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Abstract

A sparse version of Mantel’s Theorem is that, for sufficiently large p, with

high probability (w.h.p.), every maximum triangle-free subgraph of G(n, p) is

bipartite. DeMarco and Kahn proved this for p > K
√

log n/n for some con-

stant K, and apart from the value of the constant, this bound is the best

possible. Denote by T3 the 3-uniform hypergraph with vertex set {a, b, c, d, e}
and edge set {abc, ade, bde}. Frankl and Füredi showed that the maximum

3-uniform hypergraph on n vertices containing no copy of T3 is tripartite for

n > 3000. For some integer k, let Gk(n, p) be the random k-uniform hyper-

graph. Balogh et al. proved that for p > K log n/n for some constant K, every

maximum T3-free subhypergraph of G3(n, p) w.h.p. is tripartite and it does

not hold when p = 0.1
√
log n/n. Denote by T4 the 4-uniform hypergraph with

vertex set {1, 2, 3, 4, 5, 6, 7} and edge set {1234, 1235, 4567}. Pikhurko proved

that there is an n0 such that for all n ≥ n0, the maximum 4-uniform hyper-

graph on n vertices containing no copy of T4 is 4-partite. In this paper, we

extend this type of extremal problem in random 4-uniform hypergraphs. We

show that for some constant K and p > K log n/n, w.h.p. every maximum

T4-free subhypergraph of G4(n, p) is 4-partite.
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1 Introduction

Mantel’s theorem [13] is known as a cornerstone result in extremal combinatorics,

which shows that every triangle-free graph on n vertices has at most ⌊n2/4⌋ edges and
the unique triangle-free graph that achieves this bound is the complete bipartite graph

whose partite sets are as equally-sized as possible. In other words, every maximum

(with respect to the number of edges) triangle-free subgraph of Kn is bipartite.

It is natural to generalize Mantel’s theorem to hypergraphs. The generalized

triangle, denoted by Tk, is a k-uniform hypergraph with vertex set [2k− 1] and edges

{1, . . . , k}, {1, 2, . . . , k− 1, k + 1}, and {k, k+ 1, . . . , 2k− 1}. The Turán hypergraph

Tr(n) is the complete n-vertex r-uniform r-partite hypergraph whose partite sets

are as equally-sized as possible. In particular, Mantel’s Theorem states that the

maximum triangle-free graph on n vertices is T2(n). Frankl and Füredi [11] proved

that the maximum 3-uniform hypergraph on n vertices containing no copy of T3 is

T3(n) for n > 3000. In [15], Pikhurko proved that there exists an n0 such that for

all n ≥ n0, the maximum 4-uniform hypergraph on n vertices containing no copy

of T4 is T4(n). Actually, there are also some results on the maximum k-uniform

hypergraphs containing no copy of some other specific hypergraphs, such as paths

and cycles [7, 12, 14].

DeMarco and Kahn [10] considered a sparse version of Mantel’s Theorem. Let

G be the Erdős-Rényi random graph G(n, p). An event occurs with high probability

(w.h.p.) if the probability of that event approaches 1 as n tends to infinity. It is

interesting to determine for what p every maximum triangle-free subgraph of G(n, p)

is w.h.p. bipartite. DeMarco and Kahn proved that this holds if p > K
√

logn/n

for some constant K, and apart from the value of the constant this bound is the

best possible. Problems of this type were first considered by Babai, Simonovits and

Spencer [2]. Brightwell, Panagiotou, and Steger [5] proved the existence of a constant

c, depending only on ℓ, such that whenever p ≥ n−c, w.h.p. every maximum Kℓ-free

subgraph of G(n, p) is (ℓ− 1)-partite.

Recently, Balogh et al. [3] studied an extremal problem of this type in random

3-uniform hypergraphs. For n ∈ Z and p ∈ [0, 1], let Gr(n, p) be a random r-

uniform hypergraph with n vertices and each element of
(

[n]
r

)

occurring as an edge with

probability p independently of each other. Note that in particular, G2(n, p) = G(n, p)

is the usual graph case. Balogh et al. showed that for p > K log n/n for some constant

K, every maximum T3-free subhypergraph of G3(n, p) w.h.p. is tripartite and it does

not hold when p = 0.1
√
logn/n.

In this paper, we extend this type of extremal problem in random 4-uniform hyper-
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graphs. Denote by T the 4-uniform hypergraph T4 with vertex set {1, 2, 3, 4, 5, 6, 7}
and edge set {1234, 1235, 4567}. As a sparse version of Pikhurko’s result, we obtain

the following theorem.

Theorem 1.1 There exists a positive constant K such that w.h.p. the following is

true. If G = G4(n, p) is a 4-uniform random hypergraph with p > K logn/n, then

every maximum T -free subhypergraph of G is 4-partite.

We should point out that the proof technique of Theorem 1.1 is similar but more

complicated than that of Balogh et al. used in [3]. The following theorem from [16]

states asymptotic general structure, which is much useful to our proof of the main

result.

Theorem 1.2 For every δ > 0 there exist positive constants K and ǫ such that if

pn ≥ K/n, then w.h.p. the following holds. Every T -free subhypergraph of G4(n, pn)

with at least (3/32− ǫ)
(

n

4

)

pn edges admits a partition (V1, V2, V3, V4) of [n] such that

all but at most δn4pn edges have one vertex in each Vi.

Actually, asymptotic general structure statements can also be concluded from the

recent results of [4, 8, 9, 16], et al..

The rest of the paper is organized as follows. In Section 2, we introduce some

more notation and prove some standard properties of G4(n, p). The main theorem is

proved in Section 3. To simplify the formulas, we shall omit floor and ceiling signs

when they are not crucial. Undefined notation and terminology can be found in [6].

