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Abstract 

An extension of multiple correspondence analysis is proposed that takes into 

account cluster-level heterogeneity in respondents’ preferences/choices. The method 

involves combining multiple correspondence analysis and k-means in a unified 

framework. The former is used for uncovering a low-dimensional space of multivariate 

categorical variables while the latter is used for identifying relatively homogeneous 

clusters of respondents. The proposed method offers an integrated graphical display that 

provides information on cluster-based structures inherent in multivariate categorical data 

as well as the interdependencies among the data. An empirical application is presented 

which demonstrate the usefulness of the proposed method and how it compares to several 

extant approaches. 

Keywords: Multiple correspondence analysis, k-means, cluster-level respondent 

heterogeneity, alternating least squares. 
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1. Introduction 

Multiple correspondence analysis (MCA) is a popular descriptive technique to 

explore the relationships among multiple categorical variables (Benzécri, 1973; Gifi, 

1990; Greenacre, 1984; Lebart, Morineau, & Warwick, 1984; Nishisato, 1980). It 

amounts to a nonlinear principal components analysis that assigns numerical scores to 

respondents and response categories of dummy-coded categorical variables which results 

in a graphical map of the interdependencies among the variables. This graphical display 

is a useful bi-product as it aids in communicating the association structures inherent in 

multivariate categorical data to practitioners and other researchers.  

The parameters of MCA are estimated by pooling the data across respondents 

under the implicit assumption that all respondents come from a single, homogenous 

group. However, it often seems more realistic to assume that respondents come from 

heterogeneous groups, so that they are different with respect to their attitudes and 

preferences. Such group- or cluster-level respondent heterogeneity has been discussed 

from several different theoretical and modeling perspectives; for example, consumer 

belief structures have been hypothesized to vary across different market segments 

according to the expectancy value models (Bagozzi, 1982), and accounting for cluster-

level respondent heterogeneity has been shown to be important in modeling consumer 

brand choice decisions (cf. Kamakura, Kim & Lee, 1996).  

A convenient practice for accommodating cluster-level respondent heterogeneity 

in MCA is to adopt a two-step sequential, tandem approach (Arabie & Hubert, 1994): In 

the first step a low-dimensional representation of the categorical variables is obtained via 

MCA; in the second step some variety of cluster analysis is used to identify a set of 
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relatively homogenous respondent groups on the basis of the low-dimensional data (e.g., 

Arimond & Elfessi, 2001; Green & Krieger, 1998; Green, Schaffer, & Patterson, 1988; 

Lebart, 1994). In addition to the ease in which the two-step sequential approach can be 

implemented, there can be substantive reasons for adopting this approach as well (see 

Green & Krieger, 1995).  

Despite its popularity, many authors have warned about a critical problem which 

is inherent to the tandem approach. Specifically, there is no guarantee that the low-

dimensional representation of the data obtained in step one is optimal for subsequently 

identifying cluster structures because data reduction is carried out with no reference to 

cluster analysis (Arabie & Hubert, 1994; Chang, 1983; DeSarbo, Jedidi, Cool, & 

Schendel, 1990; De Soete & Carroll, 1994). This suggests that preliminary data reduction 

may mask or even distort the true cluster structure that is present in the original data. 

Green and Krieger (1995) offer empirical examples which support the legitimacy of this 

concern. Similarly, Vichi and Kiers (2001) present a simulation-based example in which 

tandem analysis failed to identify correct clusters in the context of principal components 

analysis. Technically, this problem stems from the fact that each step of the tandem 

approach involves a different optimization criterion (i.e., one criterion for data reduction 

and another for cluster analysis) and that these criteria are addressed separately.  

As a solution to the problem, the combined use of data reduction and cluster 

analysis in a single framework has been recommended (Bock, 1987; DeSarbo, Howard, 

& Jedidi, 1991; De Soete & Carroll, 1994; Heiser, 1993; Van Buuren & Heiser, 1989; 

Vichi & Kiers, 2001). In essence, this amounts to obtaining a low-dimensional 

representation of variables and classifying respondents into a set of clusters 
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simultaneously. This simultaneous approach may ensure that low-dimensional data are 

optimally chosen so as to facilitate the identification of clusters.   

