.

Since e is arbitrary with 0<«< 1, we can conclude that p and v satisfy (1.3).

Corollary 1.13. Suppose that p,vel,x and e>0. Then p(p,v)<e implies that
there exists a projection E of si such that:

(1.8) p(E) > 1-e   and   v(E) < e.

Proof. Suppose that p(p, v)<e. Then [d(p, v)]2> 2(1-c) and, by Proposition
1.12, 8(p,v)>2(1 -e).

The definition of 8 shows now that there exists a projection P of si such that

(1.9) \p(P)-v(P)\ > 1-e.

Take E=P ifp(P)>v(P) and E=l-P if p(P)<v(P). Then (1.8) is a consequence
of (1.9).

2. The product formula for p. In this section, we are concerned primarily with
establishing the formula

(2.1) p(pi <8> /¿2, vi <g) v2) = [p(pi, p2)][p(vu v2)]

for normal states pi and »x of six and p2 and v2 of si2, where ^ and si2 are semi-
finite w*-algebras. Here px <g) /¿2 denotes the normal state of six (gi si2 defined by

0*1 <8> p2)(Ai ® /12) = [pi(Ai)][p2(A2)]   for all ^ e six and all ^2 e si2.

If /¿ is a state of si and M esi,we follow the standard usage in defining the state
pM of si by pM(A)=p(M*AM) for all ^ e si.

Lemma 2.1. Suppose that <£ z'j a representation of the w*-algebra si on H and that
x and y in H induce the same state p relative to <f>. Then there exists a partial isometry
U' in (<f>(si))' such that U'x=y.

Proof. A standard result (see [2] or the proof of Proposition 1.6).

Lemma 2.2. Suppose that <f> is a representation of si and that the vector z induces
a trace relative to <?>. Then if Te si* and U is a unitary operator of si, </>(TU)z and
<p(T)z induce the same state relative to <f>.

Proof. Obvious by direct calculation.

Proposition 2.3. Suppose that t is a normal finite trace on the w*-algebra si and
that M and N are in si*. Then p(rM, tn) = t\MN\.
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Proof. By assertion 1 of Lemma 1.9 we may, without loss of generality, assume
that t is faithful. Then si is finite, so that the polar decomposition of MN yields a
unitary operator U of si such that

(2.2) MN = U\MN\    and   NMU = \MN\.
Denote tm by p and tn by v. Let <f> he a representation of si such that t is induced

by a vector z and

(2.3) />(/*, ") = PÁP> ")■
(Such a <¿ exists by Proposition 1.6.) Then <j>(M)z induces p, <j>(N)z induces v, and
(p(MU)z also induces p (Lemma 2.2). Therefore, using (2.2), we obtain

p(p,v) ^ \(<p(MU)z\<f>(N)z)\ = \t(NMU)\ = t\MN\.
To prove the opposite inequality, let <f> and z be as above and suppose that x

induces p and y induces v. Then (Lemma 2.1) there exist partial isometries V and
V of (<f>(si))' such that x = U'<j>(M)z and y = V'<f>(N)z. Hence, denoting | AÍA | by F
and using (2.2), we obtain:

|(x|y)| = \(V'*U'z\<p(MN)z)\
= KF^C/'zl^C/F1'^1'^)! = \(V'*U'<p(Pll2U)z\<p(Pll2)z)\

¿ I<h(Pll2U)zI ||c¿(F1/2)z|| = [r(<7*Ft/)]1'2[r(F)]1'2 = t(F) = \MN\.

Since p¿(/x, v) is the supremum of such |(x| y)|, we obtain from (2.3) p(p, v) = p<t,(p, v)
¿t\MN\.

Lemma 2.4. Suppose that si is a w*-algebra and that t is a faithful normal
semifinite trace on si. Let p and v be normal states of si with p(l) = v(l)=l, and let
e>0. Then there exist projections E, P and Q in si with P, Q^E such that:

1. t(F)< oo,
2. p(P)>\-eandv(Q)>l-e,
3. pp, vQ^KrEfor some number K.

Proof. Since t is semifinite there exists a family (F,) of projections of si such that
each r(Et) < co and 2 F( = 1. Evidently a suitable finite sum F of F¡'s will satisfy
t(F) < oo, p(E) > 1 — e and v(E) >l — e. Since t is faithful, pE and vE are absolutely
continuous with respect to te. From there, a weak version of the Radon-Nikodym
theorem in iy*-algebras [8, p. 211] tells us that there exist projections P and Q^E
and a number K such that 2 and 3 hold.