2 Preliminaries

Let G denote the 4-uniform random hypergraph G4(n, p). The size of a hyper-

graph H , denoted by |H|, is the number of hyperedges it contains. We denote by

q(G) the size of a largest 4-partite subhypergraph of G. We simply write x = (1±ǫ)y

when (1− ǫ)y ≤ x ≤ (1 + ǫ)y. A vertex set partition Π = (A1, A2, A3, A4) is balanced

if |Ai| = (1 ± 10−10)n/4 for all i. Given a partition Π = (A1, A2, A3, A4) and a 4-

uniform hypergraph H , we say that an edge e of H is crossing if e∩Ai is non-empty

for every i. We use H [Π] to denote the set of crossing edges of H .

The link hypergraph L(v) of a vertex v in G is the 3-graph with vertex set V (G)

and edge set {xyz : xyzv ∈ G}. The crossing link hypergraph LΠ(v) of a vertex v

is the subhypergraph of L(v) whose edge set is {xyz : xyzv is a crossing edge of

G}. The degree d(v) of v is the size of L(v), while the crossing degree dΠ(v) of v
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is the size of LΠ(v). The common link hypergraph L(u, v) of two vertices u and v

is L(u) ∩ L(v) and the common degree d(u, v) is the size of L(u, v). The common

crossing link hypergraph LΠ(u, v) of two vertices u and v is LΠ(u) ∩ LΠ(v) and the

common crossing degree dΠ(u, v) is the size of LΠ(u, v). Given three vertices u, v and

w, their co-neighborhood N(u, v, w) is the set {x : xuvw ∈ G}, and the co-degree of

u, v and w is the number of vertices in their co-neighborhood. Similarly, given two

vertices u and v, their co-neighborhood N(u, v) is {xy : xyuv ∈ G}; the co-degree of

u and v is the number of elements in their co-neighborhood.

Given two disjoint sets A and B, we use [A,B] to denote the set {a∪b : a ∈ A, b ∈
B}. In this paper, [A,B] usually consists of edges. Given a graph or hypergraph G,

let G[A,B] denote the set G ∩ [A,B]. We say a vertex partition Π with four classes,

which we will call a 4-partition, is maximum if |G[Π]| = q(G). Let F be a maximum

T -free subhypergraph of G. Clearly q(G) ≤ |F |. Thus, to prove Theorem 1.1, it is

sufficient to show that w.h.p. |F | ≤ q(G). Moreover, we will prove that if F is not

4-partite, then w.h.p. |F | < q(G).

In the following, some propositions of G4(n, p) will be stated. We will use the

following Chernoff-type bound to prove those propositions.

Lemma 2.1 ([1]) Let Y be the sum of mutually independent indicator random vari-

ables, and let µ = E[Y ], the expectation of Y . For all ǫ > 0,

Pr[|Y − µ| > ǫµ] < 2e−cǫµ,

where cǫ = min{− ln(eǫ(1 + ǫ)−(1+ǫ), ǫ2/2}.

In the sequel, we use cǫ to denote the constant in Lemma 2.1.

Proposition 2.1 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. the co-degree of any triple of vertices in G is (1± ǫ)pn.

Proof. For each triple of vertices u, v, w, let Xu,v,w denote the number of vertices x ∈
V \{u, v, w} such that xuvw is an edge. Letting µ = E[Xu,v,w], we have µ = p(n−3),

and by Lemma 2.1,

Pr[|Xu,v,w − µ| > ǫµ] < 2e−cǫ(n−3)p < 2e−cǫ
np

2 .

If K > 8/cǫ, then e−cǫ
np

2 < n−4. By the union bound, it follows that with probability

at most n3n−4 = n−1, the event |Xu,v,w−µ| > ǫµ holds for some {u, v, w}. Therefore,
w.h.p. there is no such {u, v, w}. �
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Proposition 2.2 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. the co-degree of any pair of vertices in G is (1± ǫ)p
2
n2.

Proof. For each pair of vertices u and v, let Xu,v be the random variable given by

the number of pairs of vertices x, y ∈ V \ {u, v} such that xuvy is an edge. Letting

µ = E[Xu,v], we have µ = p
(

n−2
2

)

, and then by Lemma 2.1,

Pr[|Xu,v − µ| > ǫµ] < 2e−cǫp(n−2

2 ) < 2e−cǫ
n2p

4 .

If K > 8/cǫ, then e−cǫ
np

2 < n−4. By the union bound, it follows that the probability

that |Xu,v,w − µ| > ǫµ for some {u, v, w} is at most n22e−cǫ
n2p

4 = o(1). �

Proposition 2.3 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. the common degree of any pair of vertices in G is (1± ǫ)p
2

6
n3.

Proof. For two disjoint sets of vertices {u, v} and {a, b, c}, let Aa,b,c
u,v be the event

{uabc ∈ G, vabc ∈ G}, and let Xa,b,c
u,v be the indicator random variable of Aa,b,c

u,v . Then

d(u, v) =
∑

abc

Aa,b,c
u,v . Letting µ = E[d(u, v)], we have µ = p2

(

n−2
3

)

, and by Lemma 2.1,

Pr[|d(u, v)− µ| > ǫµ] < 2e−cǫpµ < e−cǫ
n3p2

12 .

By the union bound, it follows that the probability that |d(u, v)− µ| > ǫµ for some

{u, v} is at most n2e−cǫ
n3p2

12 = o(1). �

Proposition 2.4 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. for any vertex v of G, its degree d(v) is (1± ǫ)p
6
n3.

