
Form Methods Syst Des (2014) 45:63–109

DOI 10.1007/s10703-014-0209-9

An extension of lazy abstraction with interpolation

for programs with arrays

Francesco Alberti · Roberto Bruttomesso ·

Silvio Ghilardi · Silvio Ranise · Natasha Sharygina

Published online: 21 May 2014

© Springer Science+Business Media New York 2014

Abstract Lazy abstraction with interpolation-based refinement has been shown to be a pow-

erful technique for verifying imperative programs. In presence of arrays, however, the method

suffers from an intrinsic limitation, due to the fact that invariants needed for verification usu-

ally contain universally quantified variables, which are not present in program specifications.

In this work we present an extension of the interpolation-based lazy abstraction framework in

which arrays of unknown length can be handled in a natural manner. In particular, we exploit

the Model Checking Modulo Theories framework to derive a backward reachability version

of lazy abstraction that supports reasoning about arrays. The new approach has been imple-

mented in a tool, called safari, which has been validated on a wide range of benchmarks.

We show by means of experiments that our approach can synthesize and prove universally

quantified properties over arrays in a completely automatic fashion.

Keywords SMT · Model checking · Lazy abstraction · Array programs

This paper combines and extends materials previously published in [4,5].

F. Alberti (B) · N. Sharygina

Faculty of Informatics, University of Lugano, via G. Buffi, 13, 6904 Lugano, Switzerland

e-mail: francesco.alberti@usi.ch

N. Sharygina

e-mail: natasha.sharygina@usi.ch

R. Bruttomesso

Atrenta Advanced R&D of Grenoble, Grenoble, France

e-mail: roberto@atrenta.com

S. Ghilardi

Department of Mathematics, Università degli Studi di Milano,

via C. Saldini, 50, 20133 Milan, Italy

e-mail: silvio.ghilardi@unimi.it

S. Ranise

Security and Trust Unit, Fondazione Bruno Kessler,

via Sommarive, 18, 38123 Trento, Italy

e-mail: ranise@fbk.eu

123

64 Form Methods Syst Des (2014) 45:63–109

1 Introduction

Automated verification of software is a long standing scientific challenge that, in the last

decades, received a lot of attention. The goal of software verification approaches is to auto-

matically infer when programs exhibit undesired behaviors, that violate annotations in the

code (e.g., invariants and post-conditions). If every execution of a program reaching anno-

tations does not violate them (i.e. the program shows no undesired behavior), the program

is said to be safe. Since the problem is undecidable [65], complete and fully automatic tech-

niques cannot exist and the programmer must manually add annotations for the verification

to be successful. Verification techniques that reduce this burden and increase the level of

automation are thus highly desirable. In this respect, one of the most promising techniques

is the use of Model Checking to automatically explore the state-space of a program, and

checking it with respect to user-specified properties.

Model Checking has been shown quite successful in the analysis of large but finite state

systems (e.g., hardware designs). For software, because of the presence of data structures

ranging over infinite domains (e.g., integers) and dynamic memory handling, the challenge

is to adapt Model Checking to handle infinite state spaces. In this respect, Abstraction [50]

and its refinements, CounterExample Guided Abstraction Refinement (CEGAR) [26] and

Lazy Abstraction [54], have been shown successful and are nowadays employed in many

state-of-the-art software verification tools. Roughly, Abstraction consists of constructing an

abstract program Pa from a given program P in such a way that the set of possible executions

of P is a sub-set of those of Pa ; the vice-versa does not hold. Thus, any safety property that

holds for the executions of Pa also holds for those of P . If there exists an execution of Pa

not satisfying the property, we cannot conclude that there exists an execution of P violating

the property and Pa must be refined.

The idea underlying CEGAR is to iteratively refine abstractions by applying the following

steps. After building an abstraction Pa of a program P , Model Checking is applied to Pa .

If Pa is found to be safe, then also the safety of P is reported. Otherwise, it is checked if an

execution of Pa violating the property is an execution of P: if this is the case, the program

P is declared to be unsafe. If the execution of Pa corresponds to no execution of P , it is said

to be a spurious counter-example and used to refine Pa to a new abstract program that does

not admit the counter-example as one of its execution.

In many approaches to CEGAR (e.g., [11,13]), Abstraction is performed with respect to

a given set S of predicates over the variables of the program P . An abstract state (of Pa)

is created by invoking a theorem prover, usually a Satisfiability Modulo Theories (SMT)

solver, that computes a Boolean combination of the predicates in S that over-approximates a

concrete state (of P). Then, refinement extends S to S′ by adding new predicates so that the

Boolean combinations of the predicates in S′ allow for a better (over-)approximation of the

concrete states.

One of the most difficult problems in CEGAR is to identify, during the refinement phase,

appropriate criteria to discover new predicates that provide better abstractions. In this respect,

Lazy Abstraction is particularly interesting since it is capable of refining the abstraction by

using different degrees of precision for different parts of the program. The idea is to use a

control-flow graph (see Figs. 1, 2 for an example of a program and the associated control-

flow graph) to keep track of how the program locations are traversed and of predicates to

represent the data-flow and the program annotations. Lazy Abstraction is based on a CEGAR

loop in which the control-flow graph is iteratively unwound and the data in the newly explored

locations is over-approximated. When reaching a location in which a property is violated and

the execution is a counter-example, the abstraction along the path is (locally) refined. Since

123

Form Methods Syst Des (2014) 45:63–109 65

Fig. 1 The procedure Running

in several approaches (see, e.g., [53,67]) data structures are formalized as theories—e.g., the

theory of arrays [66]—SMT solvers are not only used to compute abstractions (as Boolean

combinations of predicates) but also in the refinement phase to discover new predicates by

computing (Craig) interpolants [31].

Given a pair (A, B) of inconsistent formulas, an interpolant is a formula I built over the

common vocabulary of A and B, entailed by A and unsatisfiable when put in conjunction

with B. For refinement, the interpolant I may contain additional predicates and can be used

to eliminate the part B of the counter-example that does not correspond to any execution

of the concrete program while leaving A untouched. In this sense, the abstract program is

refined locally by eliminating only part of the abstraction (namely, B) that gives rise to a

counter-example [67]. Interpolation capabilities are available in several SMT solvers; e.g.,

MathSAT [24], OpenSMT [21], and Z3 [33].

Verification tools based on CEGAR or Lazy Abstraction have been successfully applied

to certain classes of programs, e.g., device drivers [11]. However, the annotations of such

programs involve only simple properties about the data-flow with a limited interplay with

the control-flow. When used to verify programs manipulating sophisticated data-structures—

such as arrays, CEGAR and Lazy Abstraction show some limitations. One of the most impor-

tant reason for the the limited success of Lazy Abstraction on programs manipulating arrays

is the fact that program annotations often require (universal) quantification. To illustrate,

consider the procedure Running in Fig. 1.

The first loop of the procedure initializes the array b according to the content of the array

a such that, at the end of the loop, the following assertion holds:

for every index i in the range 0 . . . L , b[i] = true iff a[i] ≥ 0. (1)

The second loop of the procedure sets the Boolean flag f to false if a position in the array

a contradicting assertion (1) is found. The program is clearly safe, i.e. after the second loop

f is always true for any execution of the procedure, but in order to prove it, we need the

quantified assertion (1).

The main contribution of this paper is a new verification approach that overcomes the above

problems by redefining Lazy Abstraction with Interpolation-based refinement and makes it

123

66 Form Methods Syst Des (2014) 45:63–109

Fig. 2 The control-flow graph of Running

possible to reason about arrays of unknown length. Our technique is developed in the Model

Checking Modulo Theory (mcmt) approach [46,47] in which verification is performed by

a symbolic backward reachability procedure. Certain classes of formulas represent sets of

backward reachable states and fix-point checks are reduced to logical problems that SMT

solvers are able to tackle, once extended with suitable quantifier instantiation techniques.

The mcmt approach has been successfully exploited for the verification of parameterized

(distributed) systems (see, e.g., [6,7,46]) but it fails when applied to the verification of

imperative programs because of the lack of suitable abstraction-refinement techniques. To

overcome this problem, we extend the backward reachability procedure of mcmt with a

carefully designed interpolation-based abstraction refinement technique capable of generat-

ing the quantified predicates required for the synthesis of the inductive invariants, needed

to establish the safety of programs manipulating arrays. For this, we need to address the

following technical challenges:

(i) Refinement must be able to deal with quantified formulas, i.e. it is necessary to discover

new predicates possibly containing quantifiers. Indeed, this is a much more difficult task

than finding predicates that are equivalent to quantifier-free formulas as it is the case in

many Lazy Abstraction approaches focusing on scalar data structures (see, e.g., [53]).

To understand the problem, consider the procedure Running in Fig. 1 and recall that (1)

is the invariant required for proving its safety. Refinement should be able to generate

it as a single predicate, because of the universally quantified variable i ; definitely a

non-trivial task.

(ii) Satisfiability of formulas representing (abstract) counter-examples must be decidable.

This is key to be able to automatically detect when the abstract program requires to be

refined. Unfortunately, the situation is complicated by the fact that interpolation-based

refinement may introduce extra quantifiers in the new predicates because, as shown

123

Form Methods Syst Des (2014) 45:63–109 67

in [60], the “standard” theory of arrays [66] does not admit quantifier-free interpolation.

As a consequence, refinement needs to be carefully controlled since the introduction

of quantifiers may give rise to formulas containing alternations of quantifiers. This

easily leads to the undecidability of the satisfiability of the formulas representing sets

of backward reachable states.

(iii) The implementation of interpolation-based refinement procedures is delicate because

the “quality” of the generated interpolants may generate too many refinements, thereby

degrading performances unacceptably, or even worse making the procedure diverging.

This is so because a pair (A, B) of inconsistent formulas may admit several (even

infinitely many) interpolants and choosing the one that is “the best” with respect to

refinement is an undecidable problem.

To illustrate the problem, consider again the procedure Running in Fig. 1. An

interpolation-based refinement procedure may generate the sequence b[0] ↔ a[0] ≥ 0,

b[1] ↔ a[1] ≥ 0, …of infinitely many (quantifier-free) predicates. After each itera-

tion of refinement, the conjunction of these predicates offers only an approximation

of the quantified assertion (1) needed to prove the safety of Running and the Lazy

Abstraction procedure diverges because of the infinite (increasingly precise) sequence

of approximations.

Heuristics (see, e.g., [58]) to tune the generation of interpolants and avoid divergence

are crucial for efficient implementations.

Our solution tackles the aforementioned challenges by exploiting the following ideas. We

will work with flattened formulas, i.e., formulas where array variables are dereferenced

only by existentially quantified variables. Thus, a formula of the kind φ(a[i], . . .) (where

i is a constant or more generally a term) is first rewritten as ∃x (x = i ∧ φ(a[x], . . .)).

During consistency tests, the existentially quantified variable x is skolemized away, so that

consistency tests are made with quantifier-free formulas. Interpolants search is performed

at quantifier-free level and it is guided by the so-called term abstraction technique: the aim

of term abstraction is to try, as much as possible, to get interpolants not containing certain

undesired terms (the list of such terms can be either supplied by the user or synthesized by the

tool according to some general heuristics). Now, if the interpolant abstracts away the constant

i from x = i ∧ φ(a[x], . . .), when de-Skolemization reintroduces the variable x , this x will

be a genuine existentially quantified variable. In fact, the negation of the resulting formula

will be part of the universally quantified invariant we are looking for (recall that backward

search produces, when successful, existentially quantified formulas whose negations turn out

to be invariants).

Besides presenting theoretical solutions to the first two challenges above, the paper

describes also an efficient implementation in a model checker called safari 1 — “SMT-

Based Abstraction For Arrays with Interpolants”. safari is built on top of the OpenSMT

SMT-Solver. To show the practical viability of our technique, we successfully evaluated

safari on several programs handling arrays taken from the recent literature. In summary,

the contributions of this paper are:

– a framework for abstraction-refinement with quantified predicates;

– a quantifier-free interpolation algorithm for a relevant class of formulas with array vari-

ables;

– a heuristic to tune interpolation procedures and help convergence of abstraction-refinement

procedures;

1 Available at http://verify.inf.usi.ch/content/safari.

123

http://verify.inf.usi.ch/content/safari

68 Form Methods Syst Des (2014) 45:63–109

– a tool, safari, designed for proving safety properties of programs with arrays of

unbounded length.

Some of the material in this paper has already been published in preliminary form in [4,5].

This paper not only gives a comprehensive account of our approach to Lazy Abstraction with

interpolation for programs manipulating arrays by presenting all the proofs of our results but

it also describes in detail the architecture and the heuristics of safari, along with a thorough

experimental evaluation on challenging benchmarks.

Organization of the paper. To make the paper self-contained, in Sect. 2 we introduce some

formal preliminaries and selected notions from [4]. Section 3 recalls basic notions about the

class of transition systems manipulating arrays used in the paper and shows how sequential

programs can be specified using this model. Section 4 introduces the new lazy abstraction

framework. The main procedure underlying our approach, Unwind is presented in Sect. 5, its

soundness, completeness and termination are discussed in Sect. 6. Heuristics implemented

in the tool safari are presented in Sect. 7, followed by experiments that are presented in

Sect. 8. Section 9 discusses related work. We conclude in Sect. 10.

2 Formal preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, and formula) and

semantic (e.g., structure, sub-structure, assignment, truth, satisfiability, and validity) notions

of many-sorted first-order logic with equality (see, e.g., [39]). The equality symbol = is

included in all signatures considered henceforth. We use lower-case latin letters x, a, i, e, . . .

for free variables; for tuples of free variables we use underlined letters x, a, i, e, . . . or bold

face letters like a, v, Bold face letters are used for tuples of variables which are kept

fixed for largest parts of the paper. With E(x) we denote that the syntactic expression (term,

formula, tuple of terms or of formulas) E contains at most the free variables in the tuple x .

If t = t1, . . . , tn and s = s1, . . . , sn are tuples of terms with the same length, we abbreviate∧n
i=1(ti = si) with t = s.

According to [72], a theory T is a pair (�, C), where � is a signature and C is a class

of �-structures; the structures in C are called the models of T . Given a �-structure M, we

denote by SM, f M, PM, . . . the interpretation in M of the sort S, the function symbol f ,

the predicate symbol P , etc. If �0 is a sub-signature of �, the structure M|�0 results from

M by forgetting about the interpretation of the sort, function, and predicate symbols that are

not in �0 and M|�0 is called the reduct of M to �0.

A �-formula ϕ is T -satisfiable if there exists a �-structure M in C such that ϕ is true in

M under a suitable assignment to the free variables of ϕ (in symbols, when ϕ is a sentence

and no free variable assignment is needed, we write M |� ϕ); it is T -valid (in symbols,

T |� ϕ) if its negation is T -unsatisfiable. Two formulas ϕ1 and ϕ2 are T -equisatisfiable iff if

there exist a model of T and a free variable assignment in which ϕ1 holds, then there exist a

model of T and a free variable assignment in which also ϕ2 holds, and vice-versa; they are

T -equivalent if ϕ1 ↔ ϕ2 is T -valid; ψ1 T -entails ψ2 (in symbols, ψ1 |�T ψ2) iff ψ1 → ψ2 is

T -valid. The satisfiability modulo the theory T (SMT (T)) problem amounts to establishing

the T -satisfiability of quantifier-free �-formulas.

A theory T has quantifier-free interpolation iff there exists an algorithm that, given two

quantifier free formulas φ,ψ such that φ ∧ ψ is T -unsatisfiable, returns a formula θ such

123

Form Methods Syst Des (2014) 45:63–109 69

that: (i) φ |�T θ ; (i i) θ ∧ ψ is T -unsatisfiable; (i i i) only the free variables common to φ

and ψ occur in θ .

For the rest of the paper, two theories will be particular relevant. The former is the mono-

sorted theory of an enumerated data-type {e1, . . . , en} in which the interpretation of the sort

is a set of cardinality n, the signature of the theory contains only n constant symbols that

are interpreted as the n distinct elements in the interpretation of the sort. Indeed, the SMT

problem for an enumerated data-type theory is decidable and every enumerated datatype

theory has quantifier-free interpolation. As we will see, theories of enumerated-data types

are useful to model the Boolean values (true and false) as well as the locations l0, . . . , ln
of a program. The second theory is that of integer difference logic IDL. The theory IDL is

mono-sorted and its signature contains the constant symbol 0, the unary function symbols

succ and pred , and the binary predicate symbol <. The intended model of IDL (formed

by the integers under the natural interpretation of succ, pred , and <) satisfies the following

sentences:2 the irreflexivity, transitivity and linearity of < together with ∀x .succ(pred(x)) =

x , ∀x .pred(succ(x)) = x , ∀x, y.x < succ(y) ↔ (x < y ∨ x = y), and ∀x, y.pred(x) <

y ↔ (x < y ∨ x = y). The atoms of IDL are equivalent to formulas of the form i ⊲⊳ f n(j)

(for n ∈ Z, ⊲⊳ ∈ {=,<}) where i, j are variables or the constant 0, f 0(j) is j , f k(j)

abbreviates succ(succk−1(j)) when k > 0 or pred(predk+1(j)) when k < 0. Usually,

i ⊲⊳ f n(j) is written as i − j ⊲⊳ n or as i ⊲⊳ j + n from which the name of “integer

difference logic.” As shown in, e.g., [67], the SMT (IDL) problem is decidable and IDL

has quantifier-free interpolation. As we will see, this theory is useful to model the operations

of incrementing and decrementing by a fixed amount (in many cases 1) counters in loops.

Given a theory T = (�, C), a T -partition is a finite set C1(x), . . . , Cn(x) of quantifier-

free formulas (with free variables contained in the tuple x) such that T |� ∀x
∨n

i=1 Ci (x)

and T |�
∧

i �= j ∀x¬(Ci (x)∧C j (x)). The formulas C1, . . . , Ck are called the components of

the T -partition. A case-definable extension T ′ = (�′, C
′) of a theory T = (�, C) is obtained

from T by applying (finitely many times) the following procedure:

(i) take a T -partition C1(x), . . . , Cn(x) together with �-terms t1(x), . . . , tn(x);

(ii) let �′ be � ∪ {F}, where F is a “fresh” function symbol (i.e., F �∈ �) whose arity

matches the tuple x ;

(iii) take as C
′ the class of �′-structures M whose �-reduct is a model of T and such that

M |�
∧n

i=1 ∀x (Ci (x) → F(x) = ti (x)).