 In this paper, we extend MCA in such a way that it can explicitly account for 

cluster-level heterogeneity in respondents’ preferences/choices. Specifically, we combine 

MCA with the k-means algorithm (MacQueen, 1967) in a unified framework. The k-

means algorithm is perhaps the most popular method for non-overlapping clustering 

(Wedel & Kamakura, 1998). When compared to other non-overlapping clustering 

methods, it appears to be more robust against outliers and is less afflicted by irrelevant 

variables or dimensions in the data (Punj & Stewart, 1983). It is also efficient in dealing 

with large data sets (Green, Carmone, & Kim, 1990). More importantly, the k-means 

algorithm is attractive in the context of the proposed method because it is easily 

compatible with the distribution-free optimization procedure of MCA. This compatibility 

is beneficial in combining two separate optimization criteria for MCA and k-means into a 

single one.  

The paper is organized as follows. In Section 2, the proposed method is discussed 

in full detail. A fitting criterion is presented along with an alternating least squares 

algorithm developed to optimize this criterion for parameter estimation. In Section 3, a 

comparison of the proposed method and several related methods appearing in the extant 

literature is presented.  In Section 4, an empirical data set is used to illustrate the 

usefulness of the proposed method and to demonstrate how it compares to other extant 

approaches. The final section is devoted to implications with focus on discussing several 

additional aspects of the proposed method. 
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2. The Proposed Method 

Let jZ  denote an n by jp  matrix of the j-th dummy-coded categorical variable, 

where n is the number of respondents, and jp  is the number of response categories in the 

variable (j = 1,…, J). Let F denote an n by d (≤ jp ) matrix of a d-dimensional 

representation of J categorical variables. Let jW  denote a jp  by d matrix of weights, also 

called category quantifications. Let c denote the prescribed number of clusters. Let U 

denote an n by c matrix of an indicator variable, allocating respondents into one of c 

clusters. Let Γ denote a c by d matrix of the centroids or mean values of clusters. Let 1α  

and 2α  denote non-negative scalar weights.  

At this point, the aim is to combine MCA and k-means into a single framework. 

This amounts to finding a low-dimensional representation from more than two 

categorical variables and at the same time identifying clusters of respondents that are 

relatively homogeneous in terms of the low-dimensional representation. This problem is 

equivalent to minimizing the following:  

),(SS)(SS 2
1

1 UΓFWZF −+−= ∑
=

αα
J

j
jjf                                  (1) 

with respect to F, jW , U, and Γ, subject to IFF ='  and 121 =+αα , where SS(M) = 

tr( MM' ).When 11 =α , the first term in (1) amounts to the standard homogeneity 

criterion for MCA (Gifi, 1990; Yanai, 1998). When 12 =α , the second term is equivalent 

to the standard criterion used in the k-means clustering algorithm. However, by 

minimizing both criteria in (1) simultaneously, the low-dimensional data representation, 
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F, is obtained in such a way that it recognizes the cluster structure that may be inherent in 

the multivariate categorical variables.  

 The values of 1α  and 2α are a priori specified by the investigator. By 

specifying 5.21 ==αα , we aim to balance out the two terms for MCA and k-means. On 

the other hand, we may aim to adjust for the relative importance of the two terms by 

differently weighing them. For example, an investigator may wish to weigh the second 

term more heavily than the first term (i.e., 2α > 1α ) under the belief that classification is 

of more importance than data reduction in his/her study.  

 An alternating least squares (ALS) algorithm (de Leeuw, Young, & Takane, 

1976) is developed to minimize (1). In the algorithm, the unknown parameters, F, jW , 

U, and Γ, are updated alternately until convergence. The updates of one parameter matrix 

are obtained such that they minimize (1) in the least squares sense, while the others are 

fixed. Specifically, the ALS algorithm repeats the following three main steps until 

convergence is obtained:  

Step 1. jW  and Γ are updated for fixed F and U. Since jW  is only involved in the first 

term and Γ is only in the second term of (1), their updates are simply given by 

FZZZW ')'(ˆ 1
jjjj

−= ,                                              (2) 

and  

FUUUΓ '' 1)(ˆ −= .                                                    (3) 

Step 2. F is updated for fixed jW , U and Γ. Let jjjjj ')'( 1ZZZZΩ −= , and 

')'( 1UUUUΨ −= . Note that jΩ and Ψ are idempotent and symmetric. Putting (2) and (3) 
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into (1), then, minimizing (1) with respect to F, subject to IFF =' , amounts to 

minimizing 
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Minimizing (4) thus reduces to maximizing  
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with respect to F. This amounts to the eigenvalue decomposition of ΨΩ 21 αα +∑
j

j  

(Yanai, 1998).  