Theorem 2.5. Suppose that six and s/2 are semifinite w*-algebras. Then the
product formula (2.1) holds.

Proof. Let 8=1 or 2. We may assume without loss of generality that p6(l)
«v4(í)-l.

Let e be given > 0. Since sid is semifinite, there exists a faithful normal semi-
finite trace ró on si6. Choose E6, Pô and Q6 to satisfy the conditions of Lemma 2.4.
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Denote by p6 and v'b respectively the restrictions of (pó)Pi and (vô)Qi to (si6)Ei. By
Proposition 1.10 and (C) of Proposition 1.9

(2.4) \P(pô, v6)-p(p'6, v'6)\ < 5*1'2   for S = 1 and 2.

We note that, if t'ó denotes the restriction of (t6)E/i to (sid)Ei, then t'6 is a finite
faithful trace on (sió)Ei, and p'ó, v'6^Kt'ó for S= 1 and 2.

Now let si = six ® s/2, p = px ® /¿2, v = vx ® v2, E—Ex ® F2, P=PX (g> P2>and
ô = ôi ® 02- Identify ^£ and (¿#i)£l ® O^a)^ in the canonical way. The re-
striction /¿' of /¿p to ^/£ evidently equals p'x ® /¿2; similarly / = i4 <8> y2 where r'
denotes the restriction of vQ to siE. We have

/¿(P) = 0*i(Pi))0*2(P2)) > (I-*)2 > 1-2«

and v(Q)>l-2e. Therefore, using Proposition 1.10 and (C) of Proposition 1.9,
we obtain

(2.5) \p(p,v)-p(p',v,)\ <5(2eY'2.

Combining (2.4) and (2.5), we see that, since e>0 is arbitrary, if the product
formula (2.1) holds for /¿J and v'ô then it holds for p6 and vb also. The proof of
Theorem 2.5 can be completed, then, by proving the product formula under the
following conditions:

1. For S= 1 and 2, sib has a faithful finite normal trace rt.
2. A number K exists such that pô and va are ^ Ktô for 8 = 1 and 2.
Suppose then that these conditions hold. By a well-known Radon-Nikodym

type theorem [2, p. 91], there exist operators M6 and N6 of si+ such that pó = (r6)Mi
and v6 = (t0)Ní. Then Proposition 2.3 shows that

(2.6) p(p6,v6) = t6\M6N6\.

Now it is well known that r = rx (g) t2 defines a finite normal trace on si=six ® si2.
A direct calculation proves that, if M=MX <g> M2 and N^NX 0 N2, then px <g> /¿2
= tm and vx ® ^2 = ^. Again Proposition 2.3 applies to give

(2.7) P(px ® /¿2, vt <g> v2) = t|MAT|.

A direct calculation shows that

|AfJV| = \MXNX\ ® \M2N2\

so that

(2.8) t\MN\ = (tx\MxNx\)(t2\M2N2\).

(2.6), (2.7) and (2.8) taken together prove the product formula under conditions
1 and 2. This completes the proof.

Corollary 2.6. Suppose that (si«)aEF is a finite family of semifinite w*-algebras.
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Suppose that pa and va are normal states of sia for each a e F. Then the product
formula holds; that is

PÍ0 Pec, <8> "<A   =  11 P(Pa, "«)•
\aeF aeF     I aeF

Proof. This is obtained from Theorem 2.5 by induction and the fact that the
tensor product of two semifinite w*-algebras is semifinite [2].

Remark. A direct proof could be given by complicating the proof of Theorem
2.5.

Proposition 2.7. Suppose that if is a o-algebra of subsets of X and that p and v
are finite measures on SP. Let X be a a-finite measure on £P such that p and v are
absolutely continuous with respect to A, and let si be the w*-algebra Lm(X, £P, A).
Then integration with respect to p and v defines two normal states of si which we
denote by p and v' respectively. Then Kakutani s p(p, v) and d(p, v) [6] are identical
with our p(p, v) andd(p, v').

Proof. Take a> = p + v and w' = p' + v', and compare (6) and (7) of [6] with
Proposition 2.3 above. Bear in mind that if p' = (w')M and M^O then M is the
square-root of the Radon-Nikodym derivative of p with respect to w.

Remark. The formula p(tm, tn) = t\MN\ can be shown to hold for r a normal
semifinite trace and M and N measurable hyperhermitian operators affiliated with
si (see [11] for the terminology and interpretation of \MN\). Hence, by suitable
Radon-Nikodym theorems ([4] and [11]), this formula could be used to define p
on semifinite w*-algebras.