Proof. For each vertex v, let Xv be the random variable given by the number of

triples of vertices x, y, z ∈ V \ {v} such that vxyz is an edge. Letting µ = E[Xv], we

have µ = p
(

n−1
3

)

, and by Lemma 2.1,

Pr[|Xv − µ| > ǫµ] < 2e−cǫpµ.

By the union bound, it therefore follows that the probability that |d(v) − µ| > ǫµ

holds for some v is at most n2e−cǫµ = o(1). �

Proposition 2.5 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. for any 4-partition Π = (A1, A2, A3, A4) with |A2|, |A3|, |A4| ≥
n
80
, and any vertex v ∈ A1 we have dΠ(v) = (1± ǫ)p|A2||A3||A4|.
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Proof. Since |A2|, |A3|, |A4| ≥ n/80, so |A2||A3||A4| ≥ n3/803. Let µ = E[dΠ(v)] =

|A2||A3||A4|p. We have

Pr[|dΠ(v)− µ| > ǫµ] < 2e−cǫ
n3p

803 .

Then by the union bound, the probability that the statement does not hold is bounded

by

4nnPr[|dΠ(v)− µ| > ǫµ] < e3n+logn−cǫ
n3p

803 = o(1).

�

For a vertex v and a vertex set S, let E be a subset of {vxab ∈ G : x ∈ S}
satisfying that for any x ∈ S, there exists W ∈ E such that x ∈ W . Let Q be

a subset of L(v). Define Gv,E [S,Q] = {xuwz ∈ G : x ∈ S, uwz ∈ Q, ∃W ∈ E
s.t. x ∈ W, u, w, z /∈ W}. Then for any xuwz ∈ Gv,E [S,Q] with x ∈ S and uwz ∈ Q,

we can find a T = {vuwz, xuwz, vxab}, where vxab ∈ E . The condition u, w, z /∈ W

in the definition of Gv,E [S,Q] guarantees that we can find such a T .

Proposition 2.6 For any 0 < ǫ, ǫ1, ǫ2 < 1, there exists a constant K such that if

p > K log n/n, then w.h.p. for any choice of {v, S, E , Q} as above with |S| = ǫ1n,

|Q| = ǫ2pn
3, we have |Gv,E [S,Q]| = (1± ǫ)p|S||Q|.

Proof. Let Kv,E [S,Q] = {xuwz : x ∈ S, uwz ∈ Q, ∃W ∈ E s.t.x ∈ W, u, w, z /∈ W}.
Then for Kv,E [S,Q] and E[Gv,E [S,Q]], we have the relation as follows.

E[Gv,E [S,Q]] = p|Kv,E [S,Q]|.

For x ∈ S, let dE(x) = |{W ∈ E : x ∈ W}| and Qx = {abc ∈ Q : vxay ∈
E for some vertex y}. If dE(x) > 6pn, then clearly [x,Q] ⊆ Kv,E [S,Q]. If dE(x) ≤
6pn, then by Proposition 2.2 we have |Qx| ≤ 12pn × 2pn2

2
= 12p2n3. Clearly

[x,Q\Qx] ⊆ Kv,E [S,Q]. Hence,

|[S,Q]| − |Kv,E [S,Q]| ≤
∑

x∈S,dE(x)≤6pn

|Qx| ≤ |S| × 12p2n3 = 12ǫ1p
2n4.

On the other hand, we have |[S,Q]| = |S||Q| = ǫ1ǫ2pn
4, so |Kv,E [S,Q]| = (1 −

o(1))|S||Q|. Let µ = E[Gv,E [S,Q]] = p|Kv,E [S,Q]| = (1 − o(1))p|S||Q|. By Lemma

2.1 we have

Pr[||Gv,E [S,Q]| − µ| > ǫµ] < 2e−cǫµ.

We have at most n choices for v,
(

n

ǫ1n

)

choices for S, 2pn
2·ǫ1n choices for E and

( 1

3
pn3

ǫ2pn3

)

choices for Q. Then by the union bound, the probability that the statement of
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Proposition 2.6 does not hold is bounded by

n

(

n

ǫ1n

)

2pn
2ǫ1n

(

1
3
pn3

ǫ2pn3

)

2e−cǫǫ1ǫ2p
2n4

= o(1).

�

Proposition 2.7 For any 0 < ǫ < 1, there exists a constant K such that if p >

K logn/n, then w.h.p. the following holds: if F is a maximum T -free subhypergraph

of G and Π is a 4-partition maximizing |F [Π]|, then |F | ≥ ( 3
32

− ǫ)
(

n

4

)

p, and Π is a

balanced partition.

Proof. It suffices to prove it when ǫ is small. For a partition Π = (A1, A2, A3, A4), it

is clear that |F | ≥ q(G) ≥ |G[Π]|. And Proposition 2.5 implies that w.h.p. |G[Π]| =
(1 ± ǫ)p|A1||A2||A3||A4| if |A2|, |A3|, |A4| ≥ n

80
. Consider a partition satisfying

|A1| = |A2| = |A3| = |A4| = n
4
, then we have |F | ≥ ( 3

32
− ǫ)

(

n

4

)

p. Also, Theorem 1.2

implies that if Π maximizes |F [Π]|, then |G[Π]| ≥ |F [Π]| ≥ ( 3
32

− 2ǫ)
(

n

4

)

p.

If Π is not a balanced partition and |A2|, |A3|, |A4| ≥ n
80
, then |G[Π]| ≤ (1 +

ǫ)p|A1||A2||A3||A4| < ( 3
32
−2ǫ)

(

n

4

)

p. If Π is not balanced and one of |A1|, |A2|, |A3|, |A4|
is less than n

80
, then Proposition 2.4 implies that |G[Π]| < n

80
(1 + ǫ)1

6
pn3 < ( 3

32
−

2ǫ)
(

n

4

)

p. Therefore, if Π maximizes |F [Π]|, then Π is balanced. �

Let α = 0.35. Given a balanced partition Π = (A1, A2, A3, A4), let P (Π) =

{(u, v) ∈
(

A1

2

)

: dΠ(u, v) < α
32
p2n3}. In other words, P (Π) is the set of pairs of

vertices in A1 that have low common crossing degree.