Thus a case-definable extension T ′ of a theory T contains finitely many additional function

symbols, called case-defined functions. By abuse of notation, we shall identify T with its

case-definable extensions T ′; it is not difficult to prove [46] that the decidability of the

SMT (T)-problem implies the decidability of the SMT (T ′)-problem.

Definable extensions can be used, for instance, to define conditionals, i.e. if-then-else’s.

Suppose we are given terms t1(x), t2(x) and a ‘condition’ expressed as a quantifier-free

formula C(x). Using C,¬C as a partition and t1, t2 as terms, we can introduce a definable

function symbol F whose meaning corresponds to if C then t1 else t2.

3 Array-based transition systems and their safety

We introduce array-based transition systems and show how it is possible to encode in this

formalism procedures written in a high-level programming language. For a more extensive

2 These sentences can be used to axiomatize the set of sentences true in the integers [39].

123

70 Form Methods Syst Des (2014) 45:63–109

discussion about array-based transition systems—also for application domains different from

imperative programs—the reader is pointed to [46].

Array-based systems are a particular class of guarded assignment systems whose state vari-

ables comprise arrays. They are represented symbolically using certain classes of formulas

and are endowed with theories specifying the algebraic structures of the indexes and elements

of arrays. Ingredients for the definition of an array-based transition systems are a (mono-

sorted) theory TI = (�I , CI) for indexes of arrays and a multi-sorted theory TE = (�E , CE)

for the elements of the arrays. The unique sort of TI is called INDEX and a sort of TE is

called ELEMℓ, where ℓ ranges over a given (finite) set. We assume one of the ELEMℓ sorts

represents the set {l1, . . . , ln} of locations of the program (in the sense that the interpretation

of that sort is constrained to be the set {l1, . . . , ln} in every model of TE).

We assume that the SMT (TI)- and SMT (TE)-problems are decidable and that TI and

TE have quantifier-free interpolation.

The theory AE
I = (�, C), specifying the algebraic structures of the array state variables

manipulated by an array-based system is obtained by “composing” TI and TE as follows. The

sort symbols of AE
I areINDEX,ELEMℓ, andARRAYℓ, its signature � contains all the symbols

in the (disjoint) union �I ∪ �E ∪ {_[_]ℓ}ℓ where _[_]ℓ : ARRAYℓ × INDEX → ELEMℓ are

the usual dereference operations for arrays, and a structure M is in the class C of the models

of AE
I when (i) the restrictions of M to �I , �E are models of TI , TE , respectively, (i i) the

sorts ARRAYℓ are interpreted as the sets of all (total) functions from INDEXM to ELEMM

ℓ ,

and (i i i) the operations _[_]ℓ are interpreted as function applications. In the following, the

subscript ℓ will be omitted to simplify notation.

In this paper, to keep technicalities to a minimum, we adopt the following variant of the

notion of an array-based system that can be easily reduced to that given in [46].

An array-based system (for TI , TE) is a tuple S = 〈v; linit; lerror; {τh}h〉, where v =

a, c, d is the tuple of system variables and is such that

- the tuple a = a0, . . . , as contains variables of sort ARRAY;

- the tuple c = c0, . . . , ct contains variables of sort INDEX (called, counters);

- the tuple d = d0, . . . , du contains variables of sort ELEM (called, simple variables).

All variables are sorted, e.g., for a, this means that each i = 0, . . . , t is assigned some ℓ

so that ai is of type ARRAYℓ. The variable d0 is called the program counter, is sometimes

indicated by pc and its sort is the sort interpreted as the set of locations {l1, . . . , ln}. Among

the program locations, we shall distinguish an initial location linit and an error location lerror .

The τh’s are guarded assignments in functional form. To precisely specify what this

means, we need to introduce the following conventions and definitions. The symbol e range

over variables of a sort ELEM in �E while i, j, k, z range over variables of sort INDEX.

Notation a[i] abbreviates a1[i1], . . . , as[i1], . . . , as[in] for a tuple i ≡ i1, . . . , in of

variables of sort INDEX (thus, a[i] is an s × n-tuple of terms). Expressions of the form

φ(i, e), ψ(i, e) (possibly sub/super-scripted) denote quantifier-free (�I ∪ �E)-formulas

in which at most the variables in i ∪ e may occur. Furthermore, φ(i, t/e) (or sim-

ply φ(i, t)) abbreviates the substitution of the �-terms t for the variables e. Thus, for

instance, φ(i, a[i], c, d) denotes the formula obtained by replacing e, j , e′ with a[i], c, d

respectively in the quantifier-free formula φ(i, e, j, e′). A formula ∀i . φ(i, a[i], c, d)

is a ∀I -formula, one of the form ∃i . φ(i, a[i], c, d) is an ∃I -formula, and a sentence

∃a ∃c ∃d ∃i ∀ j . ψ(i, j, a[i], a[j], c, d) is an ∃A,I ∀I -sentence. A guarded assignment τh

in functional form is a formula of the form

123

Form Methods Syst Des (2014) 45:63–109 71

∃k

(
φL(k, a[k], c, d) ∧ a′ = λj. G(k, a[k], c, d, j, a[j]) ∧

∧ c′ = H(k, a[k], c, d) ∧ d′ = K (k, a[k], c, d))

)
(2)

where G = G0, . . . , Gs , H = H0, . . . , Ht , K = K0, . . . , Ku are tuples of case-defined

functions. As usual, a′, c′, d′ are renamed copies of a, c, d, denoting the values of the state

variables immediately after the execution of the guarded assignment. We assume that the

guard φL of a guarded assignment in functional form (2) always contains a conjunct of the

form pc = l and that the update function K0 is of the form pc′ = l ′. In this way, we have

mappings from guarded assignments into pairs of locations: if the guarded assignment is

named τ , the locations l and l ′ are called the source and the target locations of τ and are

denoted by src(τ) and trg(τ), respectively.

An array-based system S = 〈v; linit; lerror; {τh}h〉

is safe iff the formulas

pc(n) = linit ∧

(∨

h

τh(v(n), v(n−1))

)
∧ · · · ∧

(∨

h

τh(v(1), v(0))

)
∧ pc(0) = lerror (3)

are AE
I -unsatisfiable for n ≥ 0, where v(0), . . . , v(n) are renamed copies of v (at time stamps

0, . . . , n). If there exists a value of n for which (3) is AE
I -satisfiable, then this means that

there exists an execution of S starting from the first location and ending in an error location.

3.1 From programs to array-based transition systems

It is possible to associate an array-based transition system to the body of a procedure written

in an imperative language by means of standard syntactical transformations. We illustrate

the process on the procedure in Fig. 1.

We assume the theory TI to be the theory IDL of integer difference logic (introduced in

Sect. 2) extended with a constant L . The sort INDEX is interpreted as the set N of the natural

numbers. The theory TE is composed of three mono-sorted theories: one is IDL, another is

the theory of the enumerated data-type of the Boolean values true and false, and the third

one is the theory of the enumerated data-type of locations l0, l1, l2, l3, l4.

The tuple a of array state variables contains the variables a and b, the tuple c of counters

contain just i , and the tuple d of simple variables contains pc and f .

The following transitions τ0, . . . , τ9 specify the instructions of the Running procedure.3

τ0 := pc = l0 ∧ i ′ = 0 ∧ pc′ = l1

τ1 := pc = l1 ∧ i < L ∧ a[i] ≥ 0 ∧ i ′ = i + 1 ∧ b′ = store(b, i, true)

τ2 := pc = l1 ∧ i < L ∧ a[i] < 0 ∧ i ′ = i + 1 ∧ b′ = store(b, i, false)

τ3 := pc = l1 ∧ i ≥ L ∧ pc′ = l2 ∧ i ′ = 0 ∧ f ′ = true

τ4 := pc = l2 ∧ i < L ∧ a[i] < 0 ∧ b[i] ∧ f ′ = false ∧ i ′ = i + 1

τ5 := pc = l2 ∧ i < L ∧ a[i] ≥ 0 ∧ ¬b[i] ∧ f ′ = false ∧ i ′ = i + 1

τ6 := pc = l2 ∧ i < L ∧ a[i] ≥ 0 ∧ b[i] ∧ i ′ = i + 1

τ7 := pc = l2 ∧ i < L ∧ a[i] < 0 ∧ ¬b[i] ∧ i ′ = i + 1

τ8 := pc = l2 ∧ i ≥ L ∧ pc′ = l3

τ9 := pc = l3 ∧ f = false ∧ pc′ = l4

3 For simplicity, in this example we omit identical updates.

123

72 Form Methods Syst Des (2014) 45:63–109

where store(b, i, e) abbreviates the expression λj.if (j = i) then e else b[j]. Notice that

transitions τ1, τ2, τ4, τ5, τ6 and τ7 are not instances of formula (2) since terms of the form

a[c] are not allowed.

This is, however, without loss of generality. In fact, any formula of the form ψ(· · · a[c] · · ·)

can be rewritten to ∃x(x = c ∧ ψ(· · · a[x] · · ·)) by using (fresh) existentially quantified

variables x of sort INDEX. So, the formula above can be re-written as follows:

τ1 := pc = l1 ∧ i < L ∧ ∃x .(x = i ∧ a[x] ≥ 0) ∧ i ′ = i + 1 ∧ b′ = store(b, i, true)

τ2 := pc = l1 ∧ i < L ∧ ∃x .(x = i ∧ a[x] < 0) ∧ i ′ = i + 1 ∧ b′ = store(b, i, false)

τ4 := pc = l2 ∧ i < L ∧ ∃x .(x = i ∧ a[x] < 0 ∧ b[x]) ∧ f ′ = false ∧ i ′ = i + 1

τ5 := pc = l2 ∧ i < L ∧ ∃x .(x = i ∧ a[x] ≥ 0 ∧ ¬b[x]) ∧ f ′ = false ∧ i ′ = i + 1

τ6 := pc = l2 ∧ i < L ∧ ∃x .(x = i ∧ a[x] ≥ 0 ∧ b[x]) ∧ i ′ = i + 1

τ7 := pc = l2 ∧ i < L ∧ ∃x .(x = i ∧ a[x] < 0 ∧ ¬b[x]) ∧ i ′ = i + 1

Notice also that the use of λ-abstractions (recall that store(b, i, e) stands for λj.if (j =

i) then e else b[j]) in (2) does not go beyond first-order logic, since a′ = λj. G(j, . . .) can

be rewritten to the pure first-order formula ∀ j. a′[j] = G(j, . . .).

We are left to specify the initial linit and error lerror locations. For the procedure Running

in Fig. 1, we define linit = l0 and lerror = l4. As a consequence, the AE
I -satisfiability of a

formula of the form (3) for some n ≥ 0 implies that there exists an execution of Running

in which it is possible to reach location 4 from location 1. Inspecting the program, it is clear

that this happens iff a non-negative (negative) value in the array a is associated to false (true,

respectively) in the array b. If this is the case, then property (1), i.e.

∀x .(0 ≤ x < L) → (a[x] ≥ 0 ↔ b[x] = true),

would not be an invariant of the first loop of Running. The above invariant however is

not annotated in the program itself and the challenge is that of designing a model-checking

procedure that is able to automatically synthesize it: this will be done in Sect. 5 below.

4 Unwindings for the safety of array-based systems

In our framework, the verification of a safety property for an imperative program P can

be reduced to check the reachability of the error location lerror by the array-based system

associated to P . This amounts to establish if (3) is AE
I -satisfiable for some n ≥ 0. Assuming

that the AE
I -satisfiability of formulas of the form (3) is decidable, a possible way to solve

the problem is to enumerate the instances of (3) for increasing values of n. When the error

condition is reachable, the procedure terminates; otherwise, it diverges. A standard solution

to avoid divergence is to compute the set of reachable states and check if a fix-point has been

reached. The set of forward or backward reachable states is obtained by the repeated symbolic

execution of transitions from the initial or the error location, respectively. For example, the

symbolic execution of a transition τ from a set of states represented by a formula K (v)

amounts to the computation of the pre-image of K (v) with respect to τ(v, v′) as follows:

Pre(τ, K) := ∃v′. (τ (v, v′) ∧ K (v′)) . (4)

By taking the disjunction of the pre-images of pc = lerror with respect to all transitions, it

is possible to compute the set of states from which lerror is reachable by applying just one

transition. The reachability of the error location can be established with an iterative pre-image

123

Form Methods Syst Des (2014) 45:63–109 73

computation procedure, interleaved with checks for detecting fix-points or the presence of

the initial location in the set of reachable states. Even when there is no sequence of transitions

leading the system from the initial to the error location, it is possible to stop the procedure

and conclude safety.

The problem with this procedure is that it is often impossible to compute fix-points for

infinite state systems such as those associated to many programs. To alleviate this problem, an

over-approximation of the set of reachable states is computed. This set has to be sufficiently

coarse to permit the detection of a fix-point and sufficiently precise to show the safety of the

analyzed system, if the case. In program verification it is a common practice to compute an

over-approximation of the set of forward reachable states. In our case, given the backward

reachability procedure, we consider the computation of an over-approximation of a backward

reachable state-space. In this section, we show how it is possible to over-approximate the set

of backward reachable states of an array-based system by using labeled unwindings [54].

4.1 Labeled unwindings for the safety of array-based systems

Preliminarily, we introduce some technical notions and notations. If ψ is a quantifier-free

formula in which at most the index variables in i occur, we denote by ψ∃ its existential

(index) closure, namely the formula ∃i ψ .

The matrix of a guarded assignment in functional form τ(v, v′) of the form (2) is the

formula (2) itself without the existential prefix ∃k; the proper variables of τ are those in

k. Below, we freely rename bounded variables in formulas of the form (2) without explicit

mention.

Definition 1 A labeled unwinding of S = 〈v; linit; lerror; {τh(v, v′)}h〉 is a quadruple

(V, E, MV , ME), where (V, E) is a finite rooted tree (let ε be the root) and MV , ME are

labeling functions for vertices and edges, respectively, such that:

(i) for every v ∈ V , if v = ε, then MV (ε) is pc = lerror; otherwise (i.e. v �= ε), MV (v) is

a quantifier-free formula of the kind ψ(i, a[i], c, d) such that MV (v) |�AE
I

pc = l for

some location l;

(i i) for every (v,w) ∈ E , ME (v,w) is the matrix of some τ ∈ {τh(v, v′)}h ; the proper

variables of τ do not occur in MV (w); moreover, we have that MV (w) |�AE
I

pc =

trg(τ), that MV (v) |�AE
I

pc = src(τ), and that

ME (v,w)(v, v′) ∧ MV (w)(v′) |�AE
I

MV (v)(v); (5)

(i i i) for each τ ∈ {τh(v, v′)}h and every non-leaf vertex w ∈ V such that MV (w) |�AE
I

pc = trg(τ), there exist v ∈ V and (v,w) ∈ E such that ME (v,w) is the matrix of τ .

The intuition underlying this definition is that a vertex v in a labeled unwinding corresponds

to a program location (i) and an edge (v,w) to the execution of a transition, whose source

and target locations match with those of v and w, respectively (ii) and (iii). A closer look

at condition (5) allows us to show how the set of backward reachable states obtained by

repeatedly computing pre-images (4) can be over-approximated by the the formulas attached

to the vertices of a labeled unwinding. For this, we show that MV (v)∃, i.e. the set of states

associated to vertex v, overapproximates the set of states in the pre-image of MV (w)∃ with

respect to a transitionτ .

123

74 Form Methods Syst Des (2014) 45:63–109

Lemma 1 Let (u, w) ∈ E be an arc in a labeled unwinding (V, E, ME , MV); we have

Pre(τ, MV (w)∃) |�AE
I

MV (v)∃

where τ is the guarded assignment in functional form whose matrix is ME (v,w).

Proof If we introduce existential quantifiers in both members of (5), we get

∃v′(ME (v,w)(v, v′) ∧ MV (w)(v′))∃ |�AE
I

MV (v)(v)∃;

taking into consideration that the proper variables of τ are the only index variables occurring

free in the matrix of τ and that such proper variables do not occur in MV (w), we can move

inside index quantifiers and get

∃v′(ME (v,w)(v, v′)∃ ∧ MV (w)(v′)∃) |�AE
I

MV (v)(v)∃;

which is the claim because ME (v,w)(v, v′)∃ is τ(v, v′). ⊓⊔

From this, it is clear that the disjunction of the existential index closure of the formulas

labeling the vertices of an unwinding is an over-approximation of the set of backward reach-

able states. As discussed above, the over-approximation is useful only when it allows us to

prove safety when this is the case, i.e. when the approximation is not too coarse. This is

equivalent to say that the negation of the formula representing the over-approximated set of

(backward) reachable states is an invariant of the system. We now characterize the conditions

(see Definition 2 below) under which this is possible.

A set C of vertexes in a labeled unwinding (V, E, MV , ME) covers a vertex v ∈ V iff

MV (v)∃ |�AE
I

∨

w∈C

MV (w)∃. (6)

Definition 2 The labeled unwinding (V, E, MV , ME) is safe iff for all v ∈ V we have that

if MV (v) |� pc = linit, then MV (v) is AE
I -unsatisfiable. It is complete iff there exists a

covering, i.e., a set of non-leaf vertexes C containing ε and such that for every v ∈ C and

(v′, v) ∈ E , it happens that C covers v′.

The reader familiar with [67] may have noticed that our notion of covering involves a

set of vertexes rather than a single one as in [67]. Indeed, an efficient implementation of

our notion is crucial for efficiency and is discussed in Sect. 7. Here, we focus on abstract

definitions which allow us to prove that safe and complete labeled unwindings can be seen

as safety certificates for array-based systems.

Theorem 1 If there exists a safe and complete labeled unwinding of S = 〈v; linit; lerror;

{τh(v, v′)}h〉, then S is safe.