Step 3. U is updated for fixed F, jW  and Γ. This amounts to minimizing the second term 

of (1) with respect to U. We employ Lloyd’s (1982) k-means algorithm to minimize the 

criterion. 

 The ALS algorithm monotonically decreases the value of criterion (1) which, in 

turn, is also bounded from below. The algorithm is therefore convergent. However, it 

does not guarantee that the convergence point is the global minimum. In particular, the k-

means algorithm has been shown to be sensitive to local optima (Steinley, 2003). To 

safeguard against local minima, we repeat the ALS procedure with a large number (say, 



 9

100) of random initial values for U. (The initial values for Γ are obtained from U.) We 

then compare the obtained function values after convergence and subsequently choose 

the solution associated with the smallest one. Besides U (and Γ), MCA is applied to the 

original data and the resultant low-dimensional data are used as rational starts for F. The 

initial values for jW  are obtained on the basis of F. 

In the proposed method, we need to decide a priori on the number of clusters, c, 

as well as the number of dimensions in the data, d. Choices of c and d are closely related 

to each other since the size of the centroid matrix, Γ, also depends on the number of 

dimensions. One approach is to first select d by applying MCA to the data, and then 

decide c by examining how the values of (1) change with different numbers of clusters 

(Wedel & Kamakura, 1998). It is recommended that the number of clusters be greater 

than the number of dimensions (Van Buuren & Heiser, 1989; Vichi & Kiers, 2001). In 

practice, non-statistical criteria for evaluating the usefulness and relevance of clusters 

(e.g., cluster size, potential, etc.) will play a crucial role in deciding c as well (Arabie & 

Hubert, 1994; Wedel & Kamakura, 1998). 

3. Comparison to Other Methods 

In this section we discuss the proposed approach in the context of three related 

methods appearing in the literature. The first method is the ScoreCutter algorithm 

developed by Mucha (2002) which alternates between the steps of dual scaling 

(Nishisato, 1980) and clustering. A major limitation of this method, however, is that it is 

restricted to finding only two clusters in data; in contrast, the proposed method has no 

such a limitation on the number of clusters in data.  
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The second related method that warrants discussion is due to Nishisato (1984).  

This method combines discriminant analysis and MCA and therefore can be viewed as a 

forced classification; that is, under this method respondents must be assigned to 

clusters/groups in advance of performing MCA, in contrast to the proposed method 

which identifies group structure on the basis of the data. Thus, Nishisato’s (1984) method 

can be viewed as a-priori approach while the proposed method can be as a post-hoc 

approach (Wind, 1978; Wedel & Kamakura, 1998).    

Perhaps the most closely related method is that of Van Buuren and Heiser (1989). 

Their method optimizes the MCA criterion under a specific classification restriction on 

object scores: ∑
=

−=
J

j
jjg

1
)(SS WZX , subject to X = UΓ, where X is a matrix of object 

scores. As a result, in their optimization algorithm, U and Γ are updated based on the 

MCA solution for the object scores (see equation (3) in Van Buuren and Heiser, 1989). In 

contrast, the proposed method explicitly combines two criteria for MCA and k-means 

into a single criterion, and optimizes them simultaneously. Thus, U and Γ are updated 

based on F, which involves both MCA and classification solutions. More importantly, the 

Van Buuren and Heiser method does not allow either the MCA or k-means criterion to be 

weighted differentially in generating the solution. 

 In the subsequent section, the proposed method is empirically compared with the 

tandem approach and Van Buuren and Heiser’s method. The ScoreCutter algorithm is not 

considered for comparison because of the limitation on the number of clusters.  