Proposition 2.8 There exists a constant K such that if p > K logn/n, then w.h.p.

for every balanced partition Π, every vertex v and every positive constant ξ > 0, we

have dP (Π)(v) < ξ

p
, where dP (Π)(v) denotes the number of elements containing v in

P (Π).

Proof. Let ǫ = 0.1. By Proposition 2.5, we assume that dΠ(v) ≥ (1 − ǫ)pn3

64
, and

therefore, dΠ(u, v) <
2α
1−ǫ

dΠ(v)p for (u, v) ∈ dP (Π)(v).

If a vertex v and a balanced cut Π violate the statement of Proposition 2.8, then

there are S ⊆ V and Q = LΠ(v) with |S| := s = ⌈ξ/p⌉ and |G[S,Q]| ≤ 2α
1−ǫ

|S||Q|p.
We have at most 4n choices of Π, n choices of v,

(

n

s

)

choices of S, so the probability

of such a violation is at most

4nn

(

n

s

)

e−c· ξ
p
·pn3·p
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for some small constant c, and therefore is o(1). �

The following lemma plays an important role in the proof of Lemma 3.1.

Lemma 2.2 Let β and r be positive integers. For any ǫ > 0, there exists a constant

K such that if p > K logn/n, β ≤ ǫn and

(

n

β

)(

n3

r

)

exp(−cǫǫpnr) = o(1). (1)

Then w.h.p. the following holds: for any set of vertices A with |A| ≤ β, there are at

most r triples {u, v, w} ∈
(

V (G)
3

)

such that |N(u, v, w) ∩ A| > 2ǫpn.

Proof. Fix a vertex set A of size β. We shall show that there are at most r triples

{u, v, w} ∈
(

V (G)
3

)

such that |N(u, v, w) ∩ A| is large. For each triple {u, v, w}, let
B(u, v, w) be the event that |N(u, v, w) ∩A| > 2ǫpn. By Lemma 2.1,

Pr[B(u, v, w)] < e−cǫpn,

for c = c1 in Lemma 2.1. If {u, v, w} 6= {u′, v′, w′}, then B(u, v, w) and B(u′, v′, w′)

are independent events. Consequently, the probability that B(u, v, w) holds for at

least r triples is at most
(

n3

r

)

exp(−cǫǫpnr).

There are
(

n

β

)

choices of A. Therefore, if Eq. (1) holds, then w.h.p. there are at most

r triples {u, v, w} ∈
(

V (G)
3

)

such that |N(u, v, w) ∩ A| > 2ǫpn. �

3 Proof of Theorem 1.1

Let F be a T -free subhypergraph of G. We want to show that |F | ≤ q(G). We

first state two key lemmas. The first lemma proves |F | ≤ q(G) with some additional

conditions on F . Define the shadow graph of a hypergraph H is a simple graph with

xy an edge if and only if there exists some edge of H that contains both x and y.

Lemma 3.1 Let F be a T -free subhypergraph of G and Π = (A1, A2, A3, A4) be a

balanced partition maximizing |F [Π]|. Denote the shadow graph of F by FS. For

1 ≤ i ≤ 4, let Bi = {e ∈ F : |e ∩ Ai| ≥ 2}. There exist positive constants K and δ

such that if p > K logn/n and the following conditions hold:

(i) |
4
⋃

i=1

Bi| ≤ δpn4,

8



(ii) B1 6= ∅,

(iii) the subgraph of FS induced by B1 is disjoint from P (Π),

then w.h.p. |F [Π]|+ 4|B1| < |G[Π]|.

Remark. We point out that if Condition (ii) does not hold, i.e., |B1| = 0, then clearly

|F [Π]|+4|B1| ≤ |G[Π]|. Therefore, Conditions (i) and (iii) imply that |F [Π]|+4|B1| ≤
|G[Π]|, while Condition (ii) implies the strict inequality.

Let F0 be a maximum T -free subhypergraph of G. By Theorem 1.2 and Propo-

sition 2.7, w.h.p. Condition (i) of Lemma 3.1 holds for every δ > 0. Without loss

of generality, we may assume that |B1| ≥ |B2|, |B3|, |B4|. If F0 is not 4-partite, then

Condition (ii) of Lemma 3.1 holds. Moreover, if P (Π) = ∅, then Condition (iii) of

Lemma 3.1 also holds. Therefore, if P (Π) = ∅ and F0 is not 4-partite, then we can

apply Lemma 3.1 to F0 and get that |F0| < q(G), a contradiction. Hence if P (Π) = ∅
for every balanced partition Π = (A1, A2, A3, A4), then the proof would be completed.

Thus, we need to consider the case that P (Π) 6= ∅. The following lemma tells us that

if P (Π) 6= ∅, then Π is far from being a maximum 4-partition.

Lemma 3.2 There exist positive constants K and δ such that if p > K logn/n, the

4-partition Π is balanced, and P (Π) 6= ∅, then w.h.p.

q(G) > |G[Π]|+ |P (Π)|δn3p2. (2)

Remark. If P (Π) = ∅, then clearly q(G) ≥ |G[Π]|+ |P (Π)|δn3p2. Therefore, Lemma

3.2 also implies that q(G) ≥ |G[Π]| + |P (Π)|δn3p2 for every balanced 4-partition Π.