Proof Let (V, E, MV , ME) be a safe and complete labeled unwinding of S with covering

C . We show that
∨

w∈C MV (w)∃, which is a disjunction of ∃I -formulas having the variables

in v = a, c, d as free variables, overapproximates the set of the system states that can reach

the error location. More formally, we show that for every n the formula

(∨

h

τh(v(n), v(n−1))

)
∧ · · · ∧

(∨

h

τh(v(1), v(0))

)
∧ pc(0) = lerror

123

Form Methods Syst Des (2014) 45:63–109 75

Fig. 3 Covering associated to a labeled unwinding proving the safety of the Running procedure. The variable

z0 has sort INDEX and is introduced during backward reachability

AE
I -entails the formula

∨
w∈C MV (w)∃(v(n)). This implies also that the formula (3) cannot

be satisfiable, because (V, E, MV , ME) is safe. Indeed, if (3) is satisfiable and the claim

holds, this means that pc(n) = linit ∧
∨

w∈C MV (w)∃(v(n)) is satisfiable, which can only be if

some of the MV (w) is consistent and AE
I -entails pc = linit, i.e. if (V, E, MV , ME) is unsafe.

The proof of the statement is by induction on n. The case n = 0 is trivial because ε ∈ C

is labeled pc = lerror; so suppose n > 0. By induction hypothesis, we need to show that

∨

h

τh(v(n), v(n−1)) ∧
∨

w∈C

MV (w)∃(v(n−1)) |�AE
I

∨

w∈C

MV (w)∃
I

(v(n))

i.e. that for each τ ∈ {τh}h and v ∈ C we have

τ(v(n), v(n−1)) ∧ MV (v)∃(v(n−1)) |�AE
I

∨

w∈C

MV (w)∃(v(n)).

By the definition of a labeled unwinding, either there is a location mismatch and

τ(v(n), v(n−1))∧ MV (v)∃(v(n−1)) is inconsistent, or according to Definition 1(iii) there must

be a vertex v′ with an edge (v′, v) labeled by the matrix of τ in the tree (V, E) (this is because

coverings do not contain leaves, hence v is not a leaf). We can now derive our claim from

the definition of a covering and the fact that τ(v(n), v(n−1)) ∧ MV (v)∃(v(n−1)) AE
I -entails

the formula MV (v′)∃(v(n)) by Lemma 1. ⊓⊔

As a final remark, we point out that safe and complete labeled unwindings are quantified

safety certificates for array-based systems. To see why, consider the covering C associated to

a safe and complete labeled unwinding. Then, a safe inductive invariant for the array based

transition system is represented by the formula

∧

w∈C

¬
(

MV (w)∃(v)

)
. (7)

Consider again the transition system representing the Running procedure. Our framework

can generate a safe and complete labeled unwinding for such transition system. The covering

associated to this labeled unwinding is depicted in Fig. 3, and represents the following

123

76 Form Methods Syst Des (2014) 45:63–109

invariant:

pc = l1 → (∀z0. ((0 ≤ z0 ∧ z0 < i) → (a[z0] ≥ 0 ↔ b[z0])) ∧

pc = l2 → (∀z0. ((0 ≤ z0 ∧ z0 < L) → (a[z0] ≥ 0 ↔ b[z0])) ∧

pc = l2 → f ∧ pc = l3 → f ∧ pc �= l4 .

4.2 On checking the safety and completeness of labeled unwindings

Theorem 1 states that the safety of an array-based system can be established by checking if

there exists a labeled unwinding that is safe and complete. A procedure for searching such

an unwinding will be described in the next section. For the moment, assume that a candidate

labeled unwinding has been found and consider the problem of checking if it is safe and

complete.

It is easy to see that the safety check can be reduced to the AE
I -satisfiability of a quantifier-

free formula. In fact, the formula MV (v) associated to a vertex v in a labeled unwinding is

quantifier-free by Definition 1.(i).

According to Definition 2, testing safety amounts to checking unsatisfiability of quantifier-

free formulas. Thus, we need to show that the SMT (AE
I) problem is decidable. Below we

prove that it is indeed so provided that both the SMT (TI) and SMT (TE) problems are

decidable; recall that this has been assumed in Sect. 3.

Lemma 2 The SMT (AE
I) problem is decidable.

Proof Let ψ be a conjunction of literals in the signature of AE
I . We can assume that such

literals are dereference flat, i.e. the only terms occurring as arguments of the read operations

[] are variables. This is without loss of generality since φ(t/x) can be rewritten to the

equisatisfiable formula t = x ∧ φ(x) with x fresh.

Let i = i1, . . . , in , a = a1, . . . , as , e be the index, array and element variables occurring

in ψ , respectively. By making case-splits, we can assume that ψ contain either i = j or

i �= j for all distinct i, j ∈ i ; in addition, in case i = j is a conjunct of ψ , we can freely

assume that ak[i] = ak[j] is in ψ for all ak ∈ a.

We can further separate the literals whose root predicate symbol has argument of sort

INDEX from the literals whose root predicate has arguments of sort ELEM,

thus (from the way AE
I is built) ψ can be rewritten as

ψ I (i) ∧ ψ E (a[i], e). (8)

Let d = d11, . . . , dsn be s × n fresh variables abstracting out the a[i]: we claim that ψ is

AE
I -satisfiable iff ψ I is TI -satisfiable and ψ E is TE -satisfiable. In fact, given models of ψ I

and ψ E in the respective theories, it is easy to build a combined model for (8): thanks to

the fact that ψ contains a complete partition of the variables in i and equalities have been

propagated to ψ E , it is sufficient to assign to ak ∈ a any function whose value on the element

assigned to il is dkl . ⊓⊔

This lemma is an important building block for many other results in the paper. Key to its

proof is a procedure based on reducing the AE
I -satisfiability check of quantifier-free formulas

to SMT (TI) and SMT (TE) problems by means of a (unidirectional) variant of the Nelson-

Oppen combination schema [70] in which only disjunctions of equalities between terms of

sort INDEX are exchanged, whereas those involving terms of sort ELEM are not. (For the

sake of completeness, we mention that Lemma 2 can be seen as an application of a more

general combination result stated in [10].) We point out that the procedure used in the proof

123

Form Methods Syst Des (2014) 45:63–109 77

might need to be complemented by suitable heuristics to scale up and handle large formulas

generated during backward reachability. In our implementation, instead of building from

scratch the procedure in the proof of Lemma 2, we prefer to re-use available SMT-Solvers

for checking the satisfiability of SMT (AE
I) problems. This is discussed in Sect. 7.

We now turn to the problem of checking the completeness of a labeled unwinding. Accord-

ing to Definition 2, this requires to guess a sub-set C of the set of vertexes in the unwinding

and check if C covers v′, for every v ∈ C and (v′, v) ∈ E . In turn, by refutation from (6),

this may be reduced to repeatedly check the AE
I -unsatisfiability of ∃A,I ∀I -sentences, i.e.

formulas of the form

∃a ∃c ∃d ∃i ∀ j . ψ(i, j, a[i], a[j], c, d), (9)

where i, j, c are of sort INDEX, a of sort ARRAY, and d of sort ELEM (recall the defin-

ition from Sect. 3). Unfortunately, the AE
I -satisfiability of these sentences is (in general)

undecidable [46]. The problem is the handling of the universally quantified variables of j

that occur in (9) since all the other existentially quantified variables in a, c, d, and i can be

regarded as Skolem constants. To alleviate the problem, an idea is to design an incomplete

instantiation procedure for the variables in j so as to obtain a conjunction of quantifier-free

formulas whose AE
I -satisfiability is decidable by Lemma 2. Our default instantiation proce-

dure computes the set � of all possible substitutions mapping the variables in j into i ∪ c.

Our default satisfiability procedure uses the default instantiation procedure so as to check

the AE
I -unsatisfiability of the formula

∧

σ∈�

ψ(i, jσ, a[i], a[j], c, d) . (10)

It returns the AE
I -unsatisfiability of (9) when (10) is so and returns “unknown” when (10) is

AE
I -satisfiable. In other words, the default satisfiability procedure is sound but incomplete

for checking the AE
I -satisfiability of ∃A,I ∀I -sentences. In Sect. 6, we show that the adoption

of such a procedure allows us to use labeled unwindings as safety certificates. To clarify that

the notion of completeness for labeled unwindings is relative to the incomplete algorithm

used to check the completeness of coverings, we introduce the following notion.

Definition 3 The labeled unwinding (V, E, MV , ME) is recognized to be complete iff there

exists a set of non-leaf vertexes C (called a ‘recognized covering’ or simply a ‘covering’

for the sake of simplicity) containing ε and such that for every v ∈ C and (v′, v) ∈ E , it

happens that the relation (6) is verified to hold by using the default satisfiability procedure

for AE
I -satisfiability of ∃A,I ∀I -sentences.

In Sect. 6, we will identify sufficient conditions under which the default instantiation

procedure allows us to build a decision procedure for the AE
I -satisfiability problem of ∃A,I ∀I -

sentences. We will also see that the same conditions guarantee the termination of the procedure

described in the next section that finds a safe and complete labeled unwinding.

In Sect. 7, we will describe heuristics to reduce the number of possible instances that

must be considered by the default instantiation procedure so as to improve performance. The

experiments described in Sect. 8 show the efficiency of the default satisfiability procedure

described above.

123

78 Form Methods Syst Des (2014) 45:63–109

5 Lazy abstraction with interpolation-based refinement for arrays

We now describe how to construct labeled unwindings and how this process is interleaved

with the checks for safety and completeness described in Sect. 4.2. Similarly to [67], we

design a possibly non-terminating procedure Unwind, that—given an array-based system

S—computes a sequence of (increasingly larger) labeled unwindings. The initial labeled

unwinding of S is the tree containing just the root labeled by pc = lerror . Unwind uses two

sub-procedures: Expand builds the labeled unwinding and Refine refines labeled unwind-

ings by eliminating spurious unsafe traces via interpolants. When Refine is applicable but

fails, S is unsafe. If none of the two procedures applies, then the current labeled unwinding

is safe and complete: S is safe by Theorem 1.

As we will see below, a crucial advantage of our approach is that Refine needs to com-

pute only quantifier-free interpolants (in a restricted form) to refine spurious unsafe traces,

despite the fact that quantified formulas are used to represent sets of states and transitions.

Technically, this is possible because formulas describing potentially unsafe traces can be

transformed to equisatisfiable quantifier-free formulas by a partial instantiation procedure

(see Sect. 5.2 below for details).

In the following, we give a non-deterministic version of Unwind: the two procedures

Expand and Unwind can be non-deterministically applied to a labeled unwinding to obtain

a new one, whenever this is possible according to their applicability conditions (described

below). The implementation strategies of Unwind will be described in Sect. 7.

5.1 The two sub-procedures of Unwind

Let (V, E, MV , ME) be the current labeled unwinding of S. From now on, we assume that

the initial location is not a target location, the error location is not a source location, and

that initial and error locations are the only locations that are not both a source and a target

location.

Expand. The applicability condition is that (V, E, MV , ME) is not recognized to be com-

plete (recall Definition 3) and there exists a leaf vertex v whose location is such

that MV (v) �|�AE
I

pc = linit. From the applicability condition and Definition 1(i),

we have that MV (v) |�AE
I

pc = l for some l �= linit.

The effects of applying this procedure are the following: for each transition τ ∈

{τh}h whose target is l, a new leaf wτ , labeled by pc = src(τ), is added together

with a new edge (wτ , v), labeled by τ , to the current unwinding.

Refine. The applicability condition is that (V, E, MV , ME) is not recognized to be com-

plete (recall Definition 3) and there exists a vertex v ∈ V whose location is linit

and it is such that MV (v) is AE
I -satisfiable.

In the current labeled unwinding, consider the path v = v0 → v1 → · · · → vm =

ε from v to the root and let τ1, . . . , τm be the transitions labeling the edges from

left to right; the set of these transitions is called a counterexample. If

τ1(v
(0), v(1)) ∧ · · · ∧ τm(v(m−1), v(m)) (11)

is AE
I -satisfiable then the counterexample is said to be feasible, the procedure

fails, and reports the unsafety of S. Otherwise, the counterexample is said to be

infeasible and the effect of applying the procedure is to strengthen the labels of the

counterexample vertices by using the interpolants retrieved from the unsatisfiability

of (11).

123

Form Methods Syst Des (2014) 45:63–109 79

The mechanization of the applicability conditions for both sub-procedures have been dis-

cussed in Sect. 4.2. This means that enough details for the mechanization of Expand are

already available. This is not the case for Refine because it is unclear how to check the

AE
I -satisfiability of formulas of the form (11)—this is crucial to establish the feasibility or

infeasibility of a counterexample—and we do not know how to compute interpolants and

how to use them in order to “strengthen the labels in the counterexample.”

The feasibility of counterexamples is discussed in Sect. 5.2, the computation of (quantifier-

free) interpolants in Sect. 5.4, and their use in refining (infeasible) counterexamples in

Sect. 5.3.

5.2 Checking the feasibility of counterexamples

We describe a decision procedure for checking the AE
I -satisfiability of formulas of the

form (11), thereby enabling to check the feasibility of counterexamples in Refine. The

idea underlying the procedure is to instantiate the variables bound by the λ-abstraction in

the updates of the transitions occurring in (11) with finitely many constants and then check

the resulting quantifier-free formula for AE
I -satisfiability. The fact that only finitely many

instances are sufficient is shown by the following observations.

By recalling (2), rewrite (11) to

m∧

k=1

∃ik

⎡
⎢⎢⎢⎢⎣

φk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧

a(k) = λ j. Gk(ik, a(k−1)[ik], c(k−1), d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧

d(k) = Kk(ik, a(k−1)[ik], c(k−1), d(k−1))

⎤
⎥⎥⎥⎥⎦

(12)

which, by Skolemizing existentially quantified variables, can be further rewritten to the equi-

satisfiable formula (here and in the following, by abuse of notation, we consider the variables

in ik as Skolem constants):

m∧

k=1

⎡
⎢⎢⎢⎢⎣

φk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧

a(k) = λj. Gk(ik, a(k−1)[ik], c(k−1), d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧

d(k) = Kk(ik, a(k−1)[ik], c(k−1), d(k−1))

⎤
⎥⎥⎥⎥⎦

. (13)

Now, observe that a(k) = λj Gk(. . .) is equivalent to ∀ j. a(k)[j] = Gk(. . . j . . .) and

instantiate the variable j with the Skolem constants in ik+1, . . . , im to derive

m∧

k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧
∧

j∈ik+1,...,im

a(k)[j] = Gk(ik, a(k−1)[ik], c(k−1), d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik, a(k−1)[ik], c(k−1), d(k−1)) ∧

d(k) = Kk(ik, a(k−1)[ik], c(k−1), d(k−1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Lemma 3 Formulas (13) and (14) are AE
I -equisatisfiable.

Proof Indeed, (13) AE
I -entails (14). Vice-versa, suppose we are given an AE

I -model M and

a satisfying assignment s for (14), our goal is to produce a satisfying assignment s̃ for (13)

123

80 Form Methods Syst Des (2014) 45:63–109

based on the same AE
I -model M. For simplicity, let us call i1, . . . , im, v(0), . . . , v(m) the

elements from the support of M assigned by s to the variables i1, . . . , im, v(0), . . . , v(m)

occurring free in (13) and (14). The assignment s̃ will change only the values assigned to

v(1), . . . , v(m) (notice that v(0) is left unchanged). We define s̃(vk) for k > 0 inductively as

follows:

s̃(a(k)) = λj Gk(ik, s̃(a(k−1))[ik], c(k−1), d(k−1), j, s̃(a(k−1))[j])

s̃(c(k)) = Hk(ik, s̃(a(k−1))[ik], c(k−1), d(k−1))

s̃(d(k)) = Kk(ik, s̃(a(k−1))[ik], c(k−1), d(k−1))

To show that (13) holds under s̃, a simple induction on k (= 1, . . . , m) is sufficient to

check that s̃(c(k−1)) = c(k−1), s̃(d(k−1)) = d(k−1) and s̃(a(k−1))[j] = a(k−1)[j] for all

j ∈ ik ∪ · · · ∪ im .

As a consequence of this, the formulas φk’s still hold under s̃ and the remaining conjuncts

of (13) hold by construction. ⊓⊔

An easy corollary of Lemmas 3 and 2 is the following result.

Lemma 4 The AE
I -satisfiability of formulas of the form (11) is decidable.

This means that we can check the feasibility of counterexamples under the assumption that

the SMT problems of the theory TI over indexes and the theory TE over elements are decidable

(recall that this has been assumed in Sect. 3). A by-product of this result is the decidability

of the bounded model checking problem (formally defined below) for array-based systems.

Let S = 〈v; linit; lerror; {τh}h〉 and recall formula (3), i.e.

pc(n) = linit ∧

(∨

h

τh(v(n), v(n−1))

)
∧ · · · ∧

(∨

h

τh(v(1), v(0))

)
∧ pc(0) = lerror .

When n ≥ 0 is known, we say that the bounded model checking problem for S consists of

checking the AE
I -satisfiability of the formula above for the given value of n. We now show

that Lemmas 3 and 2 also imply the decidability of this problem.

First of all, observe that, by applying standard distributive laws and renaming of variables

(the variable v(k) is renamed to v(n−k), so v(n) is renamed to v(0), v(n−1) to v(1), …, v(1) to

v(n−1), and v(0) to v(n)), the formula above can be rewritten to a disjunction of formulas of

the form

pc(0) = linit ∧ τh1(v
(0), v(1)) ∧ · · · ∧ τhn (v

(n−1), v(n)) ∧ pc(n) = lerror , (15)

where h j ranges over the same set of indexes of the transitions in S and j = 1, . . . , n.

Now, observe that τh1(v
(0), v(1)) ∧ · · · ∧ τhn (v

(n−1), v(n)) has the same form of (11) and, by

Lemma 3, it is AE
I -equisatisfiable to a quantifier-free formula φ of the form (14).

The decidability of (3) is now obvious because every transition formula τh(v, v′) entails

pc = src(τh) ∧ pc′ = trg(τh) (recall the definition of a guarded assignment in functional

form from Sect. 3) and, “modulo” AE
I formulas of the form l1 = l2, are unsatisfiable when

locations l1 and l2 are distinct. Thus (15) is either trivially unsatisfiable (in case of the locations

are different) or equisatisfiable to φ.

Theorem 2 The bounded model checking problem for array-based systems is decidable.

123

Form Methods Syst Des (2014) 45:63–109 81

5.3 Refining counterexamples with interpolants

Assume that Refine has detected that the infeasibility of the counterexample associated to

the path v0
τ1
→ v1

τ2
→ · · ·

τm
→ vm = ε as shown in Sect. 5.2, i.e. by the checking the AE

I -

unsatisfiability of the formula τ1 ∧ · · · ∧ τm of the form (11). At this point, Refine needs

to refine the counterexample. Following [67], this is done by computing path interpolants

that are conjoined to the labels of the vertices of the path under consideration to strengthen

them. This is detailed in the following by assuming the availability of a procedure capable

of computing interpolants for quantifier-free formulas (the description of such a procedure

is postponed to Sect. 5.4).

