AN EXTENSION OF LINDELÖF'S THEOREM TO MEROMORPHIC FUNCTIONS

S. M. SHAH ${ }^{1)}$

(Received January 6, 1960)

1. Introduction. If $f(z)$ be an entire function of finite order ρ, then Lindelöf has obtained a set of conditions in order that $f(z)$ may be of maximum, mean or minimum type $[2 ; 1,25-30]$. A theorem of the similar nature for meromorphic functions is stated by Valiron [8] and Hari Shanker has recently [3] extended the results of Lindelöf by taking comparison function $r^{\rho} L(r)$. In this note we prove three theorems which will include the theorems of Lindelöf, Valiron and Hari Shanker as special cases.

Let $f(z)$ be a meromorphic function of finite order ρ. We have

$$
\begin{equation*}
f(z)=z^{k} \exp \left(C z^{p_{3}}+\cdots\right) \prod_{1}^{\infty} E\left(z / a_{n}, p_{1}\right) / \prod_{1}^{\infty} E\left(z / b_{n}, p_{2}\right), \tag{1.1}
\end{equation*}
$$

where $Q(z)=C z^{p_{3}}+\cdots \cdots$ is a polynomial of degree $p_{3} \leqq[\rho]$. Write

$$
n(r)=n(r, 1 / f)+n(r, f), N(r)=N(r, 1 / f)+N(r, f)
$$

When $\rho>0$, and $N(r)$ is of order ρ, we define a proximate order $\rho(r)$ for $N(r)$ as follows.
(i) $\rho(r)$ is differentiable for $r>r_{0}$, except at isolated points at which $\rho^{\prime}(r-0)$ and $\rho^{\prime}(r+0)$ exist.
(ii)

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \rho(r)=\rho . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r \rho^{\prime}(r) \log r=0 \tag{iii}
\end{equation*}
$$

(iv) $\quad \lim _{r \rightarrow \infty} \sup N(r) / r^{\rho(r)}=1$.

For the existence of a proximate order see [6] where $\rho(r)$ is constructed with $\log M^{\prime}(r)$; the argument given there can be utilised to construct $\left.\rho_{(}^{\prime} r\right)$ with the above properties (i)-(iv).
When ρ is integer, we can write $f(z)$ in the form

$$
\begin{align*}
f(z) & =z^{k} \exp \left(c z^{\rho}+\cdots\right) \prod_{1}^{\infty} E\left(z / a_{n}, \rho\right) / \prod_{1}^{\infty} E\left(z / b_{n}, \rho\right) \tag{1.2}\\
& =z^{k} \exp \left(c z^{\rho}+\cdots\right) P_{1} / P_{2} \text { (say) }
\end{align*}
$$

[^0]where if f has no poles, P_{2} is to be replaced by 1 , and if f has a finite number of poles then $\quad P_{2}=\prod_{1}^{M} E\left(z / b_{n}, \rho\right)$.

Similarly when $\quad \lim _{r \rightarrow \infty} n(r, 1 / f)<\infty$.
THEOREM 1. If ρ is integer and $N(r)$ is of order ρ, then

$$
\begin{equation*}
T(r, f)=\frac{r^{\rho}}{\rho \pi}\left|c \rho+\sum_{\left|a_{n}\right|<r} a_{n}^{-\rho}-\sum_{\left|b_{n}\right|<r} b_{n}^{-\rho}\right|+O\left(r^{\rho(r)}\right) \tag{1.3}
\end{equation*}
$$

where $f(z)$ is given by (1.2). If $N(r)$ is of order less than ρ, then we have from (1.1)

$$
\begin{equation*}
p_{3}=\rho, C \neq 0, T(r, f)=\frac{r^{\rho}}{\pi}|C|+O\left(r^{\mu}\right), \mu<\rho . \tag{1.4}
\end{equation*}
$$

THEOREM 2. Let $f(z)$ be a meromorphic function of integer order ρ and let $L(r)$ be a slowly changing positive function [4; pp. 52-54] and write

$$
\limsup _{r \rightarrow \infty} T(r) / r^{\rho} L(r)=T_{L} ; \limsup _{r \rightarrow \infty} n(r) / r^{\rho} L(r)=n_{L} ;
$$

(1.5) $\limsup _{r \rightarrow \infty} S(r) / r^{\rho} L(r)=S_{L}$;
where

$$
\begin{equation*}
S(r)=\frac{r^{\rho}}{\rho \pi}\left|c \rho+\sum_{\left|a_{n}\right|<r} a_{n}^{-\rho}-\sum_{\left|b_{n}\right|<r} b_{n}^{-\rho}\right| . \tag{1.6}
\end{equation*}
$$