We point out that the constant δ in Lemma 3.1 also satisfies Lemma 3.2, which can

be verified in the proof of Lemma 3.2.

Now we use Lemmas 3.1 and 3.2 to prove Theorem 1.1. The proofs of those two

lemmas are presented in the next two subsections.

Let F̃ be a maximum T -free subhypergraph of G, so |F̃ | ≥ q(G). To prove

Theorem 1.1, it is sufficient to show that |F̃ | ≤ q(G). Let Π = (A1, A2, A3, A4) be a

4-partition maximizing |F̃ [Π]|. From Proposition 2.7, we get that Π is balanced. For

1 ≤ i ≤ 4, let B̃i = {e ∈ F̃ , |e∩Ai| ≥ 2}. Without loss of generality, we may assume

|B̃1| ≥ |B̃2|, |B̃3|, |B̃4|. Let B(Π) = {e ∈ G : ∃(u, v) ∈ P (Π) s.t. {u, v} ⊂ e} and

F = F̃−B(Π). Then F satisfies Condition (iii) of Lemma 3.1 and Π maximizes |F [Π]|
as well. By Proposition 2.2, we know that w.h.p. |B(Π)| ≤ |P (Π)|pn2. Together with

Proposition 2.8, we have that w.h.p. |B(Π)| ≤ O(n3). Combining with Proposition

2.7, we can apply Theorem 1.2 to F (let δ in Theorem 1.2 be the constant δ given

9



in Lemma 3.1). And since Π maximizes |F [Π]|, we can derive that F and Π satisfy

Condition (i) of Lemma 3.1. For 1 ≤ i ≤ 4, let Bi = {e ∈ F, |e ∩ Ai| ≥ 2}. Then we

have:

|F̃ | ≤ |F̃ [Π]| + 4|B̃1|
= |F [Π]|+ 4|B1|+ 4|F̃ ∩ B(Π)|
≤ |G[Π]|+ 4|F̃ ∩ B(Π)|
≤ |G[Π]|+ 4|B(Π)|
≤ |G[Π]|+ 4|P (Π)|δp2n3

≤ q(G),

where δ is the constant in Lemma 3.1. The second inequality follows from Lemma

3.1 and its remark. Note that the constant δ in Lemma 3.1 satisfies Lemma 3.2, the

last inequality holds because of Lemma 3.2 and its remark. Hence, |F̃ | = q(G). So

equalities hold throughout the above inequalities. If B1 6= ∅, then by Lemma 3.1,

|F [Π]| + 4|B1| + 4|F̃ ∩ B(Π)| < |G[Π]| + 4|B(Π)| and if P (Π) 6= ∅, then |G[Π]| +
4|P (Π)|δp2n3 < q(G), both are contradictions. So both B1 and P (Π) are empty sets.

It follows that B̃1 is an empty set. Since we assume that |B̃1| ≥ |B̃2|, |B̃3|, |B̃4|, we
have that |B̃1| = |B̃2| = |B̃3| = |B̃4| = 0, which implies that F̃ is 4-partite.

The proof is thus completed.

3.1 Proof of Lemma 3.1

Let ǫ1 =
1

4200
, ǫ2 =

1
7200

, δ =
ǫ31ǫ2

320×110×16
, ǫ3 =

16×80δ
ǫ1

.

Let M be the set consisting of crossing edges in G \ F . To prove Lemma 3.1,

it suffices to prove that 4|B1| < |M |, so we assume for contradiction that |M | ≤
4|B1| ≤ 4δpn4. Our aim is to derive a lower bound for |M |, which contradicts to our

assumption.

For each edge W = w1w2w3w4 ∈ B1, with w1, w2 ∈ A1, from Condition (iii),

we have w1w2 /∈ P (Π), which implies there are at least α
32
p2n3 choices of x ∈ A2,

y ∈ A3, and z ∈ A4 such that w1xyz and w2xyz are both crossing edges of G. By

Proposition 2.1, the co-degree of any three vertices is w.h.p. at most 2pn. Hence,

there are at least α
32
p2n3 − 6pn ≥ 1

80
p2n3 choices of such triple (x, y, z) satisfying

w3, w4 /∈ {x, y, z}, and then each of these triples (x, y, z) together with W form a

copy of T = {w1w2w3w4, w1xyz, w2xyz} in G. Since F contains no copy of T , at least

one of w1xyz and w2xyz must be in M .

We can obtain a lower bound for |M | by counting the number of T in G that

10



contain some edge W ∈ B1, since each such T must contain at least one edge in M .

Unfortunately, it is not easy to count the number of T directly. Actually, we will

count copies of T̂ instead of T in G, where T̂ is a 4-graph on 5 vertices {w1, w2, x, y, z}
with two crossing edges w1xyz, w2xyz such that there exists W ∈ B1 with w1, w2 ∈
W ∩ A1 and x, y, z /∈ W . It is easy to see that every T̂ yields many copies of T

containing some edge W ∈ B1. From the previous argument, we know that for every

pair w1, w2 ∈ W ∩ A1 taken from some edge W ∈ B1, there are at least 1
80
p2n3 T̂ ’s

containing w1, w2.

Let L be the subgraph of FS induced by the vertex set A1, let C = {x ∈ A1 :

dL(x) ≥ ǫ1n} and D = A1 \C. Let C1 be the set of x ∈ C such that there are at least

ǫ2pn
3 crossing edges in F containing x. Set C2 = C \ C1.

We first prove four claims, which will be needed in the proof of Lemma 3.1.

Claim 3.1 |C| ≤ ǫ3n.