Let us consider an AE
I -unsatisfiable formula of the form (11). By Lemma 3, this formula

is AE
I -equisatisfiable to a quantifier-free formula of the form (14). This implies that also (14)

is AE
I -unsatisfiable.

Let us abbreviate the k-th conjunct in (14) as

τ̃k

(
ik , . . . , im , a(k−1)[ik], . . . , a(k−1)[im], a(k)[ik+1], . . . , a(k)[im], tc(k−1), c(k), d(k−1), d(k)

)
. (16)

Thus, (14) can be written as τ̃1 ∧ · · · ∧ τ̃m . Now, let

ψk(ik+1, . . . , im, a[ik+1], . . . , a[im], c, d) (17)

be one of the quantifier-free interpolants (for k = 1, . . . , m)—computed by repeatedly invok-

ing the available interpolation procedure on the AE
I -unsatisfiable formula (14) from right-to-

left. The ψk’s are such that

ψ0 ≡ ⊥, ψm ≡ ⊤, (18)

ψk(ik+1, . . . , im, a(k)[ik+1], . . . , a(k)[im], c(k), d(k)) ∧ τ̃k |�AE
I

ψk−1(ik, . . . , im, a(k−1)[ik], . . . , a(k−1)[im], c(k−1), d(k−1)).
(19)

Once these interpolants are computed, Refine updates the label ofvk , for k = 0, . . . , m−1,

in the path v0
τ1
→ v1

τ2
→ · · ·

τm
→ vm = ε as follows:

MV (vk) ≡ MV (vk) ∧ ψk(ik+1, . . . , im, a[ik], . . . , a[im], c, d). (20)

Since the matrix of τk AE
I -entails τ̃k , condition (5) of Definition 1.(ii) of labeled unwinding

(see Sect. 4.1) is preserved and the vertex v0 is now labeled by an AE
I -unsatisfiable formula.

Figure 4 illustrates how this works on an counterexample associated to the Running proce-

dure.

5.4 An interpolation procedure for quantifier-free formulas

We now describe the interpolation procedure for quantifier-free formulas used to compute

path-interpolants for refining infeasible counterexamples (as described in Sect. 5.3).

First of all, recall that we assumed that quantifier-free interpolants can be computed for

both TI and TE in Sect. 3. Unfortunately, this is not sufficient to guarantee the possibility to

compute quantifier-free interpolants for quantifier-free formulas in AE
I . In fact, this theory

can be seen as a combination of TI and TE with (uninterpreted) function symbols by con-

sidering arrays as function symbols and the dereference operation as function application.

Negative results (such as [18,19]) are available in the literature showing that the addition of

(uninterpreted) function symbols to theories allowing for the computation of quantifier-free

123

82 Form Methods Syst Des (2014) 45:63–109

Fig. 4 Refinement of a spurious path. The upper figure represents a path in the labeled unwinding of the

array-based system associated to the procedure Running in Fig. 1. The vertices along the path are labeled

with predicates generated during previous refinements. The counterexample associated to the path is infeasible.

The interpolants computed for this path are shown in the middle. For the sake of readability, mov(li , l j , k)

stands for pc(k−1) = li ∧ pc(k) = l j and id(t1, . . . , tn; k) for t
(k)
1 = t

(k−1)
1 ∧ . . . ∧ t

(k)
n = t

(k−1)
n . The

Skolem variables introduced by Refine are denoted by z j for j ≥ 0. The picture below shows the refined

path

123

Form Methods Syst Des (2014) 45:63–109 83

interpolants prevents the existence of quantifier-free interpolants in the extended theory. For-

tunately, the AE
I -unsatisfiable formulas of the form ψ1 ∧ ψ2 for which an interpolant must

be computed when invoking the procedure Refine are such that ψ1 and ψ2 satisfy certain

conditions on their shape that guarantee the possibility to compute quantifier-free interpolants

as stated in the following result.

Theorem 3 Suppose that ψ1 ∧ ψ2 is an AE
I -unsatisfiable quantifier-free formula such that

all terms of sort INDEX occurring in ψ2 under the scope of the dereference operation _[_]

occur also in ψ1. Then, there exists a quantifier-free formula ψ0 such that: (i) ψ2 |�AE
I

ψ0;

(ii) ψ0 ∧ ψ1 is AE
I -unsatisfiable; and (iii) all free variables occurring in ψ0 occur both in

ψ1 and ψ2.

Proof Let us call critical the index variables occurring both in ψ1 and ψ2 (by assumptions,

the index variables occurring in ψ2 under the scope of the dereference operator _[_] are

critical). Without loss of generality, we may assume that ψ1 and ψ2 are conjunctions of

dereference flat literals (see the proof of Lemma 2 for this notion) and that for all distinct

variables i, j occurring in ψ1, we have that ψ1 contains either the literal i = j or the literal

i �= j . These assumptions can be justified by standard considerations. For instance, once

interpolants for ψ ′
1 ∧ψ2 and for ψ ′′

1 ∧ψ2 are known, one can combine them to an interpolant

for (ψ ′
1 ∨ ψ ′′

1) ∧ ψ2 by taking disjunction.4 We can also assume that, whenever ψ1 contains

i = j , then it contains also a[i] = a[j] for every array variable occurring in ψ1; finally, if

i, j are critical variables and i = j is a conjunct of ψ1, then we assume that ψ2 contains

a[i] = a[j] for every array variable a occurring in ψ2. In fact, if adding i = j ∧ a[i] = a[j]

to ψ2 one gets the interpolant ψ0, it is possible to get the interpolant back from ψ2 by taking

i = j → ψ0.

Let now ψ1 be of the kind

ψ1(i1, i0, a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

and ψ2 be of the kind

ψ2(i0, i2, a2[i0], a0[i0], e2, e0),

where a1, a0, a2 are array variables, e0, e1, e2 are element variables, and i0, i1, i2 are index

variables (the i0 are the critical ones - notice that terms a0[i2], a2[i2] do not occur in ψ2). We

can further separate the literals whose root predicate symbol has argument of sort INDEX

from the literals whose root predicate has arguments of sort ELEM, thus ψ1 can be rewritten

as

ψ I
1 (i1, i0) ∧ ψ E

1 (a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

whereas ψ2 as

ψ I
2 (i0, i2) ∧ ψ E

2 (a2[i0], a0[i0], e2, e0)

for ψ I
g and ψ E

g conjunctions of literals whose root predicate symbols have argument of sort

INDEX and ELEM, respectively, and g = 1, 2.

Now, since a complete partition on indexes i0, i1 is included in ψ1
5 and relevant index

equalities have been fully propagated through array variables, it is easy to see, by using the

4 For a general framework covering all these transformations, the reader is pointed to [20].

5 In practice, this might result in a large combinatorial blow-up. Practical optimizations for the scalability of

this procedure are described in Sect. 7.4.

123

84 Form Methods Syst Des (2014) 45:63–109

same argument as in the proof of Lemma 2, that the inconsistency of ψ1 ∧ ψ2 implies that

either

ψ I
1 (i1, i0) ∧ ψ I

2 (i0, i2)

is TI -unsatisfiable or

ψ E
1 (d ′

1, d ′′
1, d ′′′

1 , d0, e1, e0) ∧ ψ E
2 (d2, d0, e2, e0)

is TE -unsatisfiable, where we used fresh element variables d0, d ′
1, d ′′

1, d ′′′
1 , d2 instead of

the terms a0[i0], a1[i1], a1[i0], a0[i1], a2[i0], respectively. Now it is clear that we can use

the available quantifier-free interpolation algorithms for TI and TE in order to compute the

interpolant ψ0. ⊓⊔

6 Correctness and termination

Recall that Unwind consists of the exhaustive (non-deterministic) application of Expand

and Refine. We now show that Unwind correctly establishes the safety of an array-based

system when terminating.

Theorem 4 Let Unwind be applied to an array-based system S. If Unwind reports unsafety,

then S is unsafe. If neither Expand nor Refine can be applied to a labeled unwinding P of

S, then P is safe and complete (and thus S is safe by Theorem 1).

Proof The first part of the claim is obvious. For the second part, let us consider a labeled

unwinding P = (V, E, MV , ME) of S to which neither Expand nor Refine applies. We first

show that P is complete. Notice that if leaves are all labeled by AE
I -unsatisfiable formulas,

non-leaf vertexes are a covering, and the system is complete. On the other hand, if there is

a leaf labeled by an AE
I -satisfiable formula, one of the two sub-procedures applies unless

the current labeled unwinding is recognized to be complete—according to Definition 3 in

Sect. 4.2—and hence complete tout court. Thus, the labeled unwinding must be complete

when no sub-procedure is applicable.

Finally, if P is not safe, there is a consistent vertex v whose location is linit. Now, since

linit is not a target location, v must be a leaf; for the same reason, v is not covered by non-

leaf vertexes (the location of these vertexes is not linit). Thus the labeled unwinding is not

complete, hence it cannot be recognized as such, and Refine is applicable. ⊓⊔

This result implies the partial correctness of Unwind. In the rest of this section, we investigate

total correctness.

6.1 Precisely recognizing complete labeled unwindings

The first step towards the total correctness of Unwind is to have a complete “default sat-

isfiability procedure” for recognizing complete covers; recall Definition 3 in Sect. 4.2. The

default satisfiability procedure uses the “default instantiation procedure” to reduce the prob-

lem of checking the AE
I -satisfiability of ∃A,I ∀I -sentences to checking the AE

I -satisfiability

of quantifier-free formulas. Since a decision procedure for the latter is available (under

the hypothesis that the SMT (TI) and the SMT (TE) problems are decidable as assumed

in Sect. 3), we need to find conditions under which the default instantiation procedure is

complete. To formally characterize this, we need to introduce the following notion.

123

Form Methods Syst Des (2014) 45:63–109 85

A class C of structures is closed under substructures if for every structure M ∈ C, it

happens that all the sub-structures of M are also in C. Any theory whose class of models

is specified as the class of models of a set of universal sentences, i.e. formulas containing

no free variables obtained by prefixing a quantifier-free formula with a finite sequence of

universal quantifiers, is closed under substructures by well-known results in model theory

(see, e.g., [57]). For example, the theory of posets (i.e. of sets endowed with a reflexive,

transitive and antisymmetric relation) can be axiomatized by a set of universal sentences and

it is thus closed under substructures.

Theorem 5 ([46]) If there are no function symbols in the signature �I of TI and the class CI

of models of TI is closed under substructures, then the AE
I -satisfiability of ∃A,I ∀I -sentences

is decidable.

Proof We claim that, under the hypotheses of the theorem, the AE
I -satisfiability of (10), i.e.

∧

σ∈�

ψ(i, jσ, a[i], a[j], c, d)

(where � denotes the set of all possible substitutions mapping the variables in j into i ∪ c)

implies the AE
I -satisfiability of (9), i.e.

∃a ∃c ∃d ∃i ∀ j . ψ(i, j, a[i], a[j], c, d) .

This is sufficient to show the decidability of the AE
I -satisfiability of ∃A,I ∀I -sentences since

the AE
I -satisfiability of (10) is decidable by Lemma 2 and the AE

I -satisfiability of (9) implies

the AE
I -satisfiability of (10).

We consider a structure M which (together with an assignment to the free variables a, c, d)

is a model of (10) and we derive from this a structure M
′ as follows. First, the interpretation

of the sort INDEX in M
′ is obtained by restricting that in M of the same sort INDEX (as well

as of all symbols in �I) to the subset containing only the elements assigned to the variables in

i, c. The interpretation of the symbols of �E in M
′ is identical to that of M and the functions

assigned to the a’s in M
′ are the same of those in M but restricted to their domains. Since

CI is closed under substructures, M
′ is still an AE

I -model. It is easy to see that, since (10) is

quantifier-free, the truth of (10) is inherited by M
′. Additionally, because of the restriction

of the interpretation of the sort INDEX, (9) also holds in M
′. This concludes the proof of the

claim above. ⊓⊔

6.2 Termination of Unwind

Now, that we have found conditions under which precise checks to recognize the completeness

of labeled unwindings can be obtained, we focus on studying the termination of Unwind.

First of all, we notice that the termination of Unwind can be easily ensured when S

is unsafe by adopting suitable strategies for the application of the sub-procedure Expand.

For example, a breadth-first strategy used when expanding the labeled unwinding certainly

guarantees termination (the design of other strategies is mostly an implementation issue, see

for instance Sect. 8 or also [67]).

If S is safe, the termination of Unwind cannot be shown for arbitrary array-based systems

since their safety problem is undecidable in general (see, e.g., [46]). In the following, we

investigate sufficiently restrictive conditions under which Unwind is guaranteed to terminate.

In particular, we identify two sufficient conditions for this. First, a fair strategy must be

used to apply Expand and Refine. Formally, a strategy is fair if it does not indefinitely delay

123

86 Form Methods Syst Des (2014) 45:63–109

the application of one of the two procedures and does not apply Refine infinitely many times

to the label of the same vertex.

Notice that the latter holds if there are no infinitely many non-equivalent formulas of the

form ψ(i, a[i], c, d) for a given i or, alternatively, if a refinement based on the computation

of interpolants through the precise preimage is eventually applied when repeatedly refining

a vertex.

The second condition for the termination of Unwind concerns the theory TE . To formalize

this, we need to introduce some formal notions. An existential �-sentence is a formula

containing no free variables that is obtained by prefixing a quantifier-free �-formula with a

finite sequence of existential quantifiers. A structure M is finitely generated iff there exists a

finite sub-set X of the support6 of M such that the smallest substructure of M containing X

is M itself. An embedding is an injective homomorphism that preserves and reflects relations

and operations. A reflexive-transitive relation � on a set P is a well-quasi-order (wqo) iff

given p0, p1, . . . pn, . . . from P , there are n < m such that pn � pm . A wqo-theory [22] is

a theory T = (�, C) such that C is closed under substructures and finitely generated models

of T are a well-quasi-order with respect to the relation � that holds between M1 and M2

whenever M1 embeds into M2. As shown in [22], the following is a wqo-theory: it contains

one sort, finitely many 0-ary and unary predicate symbols, a single binary predicate symbol

≤, and its class of models satisfies the following three (universal) sentences: ∀x (x ≤ x),

∀x, y, z (x ≤ y ∧ y ≤ z → x ≤ z), and ∀x, y (x ≤ y ∨ y ≤ x), constraining ≤ to be

interpreted as a total pre-order.

We also need the following technical result.

Lemma 5 Let T = (�, C) be a wqo-theory and K0, K1, . . . , Kn, . . . be an infinite sequence

of existential �-sentences such that Kn |�T Kn+1 for all n ≥ 0. Then, there exists n > 0

such that Kn |�T Kn−1.

Proof Suppose the statement does not hold. Then, for every n there exists a model Mn ∈ C

such that Mn |� Kn and Mn �|� Kn−1. Since C is closed under substructures and Kn is an

existential sentence, we can take Mn to be finitely generated. Notice that truth of ¬Kn−1

is preserved by substructures because this is a universal formula (see, e.g., [57]). Since

Km |�T Kn−1 for m < n, we have that Mn �|� Km for every m < n. Consider now the

sequence M1, M2, . . . , Mn, . . . of finitely generated models in C. By definition of a well-

quasi-order, there must be m < n such that Mm embeds in Mn . Then, from Mm |� Km and

the fact that Km is existential, it follows that Mn |� Km . Contradiction! ⊓⊔

We are now in the position to state and prove our result on the termination of Unwind.

Theorem 6 Let S be an array-based system for TI , TE . Suppose that TI satisfies the hypothe-

ses of Theorem 5 and that the theory obtained from TI ∪ TE by adding the symbols in v,

seen as free constants of appropriate sorts, is a wqo theory. Then, Unwind terminates when

applied to S with a fair strategy.

Proof If we view the state variables v := a, c, d of the array-based system S =

〈v; linit; lerror; {τh(v, v′)}h〉 as free (function or constants) symbols, the existential (index)

closures of the formulas (and their disjunctions) labeling the vertexes in a labeled unwinding

of S are ∃I -formulas of the form ∃i ψ(i, a[i], c, d). Thus these are existential formulas of

the wqo theory mentioned in the statement of the theorem and Lemma 5 is applicable.

6 In a many-sorted context, the support of M is taken to be the disjoint union of the sets SM, varying S over

the sorts of �.

123

Form Methods Syst Des (2014) 45:63–109 87

If the fair strategy used to apply Expand and Refine does not terminate, it generates a

sequence of labeled unwindings P0, P1, P2, . . . where Pj = (V j , E j , M
j
V , M

j
E) is such that

V j ⊆ V j+1 and E j ⊆ E j+1, written as (V j , E j) ⊆ (V j+1, E j+1), for j ≥ 0. In other words,

we have an increasing sequence of trees of the form (V0, E0), (V1, E1), . . . Consider now

the union (V, E) = (
⋃

k Vk,
⋃

k Ek) of all the trees in the sequence. Since vertices are not

refined infinitely often, we can associate with any vertex v ∈ V its (ultimate) label M(v). Let

Kn be the disjunction of the labels M(v) where v is a vertex of (V, E) of depth at most n:

by Lemma 5, we have that Kn |�AE
I

Kn−1 for some n > 0. This means that for every vertex

v in (V, E) of depth at most n, we have that M(v) |�AE
I

∨
w∈C M(w) where C is the set of

vertexes of (V, E) of depth at most n − 1 whose label is AE
I -satisfiable.

