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ABSTRACT
Newton’s apsidal precession theorem in Proposition 45 of Book I of the ‘Principia’ has great
mathematical, physical, astronomical and historical interest. The lunar theory and the preces-
sion of the perihelion of the planet Mercury are but two examples of the applications of this
theorem. We have examined the precession of orbits under varying force laws as measured
by the apsidal angle θ (N, e), where N is the index for the centripetal force law, for varying
eccentricity e. The paper derives a general function for the apsidal angle, dependent only on
e and N as the potential is spherically symmetric. Further, we explore approximate ways of
the solution of this equation, in the neighbourhood of N = 2 which happens to be the case
of greatest historical interest. Exact solutions are derived where they are possible. The first
derivatives ∂θ/∂ N and ∂θ/∂h [where h(N, e) is the angular momentum] are analytically ex-
pressed in the neighbourhood of N = 2 (case of the inverse square law). The value of ∂θ/∂ N is
computed numerically as well for 1 � N < 3. The resulting integrals are interesting improper
integrals with singularities at both limits. Some of the integrals, especially for N = 2, can be
given in closed form in terms of generalized hypergeometric functions which are reducible
in terms of algebraic and logarithmic functions. No evidence was found for isolated cases of
zero precession as e was increased. The N = 1 case of the logarithmic potential is also briefly
discussed in view of its interest for the dynamics of eccentric orbits and its relevance to real-
istic galaxy models. The possibility of apsidal precession was also examined for a few cases
of high-eccentricity asteroids and extrasolar planets. We find that these systems may provide
interesting new laboratories for studies of gravity.
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1 I N T RO D U C T I O N

In Proposition 45 of Book I of the ‘Principia’ (Newton 1687),
Newton derives an important formula relating centripetal force, ex-
pressed as a power of the distance from the centre, to the apsidal
angle, θ , or angle at the force centre between highest and lowest
apsis (apocentre and pericentre). For a centripetal force of magni-
tude µ rn−3, θ = π/

√
n = 180◦/

√
n. The formula, by its manner of

derivation, is restricted to orbits ‘approaching very near to circles’
(e � 1).

The apses are termed ‘quiescent’ if n = 1, and ‘moving’ if
n �= 1. In the latter case the orbiting body in going from upper
to lower apse moves through either more or less than 180◦, and the
same angle is repeated in the return to the upper apse. In this case
we shall say that the orbit precesses. Given Newton’s formula, the
amount of precession measures the exponent in the force law. Zero

�E-mail: valluri@uwo.ca

precession (where n = 1) is equivalent to having the force vary as
the inverse square of the distance. Positive precession (prograde or
advancing orbit where n < 1) is equivalent to having the force fall
off more rapidly with distance than does an inverse-square force; the
exponent in the force law is less than −2. Negative precession (ret-
rograde, where n > 1) is equivalent to having the force fall off less
rapidly with distance than does an inverse-square force; the expo-
nent in the force law is greater than −2. Where Newton’s formula is
applicable, an empirical determination of the amount of precession
yields a measure of the exponent in the force law.

In Book III of the Principia, Newton cites Proposition 45 in argu-
ing that the force of the Sun on the planets is inversely as the square
of the distance (Proposition 2: the planetary aphelia are ‘quiescent’,
whence the force is inverse square). At the time Newton had reason
(from Streete’s ‘Astronomia Carolina’) to think that the orbits of
the planets were not detectably precessing; during the course of the
next century, as the time period over which reliable planetary obser-
vations had been made grew, it became clear that these orbits were
slowly precessing. (Laplace chooses not to infer the inverse square

C© 2005 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/358/4/1273/1069183 by guest on 16 August 2022



1274 S. R. Valluri et al.

for the planets from the precession theorem, probably because he
could no longer run the simple argument Newton has run in Book 3,
Proposition 2.) Again citing Proposition 45, Newton argues that the
force of the Earth on the Moon varies in the inverse-square propor-
tion (Proposition 3: the lunar apsis moves on average 3.◦3 arcmin
per revolution, whence n − 3 = −2 (4/243), the small deviation
from the inverse-square proportion being attributable – so Newton
promises to show – to the radial component of the perturbing action
of the Sun) (Newton 1687). For an orbit that is bounded away from
infinity, we can define orbital eccentricity by e = (rM − rm)/(rM +
rm), where rM is the greatest distance from the centre, and rm the
least. This definition reduces to the usual measure of eccentricity
for an ellipse, and has the additional merit of being applicable to
the planetary orbits, none of which is strictly an ellipse (the apsi-
dal angle in all cases differs from 180◦, Newton’s ‘quiescence of
the apsides’ being only approximate). These orbits, though non-re-
entrant, have a greatest and least distance from the centre of force,
and hence have an eccentricity in the sense of our definition.