(i) If $N(r)$ is of order ρ, then

$$
\begin{align*}
& 0<T_{L}<\infty \Longleftrightarrow 0<\max \left(n_{L}, S_{L}\right)<\infty, \\
& T_{L}=\infty \Longleftrightarrow \max \left(n_{L}, S_{L}\right)=\infty, \\
& T_{L}=0 \Longleftrightarrow \max \left(n_{L}, S_{L}\right)=0 . \tag{1.7}
\end{align*}
$$

(ii) If $N(r)$ is of order less than ρ, then

$$
\begin{equation*}
T(r) \sim S(r) \sim r^{\rho}|C| / \pi ; n(r)=O\left(r^{\alpha}\right), \alpha<\rho \tag{1.8}
\end{equation*}
$$

THEOREM 3. Let $f(z)$ be a meromorphic function of order ρ.
(i) If $\rho>0$ be non-integer, and T_{L} etc. be defined as in (1.5), then

$$
\begin{align*}
& 0<T_{L}<\infty \Longleftrightarrow 0<n_{L}<\infty \\
& T_{L}=\infty \Longleftrightarrow n_{L}=\infty \\
& T_{L}=0 \Longleftrightarrow n_{L}=0 \tag{1.9}
\end{align*}
$$

(ii) When $\rho=0$, let the comparison function be $L(r)=(\log r) L_{1}(r)$ where $L_{1}(r)$ is slowly changing and $\uparrow \infty$ with r. Write

$$
T_{L}=\limsup _{r \rightarrow \infty} T(r) / L(r) ; N_{L}=\limsup _{r \rightarrow \infty} \frac{\{N(r, 1 / f)+N(r, f)\}}{L(r)}
$$

Then
(1.10)

$$
T_{L} \leqq N_{L} \leqq 2 T_{L}
$$

and the relations (1.9) hold with N_{L} instead of n_{L}. If $f(z)$ be entire function of zero order, then $T_{L}=N_{L}$.
2. Proof of Theorem 1. Write (1.2) in the form

$$
f(z)=\phi_{0} \phi_{1} \phi_{2} \phi_{3} \phi_{4}^{-1} \phi_{5}
$$

where

$$
\begin{aligned}
& \phi_{0}(z)=z^{n} \exp \left(c_{1} z^{\rho-1}+\cdots\right), \\
& \phi_{1}(z)=\exp \left\{c z^{\rho}+\frac{z^{\rho}}{\rho}\left(\sum_{\left|a_{n}\right|<2 r} a_{n}^{-\rho}-\sum_{\left|0_{n}\right|<2 r} b_{n}^{-\rho}\right)\right\}, \\
& \phi_{2}(z)=\prod_{1}^{n_{0}} E\left(z / a_{n}, \rho-1\right) / \prod_{1}^{n_{0}} E\left(z / b_{n}, \rho-1\right), \\
& \phi_{3}(z)=\prod_{n>n_{0}}^{\left|a_{n}\right|<2 r} E\left(z / a_{n}, \rho-1\right), \\
& \phi_{4}(z)=\prod_{n>n_{0}}^{\left|b_{n}\right|<2 r} E\left(z / b_{n}, \rho-1\right), \\
& \phi_{5}(z)=\prod_{\left|a_{n}\right| \geq 2 r} E\left(z / a_{n}, \rho\right) \mid \prod_{\left|b_{n}\right| \geqq 2 r} E\left(z / b_{n}, \rho\right) .
\end{aligned}
$$

Now for ϕ_{0}, ϕ_{2}

$$
T(r)=O\left(r^{\rho-1}\right)+O(\log r)
$$

Further

$$
\log ^{+}\left|\phi_{3}(z)\right|=O\left(N(r, 1 / f)+r^{\rho-1} \int_{r_{0}}^{2 r} n(x, 1 / f) x^{-\rho} d x+n(2 r, 1 / f)\right)
$$

Hence

$$
T\left(r, \phi_{3}\right)=O\left(r^{\rho(r)}\right)
$$

Similarly

$$
\begin{gathered}
T\left(r, \phi_{4}\right)=O\left(r^{\rho(r)}\right) \\
T\left(r, \phi_{5}\right)=O\left(r^{\rho+1} \int_{2 r}^{\infty} x^{\rho(x)-\rho-2} d x\right)=O\left(r^{\rho(r)}\right)
\end{gathered}
$$