Let now i be large enough so that every non-leaf vertex of depth at most n in (V, E)—

together with its ultimate label—is in Pi : we show that Unwind should have terminated after

Pi has been produced. There are two cases to consider. First, C is a covering for all labeled

unwinding Pj such that Pi ⊆ Pj and would cause Unwind to terminate. Second, C is not a

covering because C contains a leaf w. However M(w) is AE
I -satisfiable by the definition of

C and is the ultimate label of w. Now we have that M(w) |� pc = linit, otherwise our fair

strategy would have added some vertices as sons of w, because locations l �= linit are target

locations. This means that a refinement step applies to w. Since M(w) is AE
I -satisfiable and is

the ultimate label of w, this means that such refinement step must have reported the unsafety

of S. ⊓⊔

The hypotheses of Theorem 6 are rather restrictive when it comes to the analysis of

imperative programs. Fragments of arithmetic play a central role in this domain and their

usage in modeling operations on array indexes prevents the applicability of Theorem 6. For

an application of this result, let us consider, therefore, a different application domain, like

that of broadcast protocols (see, e.g., [34]). These are systems composed of a finite but

arbitrary number of (identical) processes that can communicate by rendez-vous (a process

sends a message to another) or broadcast (a process sends a message to all the others). Any

such system can be specified by an array-based system S = 〈v; linit; lerror; {τh}h〉 for TI

the (pure) theory of equality (used to represent process identifiers) and TE an enumerated

data-type theory (representing the finite set of locations of each (identical) process) where

v = a, c, d and a contains just one array (associating a process identifier to the actual location

reached by the process) whereas both c and d are empty. As shown in [46], it is possible to

represent rendez-vous and broadcast of messages as guarded assignments in functional form

(2). In [22], it is shown that the theories TI and TE satisfy the hypotheses of Theorem 6. Thus,

Unwind behaves as a decision procedure for the safety problem of broadcast protocols. A

similar result using forward reachability has been proved in [36].

It is also possible to show that Unwind behaves as a decision procedure for the safety

problem of lossy channel system systems (see, e.g., [1]): their representation as array-based

systems can be found in [46] and the fact that the latter satisfy the hypotheses of Theorem 6

is shown in [22].

7 Implementation and heuristics

The framework presented in the previous sections has been implemented in a tool called

safari, SMT-based Abstraction For Arrays with Interpolants, available at http://verify.inf.

usi.ch/content/safari. Below, we discuss the implementation strategies and heuristics devised

for the efficient execution of the Unwind procedure.

123

http://verify.inf.usi.ch/content/safari
http://verify.inf.usi.ch/content/safari

88 Form Methods Syst Des (2014) 45:63–109

Fig. 5 The architecture of safari

7.1 Implementation strategies and tool architecture

The architecture of the tool is depicted in Fig. 5. Modules drawn as square boxes represent

usual modules of CEGAR-based model checkers with interpolation-based refinement. Those

drawn as clouds constitutes the novel features of safari.

Our tool maintains and modifies a labeled unwinding (V, E, MV , ME). We assume a total

ordering � ⊆ V × V respecting the ancestor relation. In our implementation, each vertex

v ∈ V is flagged as free, covered or locked. When created, all the vertices are free. A vertex

v can become covered only if i) there exists a set of free vertices C such that (6) holds, i.e.

MV (v)∃ |�AE
I

∨

w∈C

MV (w)∃

where w � v for all w ∈ C , and ii) all the vertices from v to ε are free. A vertex becomes

locked when one of its ancestors gets covered.

The Symbolic Reachability Analysis module implements two procedures: Expand

and Reduce. The Expand procedure is in charge of expanding the labeled unwinding,

as explained in Sect. 5. The practical implementation of this procedure, however, deviates

from the high-level description provided in the previous sections by introducing some impor-

tant optimizations. In our implementation Expand is applied only to free leaves. Every new

leaf w generated by a vertex v is labeled with the preimage of MV (v) along the transition

whose matrix is associated to ME (w, v). This allows to discover immediately trivial infea-

sible paths, i.e., those for which the preimage is AE
I -unsatisfiable. The choice of the leaf

to expand is also subject to several optimizations. As will be detailed later, the efficiency

of the tool greatly depends on its ability to perform covering tests. Such tests are based on

instantiation procedures whose complexity might badly affect the overall performance of

123

Form Methods Syst Des (2014) 45:63–109 89

safari. Also the exploration strategy (i.e. the selection of the leaves to expand) strongly

affects the performance of the tool. We will describe the exploration strategy implemented

in safari later in Sect. 7.4, when heuristics and optimizations for efficient covering checks

will be discussed. The other procedure implemented by this module, namely Reduce, is in

charge of limiting the growth of the labeled unwinding. It works by checking the vertices of

the labeled unwinding with the goal of finding the covered or locked ones. Reduce is eagerly

applied before and after the Expand procedure. When applied before the expansion of the

labeled unwinding, Reduce checks if any vertex on the path from ε to the leaf selected for

expansion is covered, starting from ε. Its application after the generation of the new leaves

avoid their processing in case they are already covered. Indeed, only free newly generated

vertices are passed to the Lazy Abstraction module. Given an abstracted leaf v̂, it is checked

if MV (v̂)∧ pc = linit is AE
I -satisfiable. If so, the path from ε to v̂, represented as ĈE in Fig. 5,

is passed to the Refinement module. If all the leaves are flagged as covered or locked, the

labeled unwinding is complete (recall Definition 3) and the set of free vertices is the covering

associated to it. In this case, safari reports that the system is safe.

The Lazy Abstraction module is in charge of abstracting labels of vertices in the unwind-

ing. Remember that for every vertex v, MV (v) is a quantifier-free formula of the kind

ψ(i, a[i], c, d) such that MV (v) |�AE
I

pc = l for some location l. This module returns

a vertex v̂ such that MV (v̂) |�AE
I

pc = l and MV (v) |�AE
I

MV (v̂).

The Refinement module implements the procedure described in Sect. 5.2. It takes as

input a sequence of transitions representing a candidate counterexample, and it is in charge

of generating a formula attesting its feasibility. If this module fails (i.e. the formula is unsat-

isfiable), then the Interpolation module comes into play, as in standard interpolation-based

refinement procedures. In case the (external) SMT-Solver implements interpolating proce-

dures, the Interpolation module can be bypassed by asking interpolants to the external

tool. An abstract interface provides an API to separate the actual SMT-Solver used and

the services which are requested by safari. (The interface with external tools is based

on the SMT-LIB v.2 standard [72].) Refining a path might result in uncovering some ver-

tices. Refining a vertex in the covering set C triggers a procedure that checks if the cov-

ering relation (6) still holds or not, and modifies the labeled unwinding as a consequence

of this fact: if a vertex v was covered by a refined vertex w, and this covering relation

does not hold anymore, v is considered again as a free vertex, with any locked descen-

dant.

7.2 Term abstraction

State-of-the-art interpolating procedures seldom allow the convergence of the model-

checker on tricky examples. Divergence due to the inability of interpolation algorithms

to come up with the “right” predicate has been already discussed in [58,59] in the con-

text of verification of programs with scalar variables. Here, we propose a technique,

called Term Abstraction, to tune interpolation algorithms in presence of array variables.

The heuristic is implemented by the module Term Abstraction in the architecture of

Fig. 5 and its goal is to compute (whenever possible) an interpolant where a cer-

tain set T of terms (called undesired terms), which are responsible for keeping inter-

polants too specific for the analyzed counterexample, do not occur. Ultimately, abstract-

ing away undesired terms in T aims to avoid the divergence of the sequence of inter-

polants generated during unwinding calls. In particular, Term Abstraction is based on

the preprocessing technique described in Sect. 3.1 that rewrite formulas of the form

123

90 Form Methods Syst Des (2014) 45:63–109

ψ(· · · a[c] · · ·) to ∃ j(j = c ∧ ψ(· · · a[j] · · ·)). More precisely, term abstraction works

as follows.

Suppose we are given an unsatisfiable formula ψ1 ∧ ψ2 and the set T = {t1, . . . , tn} of

undesired terms. We iteratively check if ψ1(ci/ti) ∧ ψ2(di/ti) is unsatisfiable, for ci and

di being fresh constants. If this is the case, we substitute ψ j with ψ j (ci/ti) for j = 1, 2.

Eventually, we are left with an unsatisfiable formula ψ1 ∧ ψ2, where some of the undesired

terms in T might have been removed: the interpolant of ψ1 and ψ2, which can be computed

with available interpolating procedures, is also likely not to contain the eliminated terms.

safari is capable of automatically computing a set of undesired terms from the input tran-

sition system by identifying loop iterators, variables representing the lengths of the arrays,

or loop bounds. Alternatively, the user can suggest terms to be put in the set of undesired

terms.

The experimental evaluation of safari in Sect. 8 shows that Term Abstraction plays a

crucial role in the success of safari.

Example 2 Consider location l2 in Fig. 2 corresponding to the end of the first loop in the

Running procedure of Fig. 1. safari has to generate the following invariant:

pc = l2 → ∀z0. ((0 ≤ z0 ∧ z0 < L) → (a[z0] ≥ 0 ↔ b[z0])) . (21)

Key to generate this invariant is Term Abstraction. In the following, we explain how

this is done. Consider the counterexample represented by the sequence of transitions

τ0, τ3, τ4, τ8, τ9, generated by safari during the verification of the Running procedure.

To generate (21), we can consider the following two partitions:

B :=

(
mov(l0, l1, 1) ∧ i (1) = 0 ∧ id(f, a[z0], b[z0], 1) ∧

mov(l1, l2, 2) ∧ i (2) = 0 ∧ i (1) ≥ L ∧ f (2) ∧ id(a[z0], b[z0], 2) ∧

)

A :=

⎛
⎜⎜⎜⎜⎜⎝

mov(l2, l2, 3) ∧ a(2)[z0] ≥ 0 ∧ ¬b(2)[z0] ∧ i (2) < L ∧

z0 = i (2) ∧ i (3) = i (2) + 1 ∧ ¬ f (3) ∧

mov(l2, l3, 4) ∧ i (3) ≥ L ∧ id(i, f, 4) ∧

mov(l3, l4, 5) ∧ ¬ f (4) ∧ id(i, f, 5)

⎞
⎟⎟⎟⎟⎟⎠

An interpolant for these partitions is I1 := i (2) < L since A |�AE
I

I1 and I1 ∧ B is AE
I -

unsatisfiable. Unfortunately, I1 cannot be generalized to a quantified invariant as it contains

no index variable.

Now, let T = {L , i} be the set of undesired terms. The term abstraction procedure checks

the unsatisfiability of A(c/L)∧ B(d/L) for the fresh constants c and d . The resulting formula

is satisfiable, the procedure restores the original formulas A and B, and checks whether

A(c/ i (2))∧ B(d/ i (2)) is unsatisfiable. In this case it succeeds and it is thus able to generalize

over the variable i . The interpolant produced in this case is I2 := z0 < L . Beside being

a correct interpolant for the two original partitions, since A |�AE
I

I2 and I2 ∧ B is AE
I -

unsatisfiable, I2 can be generalized to a quantified property that constitutes one of the building

blocks of (21).

7.3 Minimizing counterexamples

It is useful for Refinement to apply a minimization procedure to counterexamples with the

goal of computing interpolants from a minimal (unsatisfiable) suffix of a trace containing the

atom pc(n) = lI . We illustrate the advantages of this by considering the following situation.

123

Form Methods Syst Des (2014) 45:63–109 91

Fig. 6 Part of the labeled unwinding for the Running procedure. MV (v68) ∧ pc = lI is AE
I

-satisfiable and

MV (v35)∃ |�
AE

I
MV (v31)∃

Consider (part of) the labeled unwinding depicted in Fig. 6, generated by safari while

analyzing the Running procedure in Fig. 1. MV (v68) ∧ pc = lI is AE
I -satisfiable, and v31

covers v35 since

MV (v31) := pc = l1 ∧ i < L ∧ z0 �= z1 ∧ a[z1] ≥ 0 ∧ z1 = i

MV (v35) :=

(
pc = l1 ∧ i < L ∧ z0 �= z1 ∧ a[z1] = 0 ∧ z1 = i ∧

b[z0] ∧ z0 = 0 ∧ L > 0 ∧ L ≤ i + 1

)

The counterexample is represented by the following formula:

mov(l0, l1, 1) ∧ i (1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧

mov(l1, l1, 2) ∧ z0 �= z1 ∧ i (2) = i (1) + 1 ∧ i (1) > L ∧ z1 = i (1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧

mov(l1, l2, 3) ∧ i (3) = 0 ∧ L ≤ i (2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧

mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i (3) < L ∧ z0 = i (3) ∧ i (4) = i (3) + 1 ∧ ¬ f (4) ∧

mov(l2, l3, 5) ∧ L ≤ i (4) ∧ id(i, f, 5) ∧

mov(l3, l4, 6) ∧ ¬ f (5) ∧ id(i, f, 6)

The analysis of this counterexample can produce two different set of interpolants:

{⊥}

mov(l0, l1, 1) ∧ i (1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧

{i (1) > z0}

mov(l1, l1, 2) ∧ z0 �= z1 ∧ i (2) = i (1) + 1 ∧ i (1) > L ∧ z1 = i (1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧

{z0 < i (2) ∧ z0 ≥ 0}

mov(l1, l2, 3) ∧ i (3) = 0 ∧ L ≤ i (2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧

{z0 < L ∧ i (3) ≤ z0}

mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i (3) < L ∧ z0 = i (3) ∧ i (4) = i (3) + 1 ∧ ¬ f (4) ∧

{⊤}

mov(l2, l3, 5) ∧ L ≤ i (4) ∧ id(i, f, 5) ∧

{⊤}

mov(l3, l4, 6) ∧ ¬ f (5) ∧ id(i, f, 6)

{⊤}

123

92 Form Methods Syst Des (2014) 45:63–109

or

{⊥}

mov(l0, l1, 1) ∧ i (1) = 0 ∧ id(f, a[z0], a[z1], b[z0], b[z1], 1) ∧

{⊥}

mov(l1, l1, 2) ∧ z0 �= z1 ∧ i (2) = i (1) + 1 ∧ i (1) > L ∧ z1 = i (1) ∧ a(1)[z1] ≥ 0 ∧ id(f, a[z0], b[z0], 2) ∧

{z0 < i (2) ∧ L ≤ z0 + 1}

mov(l1, l2, 3) ∧ i (3) = 0 ∧ L ≤ i (2) ∧ f (3) ∧ id(a[z0], a[z1], 3) ∧

{z0 = L − 1}

mov(l2, l2, 4) ∧ a(3)[z0] ≥ 0 ∧ ¬b(3)[z0] ∧ i (3) < L ∧ z0 = i (3) ∧ i (4) = i (3) + 1 ∧ ¬ f (4) ∧

{L ≤ i (4)}

mov(l2, l3, 5) ∧ L ≤ i (4) ∧ id(i, f, 5) ∧

{⊤}

mov(l3, l4, 6) ∧ ¬ f (5) ∧ id(i, f, 6)

{⊤}

The analysis of the first counterexample allows for the refinement of vertices v4, v9, and v31.

The analysis of the second counterexample permits the deletion of vertex v31, as the new

label is unsatisfiable, and the refinement of vertices v9, v4, and v2. Notice that the second

case has the drawback of “uncovering” vertex v35, that, before the refinement, was covered

by v31 since

MV (v35)
∃ |�AE

I
MV (v31)

∃ .

After the refinement such relation does not hold anymore and v31 can be explored again.

The goal of minimizing the counterexample is to save and preserve as much as possible the

labeled unwinding. In fact, in the situation considered above, while the first set of interpolants

refines only a small portion of the labeled unwinding, the second modifies a substantial part

of the unwinding and destroys part of it. The flip side of this heuristic is that postponed incon-

sistencies in the data-flow might appear again in counterexamples generated by later calls of

Unwind, constituting the only unsat core of infeasible formula from which interpolants will

be computed. In this case, the new set of interpolants would refine (and maybe destroy) the

already specialized and well-refined peripheral parts of the labeled unwinding. In practice,

our experience suggests that minimizing counterexamples pays off in most situations.

7.4 Instantiating universal quantifiers

The presence of quantified formulas can be problematic and requires particular attention in

several phases of the analysis. Quantified formulas arise while checking covering tests and

the feasibility of counterexamples. In particular, given the eager application of the Reduce

procedure, the vast majority of safari execution time is spent for checking covering relations.

As stated in Sect. 4.2, a vertex v is covered by a set of vertices C iff

MV (v)∃ |�AE
I

∨

w∈C

MV (w)∃ (22)

holds or, dually, if

MV (v)∃ ∧
∧

w∈C

¬
(

MV (w)∃
)

(23)

123

Form Methods Syst Des (2014) 45:63–109 93

is AE
I -unsatisfiable. Stack-handling procedures available in state-of-the-art SMT-Solvers

allows to perform such a test in an incremental way, asserting few formulas representing

the labels of the vertices in the set C at a time. As discussed in Sect. 4.2, (23) is a formula of

the form

∃a ∃c ∃d ∃i ∀ j . ψ(i, j, a[i], a[j], c, d) , (24)

where the i are the INDEX variables of the vertex v and j comes from the INDEX variables

of vertices w. As said in Sect. 4.2, safari deals with formulas of the form 24 by using

an (incomplete) satisfiability procedure based on the instantiation of j over the set i ∪ c

of variables. Considering all possible instances soon becomes infeasible as they are | j ||i∪c|.

Several heuristics are integrated in safari to efficiently handle this instantiation process, part

of which are inherited from the tool mcmt [47,48]. We discuss them in the rest of this section.

Exploration strategy. This heuristic addresses the problem of limiting the growth of the length

of the tuple j of variables; recall that j represents, intuitively, the INDEX variables of the

labels MV (w) in (23).

With standard exploration strategies, such as breadth- or depth-first search, the number of

index variables labeling the leaves might grow very quickly. Notice that it is possible to predict

the number ek of (implicitly existentially quantified) index variables occurring in the formulas

labeling the vertex vk in a path of the form π = v0 → · · · → vm with vm = ε by simply

counting the existentially quantified index variables in τk+1 ∧ · · · ∧ τm from (11). In fact, the

number of index variables that will occur in the formula labeling vk after the update (20) is

bounded by ek , because it is derived from the interpolants computed along the path π above.

Heuristics [45,47] designed to reduce the number of index variables in preimages devel-

oped for the backward reachability procedure of mcmt can also be put to productive use in

safari. These heuristics affect the selection of leaves in the Expand procedure, promoting

the expansion of leafs with a small number of index variables. safari keeps an ordered list

of leaves of the tree. The ordering of the leaves is firstly based on the number of INDEX vari-

ables, and secondly, if the number of INDEX variables is equal, on the � relation introduced

in previous section. The effect of maintaining such a list is that Expand works always on a

leaf with the smallest number of variables. Such a smart exploration strategy helps also dur-

ing refinement, where quantified queries (expressing trace feasibility) are Skolemized and

instantiated, thus producing equisatisfiable quantifier-free queries on which interpolation

algorithms are executed.