Proof. Since every vertex in C has degree at least ǫ1n in L, we have ǫ1n|C| ≤ 2|E(L)|.
On the other hand, we show that |E(L)| ≤ 640δn2. For each edge wu ∈ E(L),

since wu /∈ P (Π), there are at least 1
80
p2n3 choices of x ∈ A2, y ∈ A3, z ∈ A4, such

that {w, u, x, y, z} is the vertex set of a T̂ in G. So at least one of wxyz and uxyz

must be in M . By Proposition 2.1, |M | · 2np ≥ |E(L)| 1
80
p2n3. Since we assume

|M | ≤ 4|B1| ≤ 4δpn4, it follows that |E(L)| ≤ 640δn2. Thus, |C| ≤ 16×80δn
ǫ1

= ǫ3n. �

The next three claims provide lower bounds for |M | with different parameters.

Claim 3.2 |M | ≥ ǫ1ǫ2
16ǫ3

pn3|C1|.

Proof. This inequality is trivial if |C1| = 0, so we assume |C1| ≥ 1. For each w ∈ C1,

let Qw = {(x, y, z) ∈ A2 × A3 × A4 : wxyz ∈ F}. We have the number of neighbors

of w in L, denoted by |NL(w)|, satisfying |NL(w)| ≥ ǫ1n and |Qw| ≥ ǫ2pn
3. We will

count the number of copies of T̂ with the vertex set {w, u, x, y, z} in G such that

w ∈ C1, u ∈ |NL(w)|, wxyz ∈ F and uxyz ∈ G. By Proposition 2.6 with v = w,

S ⊆ NL(w) and |S| = ǫ1n, E = {W ∈ B1 : w ∈ W} and Q ⊆ Qw with |Q| = ǫ2pn
3,

there are at least 1
2
|S||Q|p T̂ ’s for each w ∈ C1. Thus, the total number of such copies

of T̂ is at least

1

2

∑

w∈C1

1

2
|S||Q|p =

1

4
|C1|ǫ1n · ǫ2pn3 · p =

1

4
ǫ1ǫ2p

2n4|C1|. (3)

We call an edge abcd ∈ M bad if a ∈ A1, b ∈ A2, c ∈ A3, d ∈ A4 and there are at

least 2ǫ3pn vertices x ∈ C1 such that xbcd ∈ G. Since |C1| ≤ |C| ≤ ǫ3n (Claim 3.1),

11



from Lemma 2.2 with ǫ = ǫ3, β = ǫn, r = log logn
p

, A = C1, there are at most log logn
p

triples (b, c, d) ∈ A2 × A3 × A4 that are in some bad edge. By Proposition 2.1, each

such (b, c, d) is in at most
(

2pn
2

)

T̂ ’s. Thus, the number of copies of T̂ estimated in

(3) that contain a non-bad edge from M is at least

1

4
ǫ1ǫ2p

2n4|C1| −
(

2pn

2

)

log log n

p
.

Since
(

2pn
2

)

log logn
p

≤ 2p2n2 log logn
p

= 2pn2 log log n ≤ 1
8
ǫ1ǫ2p

2n4|C1|, there are at least

1

4
ǫ1ǫ2p

2n4|C1| −
1

8
ǫ1ǫ2p

2n4|C1| =
1

8
ǫ1ǫ2p

2n4|C1|

copies of T̂ estimated in (3) that contain a non-bad edge from M . By the definition

of bad edges, every such non-bad edge in M is in at most 2ǫ3pn such copies of T̂ , so

we have

|M | ≥ 1

8

ǫ1ǫ2p
2n4|C1|

2ǫ3pn
=

ǫ1ǫ2
16ǫ3

pn3|C1|.

�

The following claim gives us another lower bound for |M |, its proof is similar to

Claim 3.2, but we need more complicated analysis.

Claim 3.3 Let L′ be a subgraph of L such that ∆(L′) ≤ ǫ1n, then

|M | ≥ pn2

320ǫ1
|E(L′)|.

Proof. Since for each wu ∈ E(L′), wu /∈ P (Π), there are at least 1
80
p2n3 choices of

x ∈ A2, y ∈ A3, z ∈ A4, such that {w, u, x, y, z} is the vertex set of a T̂ in G. So

the total number of such T̂ is at least |E(L′)|
80

p2n3. And for each of these copies of T̂ ,

there must be at least one of wxyz, uxyz in M .

For an edge xabc ∈ M with x ∈ V (L′), we will count copies of T̂ containing

edge xabc in G. Call an edge xabc bad if there exist at least 2ǫ1pn y ∈ NL′(x) with

yabc ∈ G. Combining with Proposition 2.2, there exist at most min{2pn, dL′(x)}
vertices y ∈ NL′(x) with yabc ∈ G. Denote by rx the number of (a, b, c) such that

xabc is bad. Therefore, the number of copies of T̂ that contain a non-bad edge from

M is at least
1

2

∑

x∈V (L′)

dL′(x)
p2n3

80
−

∑

x∈V (L′)

rx min{2pn, dL′(x)}. (4)

We will prove 1
4
dL′(x)p

2n3

80
≥ rxmin{2pn, dL′(x)} for every vertex x ∈ V (L′). Depend-

ing on the value of dL′(x), we have three cases.

12



Case 1. dL′(x) > 2pn. logn
p2n2 ≤ dL′(x) ≤ ǫ1n, We apply Lemma 2.2 with β = ǫ1n and

r = log logn
p

to obtain that rx ≤ log logn
p

.

Case 2. dL′(x) > 2pn and logn
pk+1nk+1 ≤ dL′(x) ≤ logn

pknk for some integer k ∈ [2, logn
log logn

].

We apply Lemma 2.2 with β = logn
pknk and r = β/100 to obtain that rx ≤ logn

100pknk ≤ pndx
100

.