4. Empirical Application 

The present example is part of a large survey conducted by a South Korean 

underwear manufacturer in 1997. In this example, 664 South Korean consumers were 
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asked to provide responses for 3 multiple-choice items. The first item asked which of 

eight brands of underwear the consumer most prefers: (b1) BYC, (b2) TRY, (b3) 

VICMAN, (b4) James Dean, (b5) Michiko-London, (b6) Benetton, (b7) Bodyguard, and 

(b8) Calvin Klein. Both domestic (b1, b2, b3, b4, and b7) and international (b5, b6, and 

b8) brands were included. The second item asked the attribute of underwear most sought 

by the consumers. The number of the attributes was 15: (1) comfortable, (2) smooth, (3) 

superior fabrics, (4) reasonable price, (5) fashionable design, (6) favorable 

advertisements, (7) trendy color, (8) good design, (9) various colors, (10) elastic, (11) 

store is near, (12) excellent fit, (13) design quality, (14) youth appeal, and (15) various 

sizes. The last item asked the age category of each consumer: (a1) 10 – 29, (a2) 30-49, 

and (a3) 50 and over.  

We first applied MCA to the data so as to determine the number of dimensions. In 

MCA, the proportions of the total inertia accounted for by the inertias or squared singular 

values are underestimated because the total inertia is inflated due to fitting both diagonal 

and off-diagonal blocks of the Burt table (Greenacre, 1984; Hwang & Takane, 2002). To 

deal with this problem, it is recommended to adjust the inertias greater than 1/J using 

Benzécri’s (1979) formula, quoted in Greenacre (1984, p.145). The cut-off point of 1/J is 

equivalent to the value at which Cronbach’s alpha becomes zero (Nishisato, 1994, p.151). 

Table 1 offers the adjusted inertias and their percentages of the adjusted total inertia (i.e., 

the sum of the adjusted inertias).  

[Insert Table 1 about here] 

 We chose d = 2 since the sizes of the adjusted inertias appeared to decrease 

slowly after the first two or three and also it is typically easier to interpret a two-
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dimensional configuration of estimated category points than other higher-dimensional 

configurations (Rovan, 1994). The first two adjusted inertias explained about 78% of the 

adjusted total inertia. Next, under the fixed d, we examined the changes in the value of 

(1) across different numbers of clusters. We found that the optimization criterion values 

appeared to decrease gradually beyond c = 3, suggesting that no substantial changes in 

the criterion values are obtained by having more than three clusters. Therefore, we 

decided to choose c = 3. Furthermore, we initially specified 5.21 ==αα  for the purpose 

of comparing the proposed method with the tandem approach and Van Buuren and 

Heiser’s method, which do not accommodate any differential weighting of the fitting 

criteria. 

Given the predetermined dimensionality, the number of clusters, 1α , and 2α , we 

repeated the ALS procedure with 100 random values for initial cluster membership and 

chose the parameter estimates associated with the smallest optimization criterion value as 

the final solution. Figure 1 displays the two-dimensional configuration of the final 

category points and centroids estimated from the proposed method. 

[Insert Figure 1 about here] 

To render the figure more concise, the centroids of the three clusters are labeled ‘C1’, 

‘C2’, and ‘C3’. The eight brand categories from (b1) to (b8) are labeled ‘by’, ‘tr’, ‘vm’, 

‘jd’, ‘ml’, ‘bn’, ‘bg’, and ‘ck’, respectively. The 15 attribute categories are represented by 

their category numbers from 1 to 15. The 3 age categories are labeled ‘a1’, ‘a2’, and ‘a3’. 

The order of the labels is equivalent to that of the age categories.  

The middle right-hand portion of the display appears related to the first cluster, 

where its centroid, ‘C1’, is located. The centroid seems closer to such attributes as 
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‘fashionable design (5)’, ‘trendy color (7)’, ‘good design (8)’, ‘design quality (13)’, and 

‘youth appeal (14)’. This indicates that the respondents in the first cluster appear to prefer 

the design or style of underwear. These consumers are more likely to purchase such 

brands as ‘Benetton (bn)’, Bodyguard (‘bg’), ‘Calvin Klein (‘ck’), ‘James Dean (jd)’, and 

‘Michiko-London (ml)’. Also, ‘C1’ is closer to ‘a1’, suggesting that the consumers in the 

first cluster are likely to belong to the young generation of teens and twenties. 