Filtering instances. Adopting a smart exploration strategy helps in alleviating the burdens on

the default quantifier instantiation procedure described in Sect. 4.2. Even if the problem of

checking satisfiability of quantified formulas attracted a lot of interest recently (e.g., [32,43,

44]), efficient solutions have been implemented only in few SMT-Solvers. We describe here

another optimization devised for reducing the impact of our default instantiation procedure

on the performances of safari even more. This other optimization plays a significant role in

the instantiation process, especially when checking covering of vertices, aims to reducing the

instantiations performed for each covering test. Such optimization is based on the filtering

modulo enumerated data-type [45] heuristics. They cut the number of instantiations of the

universally quantified variables by exploiting cheap checks involving information cached in

specific data-structures used to represent formulas.

Primitive differentiated form. safari inherits from mcmt the feature of keeping all for-

mulas labeling vertices of the unwinding in a primitive differentiated form. An ∃I -formula

123

94 Form Methods Syst Des (2014) 45:63–109

∃i .φ(i, a[i], c, d) is primitive iff it is a conjunction of literals and is differentiated iff it contains

the negative literal ik �= il for every ik, il ∈ i . Notably, this format avoids the computation-

ally expensive enumeration of partitions in the interpolation algorithm described in Sect. 5.

Primitive differentiated form helps also in reducing the number of possible instantiations

while checking the unsatisfiability of formulas of the form (24).

8 Experiments

We have run safari against safety problems that require reasoning on arrays of unknown

length (the benchmarks are illustrated in Sect. 8.1). The goal of the experimental analysis

is two-fold. First, we want to measure the impact of the heuristics Term Abstraction (TA)

and Counterexample Minimization (CM) discussed in Sect. 7.2 and Sect. 7.3, respectively

(our findings are reported in Sect. 8.2). Second, we want to conduct a comparison with

state-of-the-art tools implementing alternative approaches to the verification of programs

manipulating arrays (Sect. 8.3). In particular, we consider a state-of-the-art software model

checker and a verifier based on abstract interpretation.

8.1 Benchmarks

Our problems are divided in two benchmark suites:

– Suite 1 consists of 13 of the 28 problems (both safe and unsafe) considered in [35].

The programs in the problems perform simple manipulations on arrays; e.g., copying an

array into another, concatenating two arrays, and swapping the content of two arrays. The

safety properties are expressed by loops containing quantifier-free assertions (similarly to

what is done in Fig. 1 for the procedure Running). Each problem in Suite 1 is labeled

by “Dn” where n is a natural number used to identify the problem in [35]. Since our

tool is capable of natively supporting quantified assertions (such as (1) for the procedure

Running), from each problem “Dn” we have derived a new (equivalent) problem identi-

fied with “QDn” by replacing the loop (or loops) encoding the safety property with the

corresponding quantified property. There are no problems “QD06” and “QD17” since the

quantified properties require the use of divisibility predicates in Linear Arithmetic or the

introduction of an alternation of quantifiers. Both cases are beyond the expressiveness of

the language currently taken in input by safari. There are two reasons for the exclusion

of 15 problems in [35]. First, some of the problems in [35] require interpolants over Linear

Arithmetic while the actual implementation of safari is only able to compute interpolants

over IDL. (This is not a conceptual but a technological limitation that will be overcome

in future releases of safari by incorporating interpolation capabilities for Linear Arith-

metic.) Second, the remaining problems have been discarded because of the presence of

C functions, such as buffer_size, that are not related to the kind of (quantified) array

properties of interest to us in this work.

– Suite 2 contains 25 programs taken from several sources, e.g., the benchmark suite of

Boogie7 and Why3,8 papers [9,56] on tools related to safari, books on algorithms and

data structures (such as [78]), standard C string functions library, and problems suggested

by experts in the area. Each program generates both a safe and an unsafe problem; the

7 http://research.microsoft.com/en-us/projects/boogie/.

8 http://proval.lri.fr/.

123

http://research.microsoft.com/en-us/projects/boogie/
http://proval.lri.fr/

Form Methods Syst Des (2014) 45:63–109 95

latter obtained from the former by manually inserting a bug in the problem. The programs

in Suite 2 can be briefly described as follows:

– binarySort is an implementation of the “binary sort” algorithm in [78]. We check that,

once the procedure terminates, the array is sorted.

– bubbleSort is an implementation of the “bubble sort” algorithm in [9]. We check that,

once the procedure terminates, the array is sorted.

– comp implements the strcmp function in [56] for comparing the content of two arrays.

This function returns true if the two input arrays are equal. We check that if the procedure

returns true, the two input arrays are indeed equal.

– compM is a modified version of comp where the first equal segment of two arrays is

copied in a third one. This function returns true if the two input arrays are equal. We

check that if the procedure returns true, the two input arrays are indeed equals and also

that the local copy of the array is equal to the input array.

– copy implements the strcpy function in [56] for copying the content of an array into

another. The property we check is that, at the end of the procedure, the input array has

been correctly copied in the returned one.

– copyN is a modified version of copy where the content of the input array is copied in N

arrays (one at a time) before being copied in the last array. We check that, in the end, the

N -th copied array is equal to the first one.

– find implements the linear search algorithm in [56]. Such function returns the smallest

index of the array where the element of interest is stored. We check that if the procedure

returns a value bigger than the size of the array, the array does not contain the given

element to search for.

– findTest is an extended version of find with an extra loop that checks if the returned index

is the smallest one storing the given element that has been searched for. If so the function

returns true. We check that the function always returns such a value.

– heapArr - Benchmark where the heap (abstracted as an array) is modified only in some

parts. Since the postcondition asserts facts on a bigger portion, the tool has to infer that

for any position outside the modified ones, the heap remained untouched. (This example

has been kindly suggested by K. Rustan M. Leino).

– init implements the procedure in [56] to initialize all the cells of an array to some value.

We check that, at the end of the procedure, the array has been correctly initialized.

– initTest is an extended version of init with an extra loop checking that the array has been

initialized. This function returns true if the extra loop does not find any error. We verify

that the procedure always returns true.

– maxInArr and minInArr implement linear search procedures for largest and smallest,

respectively, values in an array (taken from http://proval.lri.fr/). We check that the func-

tions respectively correctly return the biggest or smallest value of the array.

– nonDisj is a procedure that takes in input an array a of integers and saves in a local array

variable b all the position i where a[i] > 0, such that the property a[b[j]] > 0 is satisfied

for all the element j such that b[j] is smaller than than the size of a. We check that this

property is satisfied by every position of b that has been initialized by the procedure.

– partition implements an algorithm to distribute the content of an array in two: one holding

all non-negative values and the other all the negative values (taken from [56]). We check

that the two target arrays contains only non-negative and positive values, respectively.

– running is the procedure in Fig. 1. We check that assertion (1) is never violated.

– vararg is the procedure in [56] searching for the first position of the input array storing the

symbolic constant NULL, marking the point up to which the array has been initialized.

123

http://proval.lri.fr/

96 Form Methods Syst Des (2014) 45:63–109

We check that the procedure returns the first position where the input array contains the

value NULL.

To quantitatively characterize the problems in the two benchmark suites, we have identified

the following three parameters: the numbers l and n of non-nested and nested, respectively,

loops in the body of the program and the number q of quantifiers in the safety property. The

interest of these figures lies in the fact that safari, like any tool based on a CEGAR-like

strategy, suffers from

– the presence of several non-nested loops in the program. This is because each counter-

example found by unwinding must go through the l loops. Thus, refinement should be

able to generalize the invariants for all the l loops from the same (inconsistent) formula

representing the (infeasible) counter-example. In this respect, the problems identified

by “copyN ,” where N represents the number of loops in the program, in Suite 2 are

particularly relevant (notice that l = N).

– the “depth” n of nested loops.9 The problem is that the infeasibility of a counter-example

may derive from the interaction of variables that are updated in two or more nested loops.

For example, in the case of two nested loops, the behavior of the inner loop is influenced

by the operations performed in the outer loop. The interplay among the variables is

indeed reflected in the counter-example found by unwinding and refinement must then

be able to synthesize an invariant describing the possibly complex relationships among

the elements stored in several array variables. In this respect, the problems binarySort

and bubbleSort in Suite 2 are particularly interesting because they contain two nested

loops (n = 1).

– the presence of a number q of quantifiers in the property to be verified. The crucial

observation here is that unbounded arrays (i.e. of finite but unknown dimension) require

the capability of identifying quantified predicates for synthesizing the invariants for

discharging the safety property.

So, the higher the number q of quantified variables in the property, the higher the complex-

ity of finding quantified predicates that imply the property. In this respect, the problems

identified by “QDn” in Suite 1 are particularly relevant (notice that q = 1). In fact,

comparing the performances of safari on “Dn” and “QDn” will give an idea of the

advantages and disadvantages of using properties expressed by quantified (q > 0) and

quantifier-free (q = 0) assertions, respectively.

8.2 Importance of the heuristics

We now show that the heuristics Term Abstraction (ta) and Counterexample Minimization

(cm)—described in Sect. 7.2 and Sect. 7.3, respectively—are key to the scalability of safari.

To show this, we have run safari on both benchmark suites with the heuristics turned on

and off. All the experiments have been conducted on a computer equipped with an Intel(R)

Core(TM)2 Quad CPU @ 3.00GHz and 12 GB of RAM running Linux Debian “jessie.” The

complete benchmark suites and the executable of safari used for the evaluation are available

at http://verify.inf.usi.ch/content/safari. The results are reported in Table 1 for Suite 1 and

Table 2 for Suite 2.

In both tables, the column ‘Pb.’ reports the identifier of the problem together with the

tuple (l, n, q) representing the number of loops, maximum level of nesting, and number

9 n = 0 means that the program does not have nested loops, n = 1 identifies programs with at least one nested

loop, etc.

123

http://verify.inf.usi.ch/content/safari

Form Methods Syst Des (2014) 45:63–109 97

Table 1 Experiments on Suite 1: statistics for safari with different heuristics turned on and off

Pb. (l,n,q) status NoA NoH cm ta cmta

Timings [Time out = 3600] (in seconds)

D01 (2,0,0) Safe x – – 0.36 0.38

D02 (2,0,0) Safe x – – 0.39 0.28

D03 (2,0,0) Safe x – – 0.37 0.52

D04 (2,0,0) UnSafe 3.92 0.51 0.30 0.18 0.28

D06 (2,0,0) UnSafe x – – 2.68 0.78

D08 (2,0,0) Safe x – – 0.36 0.50

D09 (2,0,0) Safe x – – 0.50 0.40

D11 (2,0,0) UnSafe 1.54 0.35 0.28 1.53 1.02

D13 (2,0,0) UnSafe 0.45 0.42 0.34 0.33 0.45

D14† (4,0,0) Safe x – – 1.60 1.06

D15 (4,0,0) UnSafe 2.62 1.60 1.33 1.46 1.56

D16† (5,0,0) Safe x – – 2.22 1.10

D17 (2,0,0) Safe x 0.72 0.80 x 0.68

D20 (2,0,0) Safe x – – 0.81 0.47

QD01 (1,0,1) Safe x x x 0.38 0.39

QD02 (1,0,1) Safe x x x 0.43 0.35

QD03 (1,0,1) Safe x x x 0.36 0.38

QD04 (1,0,1) UnSafe 0.34 0 1.44 0.31 0.37

QD08 (1,0,1) Safe x x x 0.36 0.21

QD09 (1,0,1) Safe x x x 0.43 0.44

QD11 (1,0,1) UnSafe 0.46 0 0.36 0.63 0.58

QD13 (2,0,2) UnSafe 0.44 0 0.41 0.61 0.35

QD14† (3,0,1) Safe x x x 0.78 0.64

QD15 (3,0,1) UnSafe 0.53 4 2.62 1.09 0.94

QD16† (4,0,1) Safe x – – 1.38 1.14

QD20 (1,0,1) Safe x x x 0.37 0.28

Number of refinements [Maximum = 150]

D01 (2,0,0) Safe x – – 5 3

D02 (2,0,0) Safe x – – 5 3

D03 (2,0,0) Safe x – – 5 3

D04 (2,0,0) UnSafe 0 0 0 0 0

D06 (2,0,0) UnSafe x – – 2 2

D08 (2,0,0) Safe x – – 5 3

D09 (2,0,0) Safe x – – 5 3

D11 (2,0,0) UnSafe 0 0 0 0 0

D13 (2,0,0) UnSafe 0 0 0 0 0

D14† (4,0,0) Safe x – – 8 8

D15 (4,0,0) UnSafe 0 6 4 9 9

D16† (5,0,0) Safe x – – 18 14

D17 (2,0,0) Safe x 3 3 x 4

D20 (2,0,0) Safe x – – 5 3

123

98 Form Methods Syst Des (2014) 45:63–109

Table 1 continued

Pb. (l,n,q) status NoA NoH cm ta cmta

QD01 (1,0,1) Safe x x x 2 2

QD02 (1,0,1) Safe x x x 2 2

QD03 (1,0,1) Safe x x x 2 2

QD04 (1,0,1) UnSafe 0 0 0 0 0

QD08 (1,0,1) Safe x x x 2 2

QD09 (1,0,1) Safe x x x 2 2

QD11 (1,0,1) UnSafe 0 0 0 0 0

QD13 (2,0,2) UnSafe 0 0 0 0 0

QD14† (3,0,1) Safe x x x 6 6

QD15 (3,0,1) UnSafe 0 4 3 7 7

QD16† (4,0,1) Safe x – – 12 12

QD20 (1,0,1) Safe x x x 2 2

‘x’ indicates that safari was not able to converge in the given time out of 1 h. ‘–’ indicates that safari was

not able to converge with less than 150 refinements. The examples labeled with † have been pre-processed

with loop fusion, a compiler optimization technique which replaces multiple loops (iterating over the same

range) with a single one when the instructions in the body of a loop do not interfere with those in the bodies

of the others (see, e.g., [2])

of quantified variables in the assertions, respectively (see Sect. 8.1 for a description). Since

Suite 1 contains both safe and unsafe problems, the column ‘status’ of Table 1 reports

if the problem is safe or unsafe. Since Suite 2 contains a safe and an unsafe version of

the same problem, Table 2 groups the statistics of safari for the safe and unsafe variants

of the same problem. Both Tables 1 and 2 are organized in two sub-tables: the first for the

timings (in seconds with a time out of 1 h) and the second for the number of refinements

(with a maximum of 150) used by safari. Each sub-table reports measures (time or number

of refinements) for the following configurations of safari: no use of abstraction (NoA), i.e.

safari performs backward reachability, use of abstraction with both heuristics switched off

(NoH), use of abstraction with only Counter-example Minimization turned on (cm), use of

abstraction with only Term Abstraction turned on (ta), use of abstraction with both heuristics

turned on (cmta).

The results reported in the tables show the importance of heuristics for the scalability

of safari. Heuristics play a crucial role in allowing safari to converge on safe programs:

without them, in fact, safari is almost never able to converge as shown by looking at the

columns NoH in both Tables 1 and 2. We also observe that the role of the two heuristics is

quite different. In fact, Counter-example Minimization alone allows safari to converge on

few more examples than when the tool is executed without options (compare the columns

NoH and cm in the tables). Instead, Term Abstraction alone enables safari to converge

on many more problems (compare the columns NoH and ta in the tables). The problems

on which safari fails to converge with Term Abstraction only turned on are successfully

verified by using both heuristics (compare the columns ta and cmta in the tables). We can

explain the differences in the impact of the heuristics as follows.

Recall from Sect. 7.2 that Term Abstraction allows safari to induce the interpolation

procedure to return an interpolant that could be potentially more useful for refinement. In

other words, Term Abstraction has an impact on how a counter-example is refined. Instead,

Counterexample Minimization (recall Sect. 7.3) tries to find the smallest unsatisfiable suffix

123

Form Methods Syst Des (2014) 45:63–109 99

Table 2 Experiments on Suite 2: statistics for safari with different heuristics turned on and off

Pb. (l,n,q) safe unsafe

NoH cm ta cmta NoA NoH cm ta cmta

Timings [Time out = 3600] (in seconds)

BinarySort (3,1,2) – 0.93 4.20 2.81 3.95 27.22 – 8.26 6.53

BubbleSort (2,1,2) – – 1.20 0.97 1.04 14.73 13.84 8.89 8.26

Comp (1,0,1) x x 0.25 0.40 0.32 0.36 0.39 0.34 0.40

CompM (1,0,1) x x 0.67 0.53 0.38 0.49 0.58 0.36 0.48

Copy (1,0,1) x x 1.58 0.23 0.28 0.29 0.41 0.19 0.34

Copy2 (2,0,1) – – x 0.61 0.33 0.44 0.49 0.33 0.45

Copy3 (3,0,1) – – x 1.02 0.39 0.57 0.67 0.51 0.57

Copy4 (4,0,1) – – x 1.77 0.45 0.89 0.88 0.64 0.78

Copy5 (5,0,1) – – x 3.47 0.50 1.19 1.15 0.83 0.98

Copy6 (6,0,1) – – x 6.73 0.57 1.56 1.52 1.20 1.22

Copy7 (7,0,1) – – x 9.27 0.64 2.13 1.93 1.23 1.51

Copy8 (8,0,1) – – x 15.89 0.67 2.81 2.48 1.40 1.76

Copy9 (9,0,1) – – x 24.84 0.72 3.36 3.14 1.71 2.17

Copy10 (10,0,1) – – x 36.45 0.80 4.84 3.92 2.59 2.57

Find (1,0,1) x x 0.42 0.60 0.28 0.23 0.34 0.21 0.36

FindTest (2,0,0) x – 1.33 1.22 0.41 0.63 1.36 0.59 0.85

HeapArr (1,0,0) 5.56 3.85 0.80 0.88 0.34 0.75 0.85 0.31 0.51

Init (1,0,1) x x 0.37 0.30 0.29 0.17 0.28 0.17 0.31

InitTest (2,0,0) – – x 1.53 0.35 0.40 0.54 0.26 0.42

MaxInArr (1,0,1) – – 0.43 0.30 0.29 0.29 0.42 0.23 0.38

MinInArr (1,0,1) – – 0.43 0.46 0.29 0.30 0.42 0.23 0.39

NonDisj (1,0,2) – – 0.60 0.70 0.55 0.59 0.69 0.54 0.76

Partition (1,0,1) x x 0.48 0.53 2.24 1.81 1.86 0.38 0.61

Running (2,0,0) x x 0.92 0.87 0.28 0.44 0.47 0.29 0.46

Vararg (1,0,1) x x 0.44 0.46 0.19 0.27 0.30 0.21 0.35

Number of refinements [Maximum = 150]