Case 3. dL′(x) ≤ 2pn. We apply Lemma 2.2 with β = 2pn and r = p2n2

100
to obtain

that rx ≤ p2n2

100
.

One can easily check that, for each of the above three cases,

1

4
dL′(x)

p2n3

80
≥ rx min{2pn, dL′(x)}.

Therefore, the number of copies of T̂ estimated in (4) is at least

1

4

∑

x∈V (L′)

dL′(x)
p2n3

80
=

1

2

|E(L′)|
80

p2n3.

Bearing in mind that a non-bad edge is in at most 2ǫ1pn copies of T̂ estimated in

(4), thus, we have

|M | ≥ 1

2

|E(L′)|
80

p2n3 · 1

2ǫ1pn
=

|E(L′)|
320ǫ1

pn2.

�

Claim 3.4 |M | ≥ pn3

130
|C2|.

Proof. For every vertex x ∈ C2, the number of edges in F [Π] containing x is at most

ǫ2pn
3. On the other hand, by Proposition 2.5, w.h.p. the crossing degree of x in G

is at least pn3

65
. Thus, there are at least pn3

65
− ǫ2pn

3 ≥ pn3

130
edges of M incident to x,

so |M | ≥ pn3

130
|C2|. �

Next we present the proof of Lemma 3.1. First we divide the edges in B1 into

three classes. Set

B
(1)
1 = {e ∈ B1 : |e ∩ C| ≤ 3, |e ∩ C1| ≥ 1},

B
(2)
1 = {e ∈ B1 \B(1)

1 : |e ∩ C| ≤ 3, |e ∩ C2| ≥ 1},

B
(3)
1 = {e ∈ B1 \ (B(1)

1 ∪ B
(2)
1 )}.

Considering the cardinality of B
(1)
1 , B

(2)
1 , B

(3)
1 , we have the following three cases. Re-

call that we have proved three different lower bounds for |M |, we will show in any

one of the following three cases, a lower bounds for |M | is larger than 4|B1|.
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Case 1. 3|B(1)
1 | ≥ |B1|.

For any vertex x ∈ C1 and y ∈ V (G) \ C, the co-degree of x and y is at most

pn2 by Proposition 2.2. Since the choices of y is less than n, there are at most

pn3 edges in B
(1)
1 containing x. Thus, we have |B(1)

1 | ≤ pn3|C1|. Bearing in mind

that |M | ≥ ǫ1
2ǫ2
8ǫ3

pn3|C1|, which is shown in Claim 3.4, we can obtain that |M | ≥
13pn3|C1| ≥ 13|B(1)

1 | > 4|B1|.
Case 2. 3|B(2)

1 | ≥ |B1|.
Every x ∈ C2 is in less than ǫ2pn

3 crossing edges of F . Note that every edge in

B
(2)
1 has at least one vertex in C2. If there exist more than ǫ2pn

3 edges with form

xyuw, where y ∈ A1, u ∈ A2, w ∈ A3, then we can increase the number of crossing

edges across the partition by moving x to A4. Thus, in F , there are at most ǫ2pn
3

edges of form xyuw, where y ∈ A1, u ∈ A2, w ∈ A3. Furthermore, we can deduce

that the total number of edges with form xyuw, where y ∈ A1, u ∈ Ai, w ∈ Aj,

i 6= j ∈ {2, 3, 4}, is at most 3ǫ2pn
3.

For any x ∈ C2 and y ∈ NL(x), we count the edges with form xyuw, where

u, w ∈ A2. Realize that if there exists a vertex u ∈ A2, such that there xyuw1,

xyuw2, . . ., xyuwǫ1pn ∈ F , where u, w1, . . . , wǫ1pn ∈ A2, then for any x′ 6= x ∈ C2 and

y′ 6= y ∈ A1, x
′y′wiwj is not in F , where i 6= j, otherwise, there exists a T in F .

Since we want to prove |M | > 4|B1|, for every vertex u ∈ A2, we assume the number

of edges xyuw, where w ∈ A2 is less than ǫ1pn. So the number of edges xyuw, where

x ∈ C2, y ∈ NL(x), u, w ∈ A2, is at most 1
2
n
4
ǫ1pn

n
4
|C2| = ǫ1

32
n3p|C2|. Thus, the total

number of edges xyuw, where x ∈ C2, y ∈ NL(x), u, w ∈ Ai, i = 2, 3, 4, is at most
3ǫ1
32
n3p|C2|.
Now we count the edges xyzu, where x, y, z ∈ C2, u /∈ C. Similarly, since |C2| ≤

|C| ≤ ǫ3n, for every fixed x ∈ C2 there are at most
(

ǫ3n

2

)

choices of pair (y, z).

Combining with Proposition 2.1, the number of such edges is at most
(

ǫ3n

2

)

2np|C2| ≤
ǫ3

2n3p|C2|. Therefore, we have |B(2)
1 | ≤ 3ǫ2pn

3 + 3ǫ1
32
n3p|C2| + ǫ3

2n3p|C2|. So |M | ≥
1

130
n3p|C2| > 13|B(2)

1 | > 4|B1|.
Case 3. 3|B(3)

1 | ≥ |B1|.
Let L′ = L[C] ∪ L[D]. For any vertex x ∈ D, dL(x) ≤ ǫ1n. And for any y ∈ C,

from Claim 3.1, we have dL′(y) ≤ |C| ≤ ǫ3n < ǫ1n. Applying Proposition 2.2, we have

|B(3)
1 | ≤ pn2|E(L′)|. Combining with Claim 3.3, |M | ≥ |E(L′)|

320ǫ1
pn2 > 13|B(3)

1 | > 4|B1|.
We complete the proof of Lemma 3.1.
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3.2 Proof of Lemma 3.2

Let ǫ = 0.1, α = 0.35, ξ = 0.001, γ = 1−ǫ
64

= 0.146, α′ = 2α
1−ǫ

= 7
9
, ϕ = 0.0001.