Approximately 34% (228) of the total respondents were classified into the first cluster.  

The upper portion of the display appears related to the second cluster, whose 

centroid is represented by ‘C2’. This centroid is closely located with such attributes as 

‘comfortable (1)’, ‘favorable advertisements (6)’, ‘elastic (10)’, ‘excellent fit (12)’, and 

‘various sizes (15)’. It is also close to ‘VICMAN (vn)’. It suggests that the respondents 

belonging to the second cluster are attracted to underwear brands that deliver good body 

fit. Respondents in this cluster are more likely to choose VICMAN than other brands and 

are more likely to belong to a middle age group, featured by ‘a2’. About 32% of all 

respondents (214) were classified into this cluster.  

Finally, the lower left-hand portion of the display appears associated with the 

third cluster as it embraces the centroid of the third cluster, ‘C3’. This centroid is 

positioned close to such attributes as ‘smooth (2)’, ‘superior fabrics (3)’, ‘reasonable 

price (4)’, ‘various colors (9)’, and ‘store is near (11)’. It suggests that the customers 

belonging to the third cluster value the practical aspects of underwear, such as price, 

textual quality, and store proximity. This cluster is also closely linked to such domestic 

brands as ‘BYC (by)’ and ‘TRY (tr)’. Furthermore, the centroid of this cluster is also 
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close to ‘a3’, indicating that the third cluster is made up of largely older consumers. 

About 33% of all respondents (222) belonged to this cluster.  

 Under the same numbers of dimensions and clusters, we also applied the tandem 

approach and Van Buuren and Heiser’s method to this data. For the tandem approach, we 

repeated the k-means algorithm with 100 different random values for initial cluster 

membership. For Van Buuren and Heiser’s method, we used the MCA solution as 

rational starts for X. We also repeated their ALS algorithm with 100 different random 

values for initial cluster membership. The results of the tandem approach and Van 

Buuren and Heiser’s method are displayed in Figures 2 and 3, respectively. 

[Insert Figures 2 and 3 about here] 

In Figure 2, the middle right-hand portion of the display appears related to the 

first cluster, the upper portion to the second cluster, and the lower left-hand portion to the 

third cluster. Though similar in spirit to the solution produced by the proposed method, 

this display is more difficult to interpret; notice it is more difficult to characterize each 

cluster since the estimated category points are located in a less discriminate way. For 

example, a number of category points, such as ‘10’, ‘11’, ‘13’, ‘14’, ‘15’, ‘ml’, etc., have 

drifted away from others making it difficult to explicitly link a category with a cluster. 

Similarly, as shown in Figure 3, Van Buuren and Heiser’s method also yields more 

difficult solutions to interpret as compared to the proposed method.  

 We used this data set to investigate the effects of changing the scalar weights on 

the final solution of the proposed method.  A number of analyses with different scalar 

weights were performed. Though, in general, most solutions were similar to the solution 

obtained under no differential weighting there are two interesting cases to consider. The 
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first scenario specifies values for the scalar weights which are consistent with the actual 

contribution that MCA and k-means terms had on the final solution. Since the MCA term 

was responsible for 98% of the optimization criterion value while the k-means term 

accounted for only 2% we set 98.1 =α  and 02.2 =α ; in other words the scalar weights 

disproportionately favors the MCA term.  Figure 4 displays the two-dimensional 

configuration of category points and centroid estimates obtained from this differentially 

weighted analysis. It is interesting that this analysis offers quite similar solutions to that 

obtained by the tandem analysis. This suggests that this differential weighting scenario 

largely corresponds to the tandem analysis of the underwear example. 