BinarySort (3,1,2) – 7 21 21 0 61 – 6 6

BubbleSort (2,1,2) – – 5 5 0 39 39 14 14

Comp (1,0,1) x x 2 2 0 1 1 1 1

CompM (1,0,1) x x 4 4 0 3 3 2 2

Copy (1,0,1) x x 2 2 0 2 2 1 1

Copy2 (2,0,1) – – x 6 0 2 2 2 2

Copy3 (3,0,1) – – x 12 0 3 3 3 3

Copy4 (4,0,1) – – x 20 0 4 4 4 4

Copy5 (5,0,1) – – x 30 0 5 5 5 5

Copy6 (6,0,1) – – x 42 0 6 6 6 6

Copy7 (7,0,1) – – x 56 0 7 7 7 7

Copy8 (8,0,1) – – x 72 0 8 8 8 8

Copy9 (9,0,1) – – x 90 0 9 9 9 9

Copy10 (10,0,1) – – x 110 0 10 10 10 10

123

100 Form Methods Syst Des (2014) 45:63–109

Table 2 continued

Pb. (l,n,q) safe unsafe

NoH cm ta cmta NoA NoH cm ta cmta

Find (1,0,1) x x 3 4 0 1 1 1 1

FindTest (2,0,0) x – 14 19 0 6 13 8 8

HeapArr (1,0,0) 68 54 9 9 0 9 9 4 4

Init (1,0,1) x x 2 2 0 0 0 0 0

InitTest (2,0,0) – – x 11 0 3 3 1 1

MaxInArr (1,0,1) – – 3 3 0 2 2 2 2

MinInArr (1,0,1) – – 3 3 0 2 2 2 2

NonDisj (1,0,2) – – 0 0 0 4 4 5 5

Partition (1,0,1) x x 1 1 0 7 7 2 2

Running (2,0,0) x x 6 10 0 2 2 3 3

Vararg (1,0,1) x x 4 4 0 1 1 2 2

‘x’ indicates that safari was not able to converge in the given time out of 1 h. ‘–’ indicates that safari was

not able to converge in less than 150 refinements. We do not report the column NoA for safe problems since

safari always diverges on them when abstraction is disabled

of the counter-example in order to prune the search space as much as possible. In other words,

Counterexample Minimization addresses the problem of finding where to refine a counter-

example. So, Term Abstraction alone is sufficient when the counter-examples to be refined

are not long and it is thus crucial how refinement is performed. When counter-examples

become longer, it is also important where to refine them, not only how. On such problems, it

is only the combination of the two heuristics that is winning.

We conclude by observing that in case of unsafe problems, the overhead of using abstrac-

tions with the heuristics turned on is small (compare the columns NoA and cmta in the

tables for unsafe problems).

8.3 Comparison with other tools

We now compare safari with other state-of-the-art program verification tools. Our goal is

to comparatively evaluate the effectiveness of alternative techniques with respect to those in

safari on the verification of programs manipulating unbounded arrays. Among the avail-

able alternatives, we have selected three well-known tools: cbmc [27], a tool based on

Bounded Model Checking (BMC), CPAchecker [15], a tool based on lazy abstraction and

interpolation-based refinement, and Clousot [40], a recent tool based on Abstract Interpreta-

tion.10 The comparison with cbmc and CPAchecker shows the advantages of the capability

of safari to reason about unbounded arrays over the other approaches which requires to fix

their dimension. Indeed, neither cbmc nor CPAchecker support the analysis of programs

with unbounded arrays. For our comparison, we consider the problem bubbleSort. From

Table 2, we know that safari solves this safety problem in 0.97 s when run with both heuris-

tics turned on. For cbmc and CPAchecker we consider increasing sizes of the array a with

10 Notice that cbmc and CPAchecker won the first and second place, respectively, of the overall category

in the 3rd International Competition on Software Verification (SV-COMP’14), http://sv-comp.sosy-lab.org/

2014/results/index.php.

123

http://sv-comp.sosy-lab.org/2014/results/index.php
http://sv-comp.sosy-lab.org/2014/results/index.php

Form Methods Syst Des (2014) 45:63–109 101

(a) (b)

Fig. 7 Running times for safari and cbmc and CPAchecker on the bubbleSort algorithm. safari execution

time is 0.97 s

N ranging from 2 to 9. Notice that, since all these tools do not support quantified assertions,

we need to express it by using two nested loops as follows:

for (int x = 0 ; x < N ; x++) {

for (int y = x+1 ; y < N ; y++) {

assert(a[x] <= a[y]);

}

}

Comparing safari with Clousot highlights instead the need of using increasingly precise

abstractions obtained by refinement as done by safari with respect to the adoption of coarser

abstractions—due to the application of widening and join operators—for scalability as done

by Clousot.

safarivs cbmc. BMC [16] is a verification approach based on unrolling, a bounded

number κ of times, the control-flow graph of a program. The feasibility of executions (of

length up to κ included) leading from an initial to an error state is reduced to the satisfiability

of a Boolean formula, that can be checked with available SAT solvers. The method is, in

general, incomplete since it can prove the presence or absence of bugs for executions with

bounded length. In some situations, however, it is possible to establish a value for κ which is

sufficient to consider to guarantee the safety of executions of the program of arbitrary length.

For example, consider the problem bubbleSort: given the size N of the array a to be sorted,

it is sufficient to take κ = N + 1 to establish the safety of the program with respect to the

following (quantified) post-condition:

∀x, y.((0 ≤ x < y < N) → a[x] ≤ a[y])

since the number of iterations of the loop in the program is a function of the size N of the

array a.

Figure 7a reports running times for cbmc on the bubbleSort algorithm for increasing

values of the size N of the array a.11 The plot shows the execution time in function of the

size of the array. As expected, safari outperforms cbmc especially for larger values of N .

11 We run cbmc v4.3 with the option –unwind N+1.

123

102 Form Methods Syst Des (2014) 45:63–109

safarivs CPAchecker. CPAchecker is a tool implementing a lazy abstraction and

interpolation-based refinement framework. The key difference of CPAchecker with

respect to other tools is the availability of several different techniques which can be

combined together. For our experiments, we run CPAchecker v1.2 with the option

-predicateAnalysis-PredAbsRefiner-ABEl-UF.12

Figure 7b reports running times for CPAchecker on the bubbleSort algorithm for increas-

ing values of the size N of the array a. This time as well the execution time of CPAchecker

rapidly grows with respect to the size of the array, while safari execution time does not

depend on the size of the array.

safarivs Clousot. Abstract Interpretation [28] is a static analysis technique based on

sound approximations of the semantics of programs, obtained by using monotonic functions

over ordered sets. In general, tools based on Abstract Interpretation trade efficiency for

precision (see Sect. 9 for a more detailed discussion about abstract interpretation). Instead,

safari tries to gain more and more precision by using suitable refinements. We believe this

is crucial for successfully handling (quantified) assertions about arrays of unbounded size.

To check this intuition, we compare safari with Clousot, a recent tool based on Abstract

Interpretation, under active development at Microsoft Research, which is capable of handling

programs manipulating arrays (as discussed in [29]). The goal of the comparison is to evaluate

the success rate of Clousot on the problems in Suite 2 rather than its efficiency. For this,

we have run the on-line version of the tool available at http://rise4fun.com.13 Our findings are

the following. On the safe versions of the 25 programs in Suite 2, Clousot is able to verify

only 4 programs (namely, find, init, partition, and vararg) while on the unsafe versions is

able to identify the bug for 2 programs only (namely, partition and vararg). This confirms our

intuition that the trade-off between precision and efficiency in Clousot is not satisfactory

when (quantified) assertions about array programs are to be verified.

8.4 Discussion

We can summarize the findings of the experimental analysis as follows.

The success of safari is determined by a careful tuning of precision in the refinement phase

of the CEGAR loop on which the tool is based. In particular, Term Abstraction is capable of

inducing the interpolation procedure to provide the “right” interpolants, i.e. formulas that give

rise to a more precise but not too precise abstraction of the program so as to permit safari

to converge. When counter-examples are longer, the use of Counter-example Minimization

in conjunction with Term Abstraction becomes crucial to drive the refinement procedure

towards a good and successful refinement of the abstract model.

The capability of specifying quantified assertions and reasoning about arrays of unbounded

length allows safari to consider compact annotations and verify programs regardless of the

number of cells in an array. This makes the results of the verification more useful since safety

holds for arrays of finite but arbitrary size and, at the same time, may improve performance

by using compact (symbolic) representations of the set of (backward) reachable states during

unwinding.

To conclude, we believe that safari should be part of the toolkit of software verifiers

since, on selected pieces of code, it complements available techniques (e.g., those based on

12 We would like to thank Dirk Beyer and its group for their support in running CPAchecker.

13 We were not able to retrieve the version of Clousot invoked by the web interface. We assume it to be the

last available version, i.e. 1.5.60502.11.

123

http://rise4fun.com

Form Methods Syst Des (2014) 45:63–109 103

Abstract Interpretation), when these fail because of the use of too coarse abstractions that

trade precision for scalability.

9 Related work

A long list of sound and efficient techniques for the analysis of programs handling data-

structures is available in the literature. Below, we discuss the relevant works classified accord-

ing to the main technique they use as follows: predicate abstraction with counterexample

guided abstraction refinement procedures, abstract interpretation, theorem proving-based,

shape analysis and template-based solutions.

9.1 Predicate abstraction

Since the seminal paper [50], Predicate abstraction has become a very popular technique in

software verification. It allows an abstraction of the concrete semantics of the program to

an abstract semantics where reachable states of the programs are grouped according to the

predicates they satisfy.

In presence of unbounded data-structure, like the programs we target in this paper, pred-

icate abstraction has to work with quantified predicates. One of the first approaches for

software verification based on predicate abstraction and able to handle quantified predicate

is in [41]. This solution exploits ghost variables, i.e., Skolem constants which are never mod-

ified by the program. Ghost variables, once the procedure terminates, are not assigned to

a precise value and hence can be universally quantified. The index predicate solution [63]

fixes the number of “index variables”, i.e., universally quantified variables, in order to exploit

standard predicate abstraction algorithms. For such two solutions predicates are generally

suggested by the user. The work in [62] proposes a refinement technique based on the weakest

precondition, in charge of generating new intermediate annotations. The main limitation of

the aforementioned approaches is their inability of generating quantified predicates. These

approaches would be inefficient, therefore, on programs without quantified post-conditions

or assertions like those considered in part of our experimental analysis. The generation of

quantified predicates has been addressed also by Jhala and McMillan in [59], as an extension

of their previous work [58]. The interpolation procedure is driven by new axioms with the

goal of generating quantified predicates, called range predicates, representing properties for

ranges of cells in the arrays. While such predicates are restricted to a particular shape, this

is not the case of our technique. The algorithm implemented in the ACSAR model checker

[76] adopts a backward reachability procedure in which new predicates are generated by

simulating the “pre” operator on spurious counterexamples. This constitutes the main dif-

ference with respect to our approach, which performs refinement by means of interpolants.

Invariants and predicates can also be generated by analyzing the postcondition with some pat-

terns, like variable aging or constant relaxation [42]. This approach can generate invariants

for many interesting problems, like sorting algorithms. On the other hand, it cannot handle

programs which require quantified invariants but do not have quantified assertions in their

specifications.

Arrays can also represent a contiguous, fixed-size, portion of memory. For this class of

programs, blasting every cell of the array as a single, uncorrelated variable results in inefficient

procedures, as pointed out by in [8,9], which present an abstraction-refinement procedure

for linear programs with fixed-size arrays.

123

104 Form Methods Syst Des (2014) 45:63–109

9.2 Abstract interpretation

The approach described in this paper aims at developing a sound analysis procedure at the

price of non-termination. Our solution does not suffer from the loss of precision deriving

from the use of approximation techniques and, upon termination, returns either an invariant,

which is both safe and inductive, or a real counterexample. Abstract Interpretation (AI)

approaches target efficiency, i.e., they aim to generate inductive (but not necessarily safe) facts

at compile-time. The application of widening operators, required to ensure the convergence

of the analysis, may cause loss of precision, though, with the result that inferred inductive

properties might be too weak to prove the absence of paths violating a given property.

AI solutions rely on the availability of some abstract domains for inferring invariants.

An abstract domain can be thought of as a (fragment of a) theory [51] identifying a class

of formulas over which the concrete semantics of the input program is abstracted. Since the

seminal paper [28], several domains (such as interval arithmetic [28], octagons [69], octa-

hedra [25], and convex-polyhedra [30]) have been studied in order to reason about different

properties of programs.

AI analysis for arrays can be performed by associating one abstract value to each cell

of the array or by smashing array variables, i.e., using one abstract value representing all

the possible values of the array [17]. The first approach is precise but extremely inefficient

while the second, on the contrary, is much more efficient at the price of (greatly) degrading

precision. Other approaches segment either syntactically [49,52] or semantically [29] an

array and assign to each segment an abstract value.

The long-term project Code Contracts14 carried on at Microsoft Research has obtained

very good results and its value in both the academic and industrial scenarios should not be

neglected. The project supports static verification of programs with several analysis tools,

many of which are based on AI techniques; such as Clousot, discussed in Sect. 8.3.

It is worth to notice that abstract interpretation and CEGAR-based approaches are not

mutually exclusive. They have been successfully combined, for example, in recent work [3].

9.3 Theorem proving

Inference of quantified array properties is the goal of the techniques in [56,61,68]. The gen-

eration of quantified predicates relies on the use of saturation-based theorem proving (i.e.

resolution extended with inferences to reason about equalities) combined with interpola-

tion [56,68] or the solution of recurrence relations [61].

Invariants produced by these approaches may be more expressive than those found by our

technique; for instance, they may contain alternations of quantifiers. Indeed, considering a

larger class of properties makes the problem of avoiding divergence even more acute than

in our setting. The situation is further complicated by the fact that saturation-based theorem

provers need to be instructed with axioms for handling arithmetic and this may, in practice,

further contribute to the non-termination of the inference process (theoretically, satisfiability

of arbitrary first-order formulas is semi-decidable). Instead, our approach relies on SMT-

Solvers to take care of the arithmetic operations arising from the analysis of programs.

This, combined with the heuristic of Term Abstraction (see Sect. 7.2), greatly helps to avoid

divergence in practice as shown by the experiments in Sect. 8.

14 http://research.microsoft.com/projects/contracts.

123

http://research.microsoft.com/projects/contracts

Form Methods Syst Des (2014) 45:63–109 105

9.4 Shape analysis and separation logic

Heap manipulating programs are the target of shape analysis and separation logic approaches.

Their goal is to infer a conservative characterization of the structure of the heap at each point

of the program (see, e.g., [55,73]). Objects allocated on the heap are represented by a heap

graph, where vertices are object allocated on the heap and edges are pointers accessing the

objects [23]. Abstraction of these graphs can be done by using a three-value logic [75] or

extending predicate abstraction to work with heap predicates [71].

While the goal of these techniques is to provide efficient and, at the same time, expressive

analysis for pointers and unbounded data structures, our goal is to discover invariants for

unbounded array elements. This is the target, for example, of the tool Predator [37,38].

While Predator was successfully used to prove memory safety of programs operating on

unbounded linked lists [12], it is not yet able to prove that the array returned by a sorting

algorithm is sorted. Additionally, the abstraction algorithms implemented in Predator can-

not handle arrays of unbounded size. However, as pointed out in [35], the two techniques are

orthogonal and their integration is likely to benefit both of them.

9.5 Template-based approaches

Template based approaches (e.g., [14,77] to cite a few) may infer properties which are

more expressive than the properties inferred by safari, but are limited to those matching

a given pattern. On the contrary our solution does not require in general user intervention

in specifying templates for invariant: the only interaction of the user with the tool is by

suggesting an appropriate term abstraction list whenever the tool seems to diverge. Recently,

[64] presents a constraint-based invariant generation technique suited for the synthesis of

quantified array invariants. This approach is SMT-based and uses non-linear constraints. It

can synthesize invariants containing just one quantified variable and does not apply to nested

loops. Our approach, instead, is not limited to invariants containing one quantified variables

and can be applied to programs with nested loops, as witnessed by the experiments in Sect. 8.

10 Conclusion

We have described a new abstraction-based framework for the verification of programs han-

dling arrays of unknown length. Our framework follows the “Lazy Abstraction with Inter-

polant” approach, where refinement is performed by computing interpolants from unsatisfi-

able formulas encoding spurious counterexamples.

Our technique is based on a backward reachability procedure for array-based transition

systems [46] interleaved with a CEGAR procedure. Distinguishing features of our tech-

nique are the generation of quantified predicates, obtained via a preprocessing of the transi-

tion relation, followed by a refinement phase using quantifier-free interpolants. We have

also identified a fragment of the theory of arrays enjoying quantifier-free interpolation,

and studied hypothesis for the termination of the backward (CEGAR-based) reachability

analysis.

The paper has presented implementation details and heuristics necessary for a successful

experimentation. In particular, the heuristic of Term Abstraction addresses the problem of

tuning interpolation by pre-processing input formulas. Since Term Abstraction does not

interfere with the internals of interpolation algorithms, it can be potentially adopted in any

verification tool handling problems for which there is a risk of divergence. In this respect,

123

106 Form Methods Syst Des (2014) 45:63–109

we observe that Term Abstraction has been generalized and successfully applied to the

verification of integer programs in [74].

Acknowledgments The authors would like to thank the anonymous reviewers for their comments and

criticisms that helped to improve the quality of the paper. The work of the first author was supported by the

Hasler Foundation under project 09047 and that of the fourth author was partially supported by the “SIAM”

project founded by Provincia Autonoma di Trento in the context of the “team 2009—Incoming” COFUND

action of the European Commission (FP7). The third author would like to acknowledge the support of the

PRIN 2010-2011 project “Logical Methods for Information Management” funded by the Italian Ministry of

Education, University and Research (MIUR).