Note that for a balanced partition Π = (A1, A2, A3, A4), P (Π) = {(u, v) ∈
(

A1

2

)

:

dΠ(u, v) <
α
32
p2n3}. By Propositions 2.3 and 2.5, we have d(u, v) ≤ (1 + ǫ)p

2

6
n3 for

every pair (u, v) of vertices, and dΠ(v) ≥ (1− ǫ) p

64
n3 for any vertex v. So dΠ(u, v) <

2α
1−ǫ

pdΠ(v) = α′pdΠ(v) for every pair (u, v) in P (Π). Let A be the event that for δ > 0,

there exists a balanced cut Π such that q(G) ≤ |G[Π]|+ |P (Π)|δn3p2. It is sufficient

to prove Pr[A] = o(1) for some δ > 0. In fact, we will show that Pr[A] = o(1) for

δ < γϕ/2. It is well known that every graph contains an induced subgraph with at

least half of its edges. If we consider P (Π) as an edge set of a graph, then we can

derive that there exists a subset R of P (Π) with |R| ≥ 1
2
|P (Π)|, such that R is the

edge set of some bipartite graph. By Proposition 2.8, we have dP (Π)(v) <
ξ

p
for every

vertex v. Therefore, we have

dR(v) <
ξ

p
. (5)

Let X , Y be disjoint subsets of V , R be the edge set of a spanning subgraph of

[X, Y ] satisfying (5), and f be a function from X to {k ∈ N : k ≥ γpn3}. Denote by

B(R,X, Y, f) the event that there is a balanced cut Σ of G such that for every vertex

x in X satisfying

dΣ(x) = f(x), R ⊆ P (Σ), (6)

and

q(G) ≤ |G[Σ]|+ ϕ|R|γn3p2.

We will show that there exists a constant c such that

Pr[B(R,X, Y, f)] ≤ e−c|R|n3p2 . (7)

Note that if δ < ϕγ/2, then the event A implies event B(R,X, Y, f) holds for some

choice of (R,X, Y, f). Realize that there are at most
((n2)

t

)

2tn3t choices of (R,X, Y, f)

with |R| = t. Hence, by the union bound, if (7) holds we have

Pr[A] ≤
∑

t>0

(
(

n

2

)

t

)

2tn3te−ctn3p2 = o(1).

Now we prove (7). We choose all edges of G according to the following three

stages.

(a). Choose the quadruples of vertices of G that contain x ∈ X .
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(b). Choose the rest of the quadruples of vertices of G except those belonging to
⋃

y∈Y

[y,
⋃

xy∈R

L(x)].

(c). Choose the rest of the quadruples of vertices of G.

Let H be the subhypergraph of G consisting of the edges described in (a) and (b),

and let Γ be a balanced cut of H maximizing |H [Γ]| among balanced cuts Σ satisfying

(6). For each y ∈ Y , set M(y) =
⋃

xy∈R LΓ(x). We have

q(G) ≥ |G[Γ]| = |H [Γ]|+
∑

y∈Y

|G[y,M(y)]|. (8)

Since dΓ(x) = f(x) ≥ γpn3, for any two vertices x and x′, we have dΓ(x, x
′) ≤

d(x, x′) ≤ (1 + ǫ)p
2n3

6
≤ pdΓ(x)

γ
. Also since R satisfies (5), so for each y ∈ Y we have

|M(y)| ≥
∑

xy∈R



dΓ(x)−
∑

x 6=x′∈NR(y)

dΓ(x, x
′)





≥
∑

xy∈R

[

dΓ(x)− dR(y) max
x 6=x′∈NR(y)

dΓ(x, x
′)

]

≥
∑

xy∈R

[

dΓ(x)−
ξ

p

pdΓ(x)

γ

]

≥ (1− ξ

γ
)
∑

xy∈R

f(x).

Let µ = p
∑

y∈Y

|M(y)|, then µ ≥ (1 − ξ

γ
)p

∑

y∈Y

∑

xy∈R

f(x). Using Lemma 2.1, we know

that with probability at least 1 − e−cǫµ ≥ 1 − e−c|R|n3p2, for constant c = cǫ(γ − ξ),

the sum
∑

y∈Y

|G[y,M(y)]| in (8) is at least (1− ǫ)µ.

On the other hand, for any balanced cut Σ, we have dΣ(x, y) < α′pdΣ(x) for all

(x, y) ∈ P (Σ). So for any balanced cut Σ satisfying (6), we have

|G[Σ]| ≤ |H [Σ]|+
∑

y∈Y

∑

xy∈R

dΣ(x, y)

≤ |H [Γ]|+
∑

y∈Y

∑

xy∈R

dΣ(x, y)

≤ |H [Γ]|+
∑

y∈Y

∑

xy∈R

α′pdΣ(x)

≤ |H [Γ]|+ α′p
∑

y∈Y

∑

xy∈R

f(x).
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Recall that, with probability at least 1 − e−c|R|n3p2 , the sum
∑

y∈Y

|G[y,M(y)]| in
(8) is at least (1− ǫ)µ. We have

q(G)− |G[Σ]| ≥ [(1− ǫ)(1 − ξ

γ
)− α′]p

∑

y∈Y

∑

xy∈R

f(x) > ϕ|R|γn3p2

holds with probability at least 1−e−c|R|n3p2, which proves (7). It is easy to check that

the constant δ in Lemma 3.1 satisfies δ < γϕ/2, so we can just let δ be the constant

δ in Lemma 3.1.
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