Hence

$$
\begin{aligned}
T(r, f) & =\frac{r^{\rho}}{\rho \pi}\left|c \rho+\sum_{\left|a_{n}\right| \leqq r} a_{n}^{-\rho}-\sum_{\left|D_{n}\right| \leqq r} b_{n}^{-\rho}\right|+O\left(r^{\rho(r)}\right) \\
& =S(r)+O\left(r^{\rho(r)}\right) .
\end{aligned}
$$

If $N(r)=O\left(r^{\alpha}\right)$, where $\alpha<\rho$ then

$$
T\left(r, P_{i}\right)=O\left(r^{\beta}\right), i=1,2, \alpha<\beta<\rho .
$$

Hence

$$
P_{3}=\rho, C \neq 0, T(r, f)=\frac{|C| r^{\rho}}{\pi}+O\left(r^{\mu}\right), \mu<\rho
$$

3. Proof of Theorem 2. (i) Suppose $N(r)$ is of order ρ. If $n_{L}<\infty$, then we obtain as in the first part of Theorem 1,

$$
\begin{equation*}
T(r, f)=S(r)+O\left(r^{\rho} L(r)\right) ; \tag{3.1}
\end{equation*}
$$

and if $n_{L}=0$, then

$$
\begin{equation*}
T(r, f)=S(r)+o\left(r^{\circ} L(r)\right) \tag{3.2}
\end{equation*}
$$

Hence if $S_{L}<\infty$, then $T_{L}<\infty$. If $T_{L}<\infty$, then $T(r)<A r^{\rho} L(r), N(r)$ $<A_{1} r^{\rho} L(r), n(r)<A_{2} r^{\rho} L(r)$. Hence $n_{L}<\infty$ and from (3.1) $S_{L}<\infty$. If $n_{L}>0$ then $T_{L}>0$. If $T_{L}>0$, then $\max \left(n_{L}, S_{L}\right)>0$, for if $n_{L}=0$, then from (3.2), $T_{L}=S_{L}>0$. If $T_{L}=\infty$, then $\max \left(n_{L}, S_{L}\right)=\infty$, for if this expression is less than ∞, then from (3.1) we get $T_{L}<\infty$. If $n_{L}=\infty$ then $T_{L}=\infty$ and if $S_{L}=\infty, n_{L}<\infty$ then from (3.1) $T_{L}=\infty$. If $T_{L}=0$, then $n_{L}=0$ and from (3.2) $S_{L}=0$. If $n_{L}=S_{L}=0$ then $T_{L}=0$.
(ii) Since $N(r)$ is of order $<\rho, \sum a_{n}^{-\rho}, \sum b_{n}^{-p}$ are both convergent, and if f has an infinity of zeros and an infinity of poles,

$$
c \rho=C \rho-\sum_{1}^{\infty} a_{n}^{-\rho}+\sum_{1}^{\infty} b_{n}^{-\rho} .
$$

Hence

$$
S(r)=\frac{r^{\rho}}{\rho \pi}\left|C \rho-\sum_{\left|a_{n}\right|>r} a_{n}^{-\rho}+\sum_{\left|b_{n}\right|>r} b_{n}^{-\rho}\right|
$$

and so

$$
\begin{equation*}
S(r) \sim r^{\rho}|C| / \pi \tag{3.3}
\end{equation*}
$$

Similarly we can prove (3.3) when f has a finite number of poles or zeros
or both. Hence from (1.4) and (3.3)

$$
T(r) \sim S(r) ; n(r)=O(N(2 r))=O\left(r^{\alpha}\right), \alpha<\rho
$$

4. Proof of Theorem 3. (i) We have from (1.1), [7]

$$
\begin{aligned}
T(r, f) & \leqq O\left(r^{p_{3}}\right)+O(\log r)+\log M\left(r, P_{1}\right)+\log M\left(r, P_{2}\right) \\
& \leqq O\left(r^{\mu}\right)+O(\log r)+A \int_{0}^{\infty} \frac{n(x) r^{1+\mu}}{x^{1+\mu}(x+r)} d x
\end{aligned}
$$

where $\mu=[\rho]$. Hence if $n_{L}<\infty$,

$$
\begin{aligned}
T(r, f) \leqq & A_{1}\left\{r^{\mu}+\log r+r^{\mu} \int_{1}^{r} x^{\rho-\mu-1} L(x) d x\right. \\
& \left.+r^{1+\mu} \int_{r}^{\infty} x^{\rho-\mu-2} L(x) d x\right\} \\
\leqq & A_{1}\left\{r^{\mu}+\log r+\frac{r^{\rho} L(r)}{\rho-\mu}+\frac{r^{\rho} L(r)}{1+\mu-\rho}\right\} \\
< & A_{2} r^{\rho} L(r)
\end{aligned}
$$