References

1. Abdulla PA, Jonsson B (1996) Verifying programs with unreliable channels. Inf Comput 127(2):91–101

2. Aho AV, Lam MS, Sethi R, Ullman JD (2007) Compilers: principles, techniques, and tools, 2nd edn.

Pearson-Addison Wesley.

3. Albarghouthi A, Gurfinkel A, Chechik M (2012) Craig interpretation. In: Miné A, Schmidt D (eds) SAS.

Springer, Lecture Notes in Computer Science, pp 300–316

4. Alberti F, Bruttomesso R, Ghilardi S, Ranise S, Sharygina N (2012) Lazy abstraction with interpolants

for arrays. In: Bjørner N, Voronkov A (eds) LPAR, Lecture Notes in Computer Science, vol 7180, pp

46–61. Springer.

5. Alberti F, Bruttomesso R, Ghilardi S, Ranise S, Sharygina N (2012) SAFARI: SMT-based abstraction for

arrays with interpolants. In: Madhusudan P, Seshia SA (eds) CAV., Lecture Notes in Computer Science,

vol 7358, Springer, Berlin, pp 679–685

6. Alberti F, Ghilardi S, Pagani E, Ranise S, Rossi GP (2010). Automated support for the design and validation

of fault tolerant parameterized systems: a case study. ECEASST, p 35.

7. Alberti F, Ghilardi S, Pagani E, Ranise S, Rossi GP (2012) Universal guards, relativization of quantifiers,

and failure models in Model Checking Modulo theories. JSAT 8(1/2):29–61

8. Armando A, Benerecetti M, Carotenuto D, Mantovani J, Spica P (2007) The Eureka tool for software

model checking. In Stirewalt REK, Egyed A, Fischer B (eds), ASE. ACM, pp 541–542.

9. Armando A, Benerecetti M, Mantovani J (2007). Abstraction refinement of linear programs with arrays.

In: Grumberg O, Huth M (eds) TACAS, Lecture Notes in Computer Science, vol 4424. Springer, pp

373–388.

10. Franz Baader, Silvio Ghilardi (2007) Connecting many-sorted theories. J Symb Logic 72:535–583

11. Ball T, Rajamani SK (2002) The SLAM project: debugging system software via static analysis. In: Launch-

bury and Mitchell (eds) Conference record of POPL 2002: The 29th SIGPLAN-SIGACT symposium on

principles of programming languages, Portland, OR, USA, January 16–18, 2002. ACM, pp 1–3.

12. Beyer D (2013) Second competition on Software Verification–(Summary of SV-COMP 2013). In Piterman

N, Smolka SA (eds) Proceedings of the 19th international conference on tools and algorithms for the

construction and analysis of systems, TACAS 2013, held as part of the European joint conferences on

theory and practice of software, ETAPS 2013, Rome, Italy, March 16–24, 2013. Lecture Notes in Computer

Science, vol 7795. Springer, pp 594–609

13. Beyer D, Henzinger TA, Jhala R, Majumdar R (2007) The software model checker blast. STTT 9(5–

6):505–525

14. Beyer D, Henzinger TA, Jhala R, Majumdar R, Rybalchenko A (2007) Invariant synthesis for combined

theories. In Cook B, Podelski A (eds) VMCAI, Lecture Notes in Computer Science, vol 4349. Springer,

pp 378–394.

15. Beyer D, Erkan Keremoglu M (2011) CPAchecker: a tool for configurable software verification. In:

Gopalakrishnan G, Qadeer S (eds) Proceedings of the 23rd international conference on computer aided

verification, CAV 2011, Snowbird, UT, USA, July 14–20, 2011. Lecture Notes in Computer Science, vol

6806. Springer pp 184–190.

16. Biere A, Cimatti AA, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: Cleaveland

R (ed) TACAS, Lecture Notes in Computer Science, vol 1579. Springer, pp 193–207.

17. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2002) Design

and implementation of a special-purpose static program analyzer for safety-critical real-time embedded

software. In: Mogensen TÆ, Schmidt DA, Sudborough IH (eds) The essence of computation, Lecture

Notes in Computer Science, vol 2566. Springer, pp 85–108.

123

Form Methods Syst Des (2014) 45:63–109 107

18. Brillout A, Kroening, D, Rümmer P, Wahl T (2010) An interpolating sequent calculus for quantifier-free

Presburger arithmetic. In: Giesl H (ed) Proceedings of the 5th international joint conference on automated

reasoning, IJCAR 2010, Edinburgh, UK, July 16–19, 2010. Lecture Notes in Computer Science, vol 6173.

Springer, pp 384–399.

19. Bruttomesso R, Ghilardi S, Ranise S (2012) From strong amalgamability to modularity of quantifier-free

interpolation. In: IJCAR, Lecture Notes in Computer Science. Springer, pp 118–133.

20. Bruttomesso R, Ghilardi S, Ranise S (2012) Quantifier-free interpolation of a theory of arrays. Logical

Methods in Computer Science 8(2)

21. Bruttomesso R, Pek E, Sharygina N, Tsitovich A (2010) The OpenSMT solver. In: Esparza J, Majumdar

R (eds) TACAS, Lecture Notes in Computer Science, vol 6015. Springer, pp 150–153.

22. Carioni A, Ghilardi S, Ranise S (2011) Automated termination in model checking Modulo theories. In:

Delzanno G, Potapov I (eds) RP, Lecture Notes in Computer Science, vol 6945. Springer, pp 110–124.

23. Chase DR, Wegman MN, Zadeck FK (1990) Analysis of pointers and structures. In: Fischer BN (ed)

PLDI. ACM, pp 296–310.

24. Cimatti A, Griggio A, Schaafsma BJ, Sebastiani R (2013) The MathSAT5 SMT solver. In: Piterman

N, Smolka SA (eds) Proceedings of the 19th international conference on tools and algorithms for the

construction and analysis of systems, TACAS 2013, held as part of the European joint conferences on

theory and practice of software, ETAPS 2013, Rome, Italy, March 16–24, 2013. Lecture Notes in Computer

Science, vol 7795. Springer, pp 93–107.

25. Robert Clarisó, Jordi Cortadella (2007) The octahedron abstract domain. Sci Comput Program 64(1):115–

139

26. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement.

In: Allen Emerson E, Prasad Sistla A (eds) CAV, Lecture Notes in Computer Science, vol 1855. Springer,

pp 154–169.

27. Clarke EM, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In Jensen K, Podelski

A (eds) TACAS, Lecture Notes in Computer Science, vol 2988. Springer, pp 168–176.

28. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In: Graham RM, Harrison MA, Sethi R (eds) POPL. ACM,

pp 238–252

29. Cousot P, Cousot R, Logozzo F (2011) A parametric segmentation functor for fully automatic and scalable

array content analysis. In Ball T, Sagiv M (eds) POPL. ACM, pp 105–118.

30. Cousot P, Halbwachs N (1978) Automatic discovery of linear restraints among variables of a program.

In: Aho Alfred V, Zilles Stephen N, Szymanski Thomas G (eds) POPL. ACM Press, pp 84–96.

31. Craig W (1957) Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.

J Symb Log 22(3):269–285

32. Mendonça de Moura L, Bjørner N (2007) Efficient e-matching for SMT solvers. In Pfenning F (ed)

CADE, Lecture Notes in Computer Science, vol 4603. Springer, pp 183–198.

33. Mendonça de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan CR, Rehof J

(eds) Proceedings of the 14th international conference on tools and algorithms for the construction and

analysis of systems, TACAS 2008, held as part of the joint European conferences on theory and practice of

software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008, Lecture Notes in Computer Science,

vol 4963. Springer, pp 337–340.

34. Delzanno G, Esparza J, Podelski A (1999) Constraint-based analysis of broadcast protocols. Proceedings

of CSL, LNCS 1683:50–66

35. Dillig I, Dillig T, Alex Aiken T (2010) Fluid updates: beyond strong vs. weak updates. In Gordon AD

(ed), ESOP, Lecture Notes in Computer Science, vol 6012. Springer, pp 246–266.

36. Dimitrova R, Podelski A (2008) Is lazy abstraction a decision procedure for broadcast protocols? In:

Logozzo F, Peled D, Zuck LD (eds) VMCAI, Lecture Notes in Computer Science, vol. 4905. Springer,

pp 98–111.

37. Dudka K, Peringer P, Vojnar T (2011) Predator: a practical tool for checking manipulation of dynamic

data structures using separation logic. In: Gopalakrishnan G, Qadeer S (eds) Proceedings of the 23rd

international conference on computer aided verification, CAV 2011, Snowbird, UT, USA, July 14–20,

2011. Lecture Notes in Computer Science, vol 6806. Springer, pp 372–378.

38. Dudka K, Peringer P, Vojnar T (2013) Byte-precise verification of low-level list manipulation. In: Logozzo

F, Fähndrich M (eds) SAS, Lecture Notes in Computer Science, vol 7935. Springer, pp 215–237.

39. Enderton HB (2001) A Mathematical introduction to logic. Elsevier Science.

40. Fähndrich M, Logozzo F (2010) Static contract checking with abstract interpretation. In Beckert B,

Marché C (eds) FoVeOOS, Lecture Notes in Computer Science, vol 6528. Springer, pp 10–30.

123

108 Form Methods Syst Des (2014) 45:63–109

41. Flanagan C, Qadeer S (2002) Predicate abstraction for software verification. In: Launchbury J, Mitchell

JC (eds) Conference record of POPL 2002: the 29th SIGPLAN-SIGACT symposium on principles of

programming languages, Portland, OR, USA, January 16–18, 2002. ACM, pp 191–202.

42. Furia C.A., Meyer B. (2010). Inferring loop invariants using postconditions. In A. Blass, N. Dershowitz,

and W. Reisig (eds), Fields of Logic and Computation, volume 6300 of Lecture Notes in Computer

Science, pages 277–300. Springer.

43. Ge Y, Barrett CW, Tinelli C (2009) Solving quantified verification conditions using Satisfiability Modulo

Theories. Ann. Math. Artif. Intell. 55(1–2):101–122

44. Ge Y, Mendonça de Moura L (2009) Complete instantiation for quantified formulas in Satisfiabiliby

Modulo Theories. In Bouajjani A, Maler O (eds) CAV, Lecture Notes in Computer Science, vol 5643.

Springer, pp 306–320.

45. Ghilardi S, Ranise S (2009) Model checking Modulo theory at work: the integration of Yices in MCMT.

In: AFM.

46. Ghilardi S, Ranise S (2010) Backward reachability of array-based systems by SMT solving: termination

and invariant synthesis. Logical Methods in Computer Science 6(4)

47. Ghilardi S, Ranise S (2010) Mcmt: a model checker modulo theories. In Giesl J, Hähnle R (eds) Proceed-

ings of the 5th international joint conference on automated reasoning, IJCAR 2010, Edinburgh, UK, July

16–19, 2010. Lecture Notes in Computer Science, vol 6173. Springer, pp 22–29.

48. Ghilardi S, Ranise S, Valsecchi T (2009) Light-weight SMT-based model checking. Electron Notes Theor

Comput Sci 250(2):85–102

49. Gopan D, Reps TW, Sagiv S (2005) A framework for numeric analysis of array operations. In: Palsberg

J, Abadi M (eds) POPL. ACM, pp 338–350.

50. Graf S, Saïdi H (1997) Construction of abstract state graphs with PVS. In Grumberg O (ed) CAV, Lecture

Notes in Computer Science, vol 1254. Springer, pp 72–83.

51. Gulwani S, Tiwari A (2006) Combining abstract interpreters. In: Schwartzbach MI, Ball T (eds) PLDI.

ACM, pp 376–386.

52. Halbwachs N, Péron M (2008) Discovering properties about arrays in simple programs. In Gupta R,

Amarasinghe SP (eds) PLDI. ACM, pp 339–348.

53. Henzinger TA, Jhala R, Majumdar R, McMillan KL (2004) Abstractions from proofs. In: Jones ND,

Leroy X (eds) POPL. ACM, pp 232–244.

54. Henzinger TA, Jhala R, Majumdar R, Sutre G (2002) Lazy abstraction. In: Launchbury J, Mitchell JC (eds)

Conference record of POPL 2002: the 29th SIGPLAN-SIGACT symposium on principles of programming

languages, Portland, OR, USA, January 16–18, 2002. ACM, pp 58–70.

55. Hind M (2001) Pointer analysis: haven’t we solved this problem yet? In: Field J, Snelting G (eds) PASTE.

ACM, pp 54–61.

56. Hoder K, Kovács L, Voronkov A (2010) Interpolation and symbol elimination in Vampire. In: Giesl H (ed)

Proceedings of the 5th international joint conference on automated reasoning, IJCAR 2010, Edinburgh,

UK, July 16–19, 2010. Lecture Notes in Computer Science, vol 6173. Springer, pp 188–195.

57. Hodges W (1993) Model theory, volume 42 of encyclopedia of mathematics and its applications. Cam-

bridge University Press, Cambridge.

58. Jhala R, McMillan KL (2006) A practical and complete approach to predicate refinement. In: Hermanns

H, Palsberg J (eds) TACAS, Lecture Notes in Computer Science, vol 3920. Springer, pp 459–473.

59. Jhala R, McMillan KL (2007) Array abstractions from proofs. In Damm W, Hermanns H (eds) CAV,

Lecture Notes in Computer Science, vol 4590. Springer, pp 193–206.

60. Kapur D, Majumdar R, Zarba CG (2006) Interpolation for data structures. In: Young M, Devanbu PT

(eds) SIGSOFT FSE. ACM, pp 105–116.

61. Kovács L, Voronkov A (2009) Finding loop invariants for programs over arrays using a theorem prover. In

Chechik M, Wirsing M (eds) FASE, Lecture Notes in Computer Science, vol 5503. Springer, pp 470–485.

62. Lahiri SK, Bryant RE (2004) Constructing quantified invariants via predicate abstraction. In Steffen B,

Levi G (eds) VMCAI, Lecture Notes in Computer Science, vol 2937. Springer, pp 267–281.

63. Lahiri SK, Bryant RE (2004) Indexed predicate discovery for unbounded system verification. In Alur R,

Peled D (eds) CAV, Lecture Notes in Computer Science, vol. 3114. Springer, pp 135–147.

64. Larraz D, Rodríguez-Carbonell E, Rubio A (2013) SMT-based array invariant generation. In: Giacobazzi

R, Berdine J, Mastroeni I (eds) VMCAI, Lecture Notes in Computer Science, vol 7737. Springer, pp

169–188.

65. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems–specification. Springer,

Berlin

66. McCarthy J (1962) Towards a mathematical science of computation. In: IFIP Congress, pp 21–28.

123

Form Methods Syst Des (2014) 45:63–109 109

67. McMillan KL (2006) Lazy abstraction with interpolants. In: Ball T, Jones RB (eds) Proceedings of the

18th international conference on computer aided verification, CAV 2006, Seattle, WA, USA, August

17–20, 2006, Lecture Notes in Computer Science, vol 4144. Springer, pp 123–136.

68. McMillan KL (2008) Quantified invariant generation using an interpolating saturation prover. In Ramakr-

ishnan CR, Rehof J (eds) Proceedings of the 14th international conference on tools and algorithms for

the construction and analysis of systems, TACAS 2008, held as part of the joint European conferences on

theory and practice of software, ETAPS 2008, Budapest, Hungary, March–April 6, 2008, Lecture Notes

in omputer Science, vol 4963. Springer, pp 413–427.

69. Antoine Miné (2006) The octagon abstract domain. Higher-Order Symb Comput 19(1):31–100

70. Nelson G, Oppen DC (1979) Simplification by Cooperating Decision Procedures. ACM Trans Program

Lang Syst 1(2):245–257

71. Podelski A, Wies T (2005) Boolean heaps. In Hankin C, Siveroni I (eds) SAS, Lecture Notes in Computer

Science, vol 3672. Springer, pp 268–283.

72. Ranise S, Tinelli C (2006). The satisfiability Modulo theories library (SMT-LIB). http://www.smt-lib.

orgwww.SMT-LIB.org

73. Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: LICS. IEEE Computer

Society, pp 55–74.

74. Rümmer P, Subotić P (2013) Exploring interpolants. In: Jobstmann B, Ray S (eds) FMCAD. FMCAD

Inc., pp 69–76.

75. Sagiv S, Reps TW, Reinhard Wilhelm. Parametric shape analysis via 3-valued logic. In: Appel AW, Aiken

A (eds) POPL. ACM, pp 105–118 (1999).

76. Seghir MN, Podelski A, Wies T (2009) Abstraction refinement for quantified array assertions. In: Palsberg

J, Su Z (eds) SAS, Lecture Notes in Computer Science, vol 5673. Springer, pp 3–18.

77. Srivastava S, Gulwani S (2009) Program verification using templates over predicate abstraction. In: Hind

M, Diwan A (eds) PLDI. ACM, pp 223–234.

78. Wirth N (1978) Algorithms + data structures = programs. Prentice-Hall Series in Automatic Computation,

Pearson Education

123

http://www.smt-lib.orgwww.SMT-LIB.org
http://www.smt-lib.orgwww.SMT-LIB.org

	An extension of lazy abstraction with interpolation for programs with arrays
	Abstract
	1 Introduction
	2 Formal preliminaries
	3 Array-based transition systems and their safety
	3.1 From programs to array-based transition systems

	4 Unwindings for the safety of array-based systems
	4.1 Labeled unwindings for the safety of array-based systems
	4.2 On checking the safety and completeness of labeled unwindings

	5 Lazy abstraction with interpolation-based refinement for arrays
	5.1 The two sub-procedures of Unwind
	5.2 Checking the feasibility of counterexamples
	5.3 Refining counterexamples with interpolants
	5.4 An interpolation procedure for quantifier-free formulas

	6 Correctness and termination
	6.1 Precisely recognizing complete labeled unwindings
	6.2 Termination of Unwind

	7 Implementation and heuristics
	7.1 Implementation strategies and tool architecture
	7.2 Term abstraction
	7.3 Minimizing counterexamples
	7.4 Instantiating universal quantifiers

	8 Experiments
	8.1 Benchmarks
	8.2 Importance of the heuristics
	8.3 Comparison with other tools
	8.4 Discussion

	9 Related work
	9.1 Predicate abstraction
	9.2 Abstract interpretation
	9.3 Theorem proving
	9.4 Shape analysis and separation logic
	9.5 Template-based approaches

	10 Conclusion
	Acknowledgments
	References