For si a factor of type I, the situation is much simpler. Let tr denote the Hilbert-
Schmidt trace on si. Then it is easy to see, by a direct calculation, that every
normal state p of si is of the form trM for Af=0 a bounded operator which is
Hilbert-Schmidt. It can be shown fairly easily (without appeal to the techniques of
[11]), that p(trM, trN) = tr \MN\. Notice that here \MN\ is defined in the usual
fashion, since M and N are bounded.

3. Infinite tensor products: notation. Z. Takeda, using inductive limits, has
given an algebraic definition of the infinite direct product of a family w*-algebras
[12]. It is more convenient here for us to represent the w*-algebras as von Neumann
algebras and to make use of von Neumann's definition of the infinite direct product
of Hubert spaces [9]. For a further discussion of the definitions below, and for
proofs of cited results not in [9], see [1].

Let / be an arbitrary indexing set. Suppose that (Hi)ie, is a family of Hubert
spaces and that for each i el, x¡ £ H¡ with ||x,|| = l. Then we denote by0ie/ (Hi,x¡)
von Neumann's incomplete direct product of the family (Ht) with respect to the
Co-sequence (x(); we call >7=(g)ie, (Ht, x¡) the tensor product of (H¡) with respect
to (Xj). Let

r = {(yd ■ each yt e Ht and 2 |l-(*ibi)l + 2 l1_lb¡lll< °°}-
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Then there is a canonical multilinear mapping ( v¡) ->■ 0 y¡ from Y into a dense
subset of H with

(® * I ® ti - Il taM for al1 0& fo) e r.
We state the following for reference :

Lemma 3.1. Suppose that xh yt e Ht with |x(| = ||yt\\ = 1 and 2 11 — (*z| v()| <oo.
Then®(Ht,xt)*=®(Hl,y().

Let //=(x) (H¡, x,). Then there exist canonical isomorphisms At^>- At -from
^C(Hi) into Sf(H). We have Â~k(®yù=®y'i where y'k = Akyk and v( = v¡ for i?=k.
Suppose that sit is a von Neumann algebra on Ht. We define the tensor product of the
family (s%) with respect to (x¡), si denoted by (§) (six, x¡), to be the von Neumann
algebra on H generated by the siu

Lemma 3.2. (A) If 2 \l-(x¡\y()\ <oo then0(sii,xi)=(g)(sii,yt).
(B) (g) (sit, x¡) is a factor if and only if each si{ is a factor.

Lemma 3.3. Suppose that, for each ie I, si¡ and í%\ are von Neumann algebras on
H, and G¡ respectively, that xt e H{ and y¡ e G¡ with ||xf|| = || v¡|| = 1, and that fa is an
(algebraic) isomorphism of siK onto a${. Suppose that (fa(A¡)y¡\ y,) = (Aixi\xi) for all
A,esiK and all i el. Then there exists an isomorphism <f> of si=0 (siu xt) onto
â§=§§ (3¡u v¡) which satisfies

<f>(Â~i) = fa(Ai)   for all Aiesit and all i e I.
Proof. This does not seem to appear explicitly in the literature ; it can be proved

easily, however, either by a direct proof using [2, p. 57] (the structure of isomor-
phisms), or by appealing to Takeda's results [11].

Lemma 3.3 enables us to make the following definition:
Definition 3.4. Suppose that (^¡)¡6/ is a family of w*-algebras and that /¿¡ is a

normal state of s% with /¿¡(1)= 1 for each z e /. Suppose that si is a w*-algebra and
that, for each z, a( is an isomorphism of ^ into si. Then we will say that si, together
with (a¡), is a tensor product for the family (s%) with respect to (/¿() when the
following condition is satisfied:

For every family (fa, x{), where fa is a representation of si¡ and xt e S(fa, /¿f),
there exists an isomorphism A of si onto (x) (fa(sii), x¡) with

A(at(A,)) = fa(Ä~)
for all Aiesil and for all i e I.

Evidently the tensor product si of (si¡) with respect to (pt) exists and is unique
up to isomorphism preserving the injections (c£¡)- We write si=Ç§ (siu /¿4).

Definition 3.5. Suppose that si, with canonical injections (a,), is a tensor prod-
uct for (si¡) with respect to (/¿¡). A normal state v of si will be called a product
state (for the a^s^j) if

v(n a<(^)) = n "(«M»
\ ieF / ieF

for all At e si{ and all finite subsets F of I.
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For such a i' we write v=(R)vi where, for each i el, vi(Al) = v(ai(Ai)) for all
Ai £ sit. Notice that, if (x) v¡ exists for a family (vt), it is unique.