[Insert Figure 4 about here] 

In the second scenario we reversed the weighting scheme, that is, we allowed the 

k-means term to be dominant by setting 02.1 =α and 98.2 =α . Figure 5 displays the two-

dimensional configuration of parameter estimates obtained.  The figure shows that the 

category point estimates changed little from the no differential weighting scenario (see 

Figure 1).  On the other hand, the centroid estimates seem to move farther away from the 

configuration origin which aids in characterizing the clusters as their associated centroids 

are more distinctive. This is likely a direct result of placing more emphasis on the 

clustering of respondents as opposed to focusing on variable associations. Nonetheless, 

the interpretation remains essentially the same as in the equally weighted analysis 

scenario. 

 [Insert Figure 5 about here] 
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5. Concluding Remarks 

In this paper, we proposed an extension of MCA whereby k-means was combined 

in a unified framework. The proposed method affords an integrated graphical display that 

offers useful information on cluster-based structures inherent in multivariate categorical 

data as well as the interrelationships among them. As illustrated with empirical data, the 

proposed method is shown to provide more easily interpretable solutions than other 

extant methods. Moreover, the differential weighting feature of this method appears to be 

an important asset, which allows exploring the data from more diverse perspectives. 

 The use of categorical variables in surveys is becoming increasingly popular for 

various reasons (see Arimond & Elfessi, 2001; Dolničar & Leisch, 2001). In particular, 

they offer respondents faster and less tedious response formats in comparison to Likert-

type items. Not only does this increase the likelihood that respondents will complete a 

survey, it also enables researchers to include more items within survey questionnaires. 

Furthermore, the use of categorical variables provides a simpler means of data 

collection/management, thus reducing data entry costs (Javalgi, Whipple, McManamon, 

& Edick, 1992). Some authors have argued that future developments in 

classification/segmentation techniques should allow for simpler data collection as well as 

graphical displays of segmentation findings at the same time (Javalgi et al., 1992; Green 

at al., 1988). In an effort to capture cluster-level respondent heterogeneity in MCA, the 

proposed method also appears to be a segmentation tool that satisfies these goals.   

The proposed method can be extended in a number of ways to enhance its scope 

and range of applicability. For example, it may be worthwhile to deal with ordinal 

variables through data transformation such as a monotonic transformation (Kruskal, 
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1964; Ramsay, 1988, 1998). The proposed method may also be extended in such a way to 

accommodate a mixture of nominal and ordinal variables. Recently, Hwang and Takane 

(2002) proposed a comprehensive approach to constrained MCA, where linear constraints 

are imposed not only on variables but also on respondents. Incorporating such an 

approach may further broaden the scope of the method proposed herein. The proposed 

method employs k-means for cluster analysis, which offers a deterministic classification 

of respondents. However, it may be more favorable to replace k-means with other types 

of cluster analysis such as fuzzy clustering (Bezdek, 1974; Manton, Woodbury, & Tolley, 

1994), which permits a probabilistic classification of respondents. All of these extensions 

warrant further attention and provide the fodder for future theoretical and empirical work.   
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Table 1. The adjusted inertias and their percentages of the adjusted total inertia in the 
parenthesis obtained from MCA. 
 

 0.0840   (66.1%) 
0.0147   (11.5%) 
0.0113    ( 8.9%) 
0.0077    ( 6.1%) 
0.0044    ( 3.4%) 
0.0026    ( 2.0%) 
0.0014    ( 1.1%) 
0.0010    ( 0.8%) 
0.0000    ( 0.0%) 
0.0000    ( 0.0%) 
0.0000    ( 0.0%) 
0.0000    ( 0.0%) 
0.0000    ( 0.0%) 

Total           0.1271 
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Figure 1. The category point and cluster centroid estimates obtained from the proposed 
method (d = 2, c = 3, and 5.21 ==αα ). 
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Figure 2. The category point and cluster centroid estimates obtained from the tandem 
approach (d = 2 and c = 3). 
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Figure 3. The category point and cluster centroid estimates obtained from Van Buuren 
and Heiser’s method (d = 2 and c = 3). 
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Figure 4. The category point and cluster centroid estimates obtained from the proposed 
method with a differential weighting (d = 2, c = 3, 98.1 =α , and 02.2 =α ). 
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Figure 5. The category point and cluster centroid estimates obtained from the proposed 
method with a differential weighting (d = 2, c = 3, 02.1 =α , and 98.2 =α ). 
 
 

 
 

 