and (1.9) follows provided $n_{L}<\infty$. If $n_{L}=\infty$ then $T_{L}=\infty$ and from above if $T_{L}=\infty$ then $n_{L}=\infty$.
(ii) We have [5]

$$
\begin{gathered}
N(r) \leqq 2 T(r, f)+O(1), \\
T(r, f) \leqq\{1+o(1)\} r \int_{r}^{\infty}\left\{N(t) / t^{2}\right\} d t
\end{gathered}
$$

and (1.10) follows. If f be entire then $N(r) \leqq T(r, f)+O(1), T_{L}=N_{L}$.
5. Remarks. (i) If f is entire and $p_{1}=\rho$ then from (1.3) we have, since $c=C$,

$$
\begin{equation*}
T(r, f)=\frac{r^{\rho}}{\rho_{\pi}}\left|C \rho+\sum_{\left|a_{n}\right|<r} a_{n}^{-\rho}\right|+O\left(r^{\rho(r)}\right) \tag{4.1}
\end{equation*}
$$

Further since

$$
T(r, f) \sim T(r, f P)
$$

where P is any polynomial, (4.1) holds also for functions with a finite number of poles and $p_{1}=\rho$. We can get this result directly from (1.3) for we will have

$$
T(r, f)=\frac{r^{\rho}}{\rho_{\pi}}\left|\left(C+\frac{1}{\rho} \sum_{1}^{k} b_{n}^{-\rho}\right) \rho+\sum_{\left|a_{n}\right|<r} a_{n}^{-\rho}-\sum_{1}^{k} b_{n}^{-\rho}\right|+O\left(r^{\rho(r)}\right) .
$$

A similar remark applies when f has a finite number of zeros.
(ii) The formula (1.3) is useful when $S(r)$ is large compared to $r^{p(r)}$. For instance if

$$
f(z)=\Gamma(z), S(r) \sim\{r \log r\} / \pi, r^{\rho(r)}=O(r)
$$

But for functions of the form (1.2) with

$$
c \rho+\sum_{\left|a_{n}\right|<r} a_{n}^{-\rho}-\sum_{\left|b_{4}\right|<r} b_{n}^{-\rho}=O(1) ; N(r)>\alpha r^{\circ}, \alpha>0, r>r_{0},
$$

(1.3) does not give much information.
(iii) If f be meromorhic function of integer order ρ and such that $\max \left(p_{1}, p_{2}\right)=\rho-1$, then we get from (1.3)

$$
\begin{equation*}
T(r, f)=\frac{r^{\rho}}{\rho \pi}\left|C \rho-\sum_{\left|a_{n}\right|>r} a_{n}^{-p}+\sum_{\left|b_{n}\right|>r} b_{n}^{-\rho}\right|+O\left(r^{\rho(r)}\right) . \tag{4.2}
\end{equation*}
$$

If f be entire function with $p_{1}=\rho-1, p_{3}<\rho$ and such that $n_{L}<\infty$, then from (3.1) and (4.2)

$$
T(r, f)=\frac{r^{\rho}}{\rho \pi}\left|\sum_{\left|a_{n}\right|>r} a_{n}^{-\rho}\right|+O\left(r^{\rho} L(r)\right)
$$

It is not necessary to suppose here that $L(r)$ be monotone except when ρ $=0$ (see Theorem 3(ii)).

References

[1] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
[2] E.F.LIndelöf, Sur les fonctions entieres d'ordre entier, Ann. Sci. Ecole Norm. Sup. (3), 22(1905), 365-395.
[3] HARI Shanker, On Lindelöf's theorem on entire functions, Jour. Ind. Math. Soc., 27(1958), 137-147.
[4] G. H. Hardy and W. W. Rogosinki, Note on Fourier seris, Quart. J. of Maths. (Oxford Series), 16(1945), 49-58.
[5] S. M. Shat, A note on meromorphic functions, Math. Student, 12(1944), 67-70.
[6] S. M. SHAH, On proximate orders of entire functions, Bull. Amer. Math Soc., 52(1946), 326-328.
[7] S. M. Shah, Some theorems on meromorphic functions, Proc. Amer. Math. Soc., 1(1951), 694-698.
[8] G. Valiron, Remarques sur les valuers exceptionnelles des fonctions méromorphes, Rend. Circ. Mat. Palermo, 57(1933), 71-86.

Northwestern University, Evanston, U. S. A.
AND
Muslim University, Aligarh, India.

[^0]: 1) Abstract presented to Indian Math. Soc., Dec. 1959.