Lemma 3.6. Suppose that (s%)ie, is a family of w*-algebras, and that p¡ and v¡ are
normal states ofsi¡ with p¡(l) = vt(l) = 1 for each i e I. Suppose that si, with injections
(c£¡), is a tensor product for (si¡) with respect to (/x¡) ; and suppose that 36, with in-
jections (ßi), is a tensor product for (si¡) with respect to (v,). If

(3.1) 2 I1 "/to. "!>]<«>
ie/

then:
(A) 0 v¡ exists on si.
(B) There exists an isomorphism <f> of si onto 3S such that <f> ° a, = ßifor all i e I.

Proof. Suppose that (3.1) holds. For each ie I let c4, be a representation of siK on
Hi satisfying the conditions of Proposition 1.6. For those / e I for which p(p¡, vt)^ 1,
we can choose xt e S(<j>i, pt) and yt e S(<f>i, vt) such that (xf| y¡) is real and

(3.2) l-(xi|yi)<2[l-^i,vj)].

If p(pi, vt) = 1, we have d(pu v()=0 and therefore pi=pt=i>¡ (Proposition 1.7), so that
we can choose

xt = yt e S(<pt, Pi) = S(4>i, n).

Thus (3.2) holds for all i e I, and (3.1) means that

2\l-(Xi\yù\ < oo.
ie/

Then H=®iel (Hu x()=(g)i6/ (Hu y,) according to Lemma 3.1. Therefore both
si and 3S are canonically isomorphic to

(g)(^(^),xi)=(8)(^K),j()
ie/ ie/

and both (A) and (B) hold.

Lemma 3.7. Suppose that (sit) is a family of w*-algebras and that p, is a normal
state with /¿¡(1)= 1 for each i. Let si=0 (sit, pt) and let 2'={(x) p'( : each p[ a
normal state ofsi¡ and p!t = pifor all but a finite number of i}. Then if A e si+ and
p'(A) = 0for all p e 2', A must be 0.

Lemma 3.8. If(z¡)ie, is a family of complex numbers, Y\ieI z¡ converges if and only
Ífl.ití |l-Z(f<00.

Remark. See [9] for a discussion of infinite products. Recall, in particular, that
convergence of a product is defined to exclude 0 as a value unless some term is 0 :
a product converges if and only if the altered product obtained by deleting the O's
converges to a nonzero number.
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4. The main results.

Theorem 4.1. For each i e I, suppose that si¡ is a semifinite w*-algebra and that
Pi and v{ are normal states oj's^with j*,(l)=v,(l) = 1. Let si=^ie, (siu p¡). Then the
following conditions on (i>¡) are equivalent :

(A) There exists a normal product stale v=(X)iei vt on si.
(B) There exists an isomorphism <j> of si onto 0ie/ (^ vd SUCn that, for each

ie I,<po at = ßt where a¡ is the canonical injection ofsi¡ into si andßx is the canonical
injection of sit into 0¡e; (si¡, v,).

(C) 2ie/[^i,vO]2<CO.
(D) n¡e/ p(Pi, "¡) converges.

Theorem 4.2. For each i e I, suppose that sit and á?¡ are semifinite w*-algebras,
that pt is a normal state ofs^andvi is a normal state of 36{ with p¡(l) = v¡(l) = 1, and
that <f>i is an isomorphism of six onto 361. Let si=0iel (sih pt) with canonical in-
jections (a¡) and let 36=<^ieI (36\, v¡) with canonical injections (jS¡)- Then there exists
an isomorphism <f> of si onto 36 such that

(4.1) #«,(/!,)) = ßi(UAi))
for all A¡esii and all i e I, if and only if

2 \d(Pi, "i ° <pdf < co.
Theorem 4.3. (Cf. [1] and [7].) Suppose that, for each ie I, sit is a finite factor

with finite normal trace rt satisfying t¡(1) = 1. Suppose p¡ is a normal state ofsii with
f*i(l)= 1. Then si=(¡>§ (sih pt) is finite if and only if

(4.2) 2 PU* n)]2 < oo.
Proof of 4.1. (Cf. theproof of Lemma7in[6].)SinceO¿p(/^i,vl)S land l—p(jí¡,vt)

= ?[d(pt, vd]2, (C) and (D) are equivalent (see Lemma 3.7).
To show that (A) implies (D), we will demonstrate that for (A) to hold and (D)

to fail is impossible. Assume that ^=0 vt exists on si and that F]_ p(pu "D diverges.
The divergence of the infinite product implies that there exists a sequence (Fn)n£N+
of disjoint finite subsets of / such that:

(4.3) J7[ pOn, v,) < n -2   for all n e N +.
ieF„

Let F0 = /-IJneN+ Fn. Then si is canonically isomorphic to <S>neN (sin, pn), where
■rfn=<S)ieFn (M> Pi) and pn=0iEFn P-i for all n e N (the associativity of the tensor
product, see [9] or [1]). Let us identify these algebras. Then /x=0ie/ p{ is identified
with 0n6N p„ and v=<S>¡ei vi 's identified with (§)nsW vn. By (4.3) and the product
formula for p (Corollary 2.6), p(pn, vn)<n~2 for all n e N + . Therefore (Corollary
1.13) there exists, for each n e N + , a projection Fn in sin such that

(4.4) pn(En) < n~2   and   vn(En) > l-n~2   foralln£A + .

Let F=rineN Yn(Fn) where yn is the canonical isomorphism of sin into(g)neJV (sin, pn)
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which has been identified with si. Then F is a projection of si, and, using (4.4), we
obtain

(4.5) v(E) = (0 Vn\(E) = n »A) > n i1-«-2) > °-

Similarly /¿(F) = 0. Now suppose /¿'=(x)ie;/¿Í where p[=Pi for all but a finite
number of z e /. Then p'n—pn for all but a finite number of n e N, and therefore,
by (4.4) /¿'(F) = 0 for all such p. Hence (Lemma 3.7) F=0, in contradiction with
(4.5). We conclude that (A) implies (D).

(D) implies (A) and (B) by Lemmas 3.6 and 3.8. Evidently (B) implies (A).
Proof of Theorem 4.2. Let o>¡ = v¡ o fa so that o>, is a normal state of si¡. Let

<^'=0ie/(^j, cot) with canonical injections (y¡). Then fa is an isomorphism of six
onto J'i taking co, into vt, and therefore there exists an isomorphism fa of %> onto J1
satisfying ?V ° yi=ßi o ̂  for all i e I. Evidently, then, there exists an isomorphism <f>
of si onto 38 satisfying (4.1) if and only if there exists an isomorphism fa' of si onto
# satisfying fa' ° a,=y, for all z e /. According to Theorem 4.1, that occurs if and
only if

2 [d(pt, w¡)]2 < oo.
ie/

Proof of Theorem 4.3.   si is necessarily a factor (Lemma 3.2).
Suppose that (4.2) holds. Then t=(x) t¡ exists on ja/ and can be shown to be a

trace by standard arguments. Since si is a factor, r is faithful. Thus .s/ is finite.
To prove the necessity of (4.2), assume that si is finite. Then there exists a

finite normal trace t on si with t(1)= 1. Let a, denote the canonical injection of si¡
into si=(x) (six, /¿¡). We are going to demonstrate the following formula:

(4.6) r(n «im) = n ^o
\ ieF 1 ieF

for all Ai e sit and for all finite subsets F of /.
From (4.6) we can conclude that r=(g) t„ and (4.2) is then a consequence of

Theorem 4.1. Therefore the proof of (4.6) will complete the proof of Theorem 4.3.
Observe that (4.6) follows from the following special case:

(4.7) r(n «.a-,)) = n Ti(Et)
\ ieF I ieF

for all positive integers ku all projections E^esi with t¡(Fj) = 2 " k> and all finite
subsets F of /.

Fix the finite subset F and the positive integers k¡ for z e F. Let
/(z') = {l, 2, 3,..., 2kt}. For a projection E¡ with Tj(Fi) = 2~'c<, there exists a family
(Ei(j))jem of projections of sit with Ei(l) = Ei, IiEi(j) = l, and ri(Fia)) = 2-k.
for all j e J(i).

Given ji and / in J(i), there exists a unitary r/¡ e ^ such that

(4-8) UlEmV? - ^0",).
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Now let J=YlieFH0- F01" each ./=(/) eJ, define

eu) = n «¿m))-
ieF

Then 2w E(j)=l. Given /=(/) and/=(//) in /, let

F/ = F] <*,(£/,)

where the £/4 satisfy (4.8). Then E(j')=U(E(j))U*, and, since t is a trace,

r(F(/)) = r(F(j))   for all//e/.

Now / has YlieF 2k> elements. Therefore

r(E(j)) = Y\2'kl   for all ye/
ieF

and (4.7) follows. This completes the proof of Theorem 4.3.
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