Newton apparently trusts his formula even where the eccentricity
is not close to zero. In Proposition 2 of Book III, for instance, he in
effect applies it to the orbit of Mercury, whose eccentricity is 0.2056,
so that the greatest solar distance is 1.5 times the least. In the General
Scholium where he speaks of the possibility of quiescent aphelia for
the orbits of comets, he no doubt has in mind Halley’s comet, which,
as Halley proposed in 1705, has an orbital eccentricity of about 0.97,
so that the greatest solar distance is 66 times the least; this is hardly,
it would seem, the case for Proposition 45.

We investigated, in Valluri, Wilson & Harper (1997), for force
laws other than the inverse square as well as differing but slightly
from the inverse square, what happens to the apsidal angle as the
orbital eccentricity increases. In this work, we discuss the apsidal
angle and its derivative for a variety of force laws with different
power index N. We also study the force law for the inverse power
of the distance, i.e. the logarithmic potential. Such a force law has
become increasingly relevant, owing to recent photometric obser-
vations of nearly elliptical galaxies and spiral galaxies, as pointed
out by Touma & Tremaine (1997). Such studies are of relevance for
orbital dynamics.

An interesting question that arose is the dependence of the apsidal
angle θ for cases where δ = N − 2 is either very small or less than one
(Valluri et al. 1997). MATHEMATICA and MAPLE labour for hours at the
integration for very small δ to obtain θ without providing numerical
results. It is desirable then to examine the derivative ∂θ/∂ N = ∂θ/∂δ

and also ∂θ/∂h (where h(N, e) is the angular momentum) to thereby
obtain θ . In the previous work (Valluri et al. 1997), the derivative
was calculated numerically only for the case δ → 0 and θ (N, e) was
numerically evaluated for N = 3/2, 7/4, 2, 9/4 and 5/2. A detailed
analysis of the derivative in the interval 1 � N < 3 warrants a
careful study. In addition, the analytical calculation of the apsidal
angle and its derivative, when δ is very small, offers additional
insight. The differential equation of the orbit in this paper is studied
from an approach similar to that of Clairaut in his study of the lunar
orbit (Brown 1895). The resulting series solutions have intrinsic
mathematical interest of their own. The expression for the angle θ

can be differentiated under the integral sign. The resulting improper
integrals offer an important mathematical study. Moreover, they
illustrate for each eccentricity e the dependence of θ (N) and confirm
the absence of isolated cases of apsidal quiescence. The lunar theory,
the orbit of Mercury, gravitational waves emitted during the orbital
decay of black hole (BH) binaries (Peters & Mathews 1963; Peters
1964; Pierro et al. 2002) as well as luminosity power-law densities
near the centres of many nearly elliptical galaxies have rekindled

interest in Newton’s apsidal precession theorem. The researches of
Euler, Lagrange, Laplace, Hill, Hansen, Tisserand, Hall, Newcomb,
Poincaré (Brown 1895) and many others as well as the general
theory of relativity of Einstein have given this problem of celestial
mechanics a new stimulus.

The calculation of the partial derivative ∂θ/∂h has an interesting
parallel to the partial derivatives of the potential scattering phase
shift with respect to physical quantities such as linear and orbital
angular momentum, and which has possible application in a vari-
ety of fields that range from electron scattering from ions, heavy-
ion scattering in nuclear physics and resonance scattering to scalar
waves scattering in a gravitational field by rotating BHs. Much of
the physical information contained in the scattering phase shifts
δ(h, l) can be extracted from their partial derivatives with respect
to such physical quantities as linear momentum (Romo & Valluri
1998) and angular momentum, associated with time delay and the
deflection function (Valluri & Romo 1989, 1994) and other potential
parameters. The deflection function 2 ∂δ(l, k)/∂l is of relevance for
rainbow and glory scattering in semiclassical collisions in a variety
of problems that include scattering in BH gravitational fields. The
analytic method supported by numerical analysis is also relevant for
calculations of the deflection function in Schwarzschild and Kerr ge-
ometries for rainbow and glory scattering. Kostas Glampedakis &
Andersson (2001) have investigated the scattering of massless scalar
waves by a Kerr BH. They show that although the pioneering work
of Ford and Wheeler considered scattering in the context of quantum
theory, their formalism is readily extended to the black-hole case.
In the semiclassical paradigm, the phase-shifts are approximated by
a one-turning point JWKB formula. Partial derivatives of the phase
shift can also be obtained for long ranged potentials like the gravita-
tional one, a repulsive exponential potential, Hulthen, Sech-square,
Morse valley and barrier potentials. The Regge–Wheeler equation
(Regge & Wheeler 1957), describing a scattering process in a BH
space time, is similar to the radial Schrodinger equation and many
techniques from quantum and classical scattering can be applied to
BH problems. Both ∂δ(l)/∂l and ∂δ(k)/∂k are of relevance in BH
scattering. The tortoise coordinate in the treatment of the Regge–
Wheeler equation, is related to the Lambert W function discussed
in the work of Valluri, Jeffrey & Corless (2000), and facilitates
the treatment of wave scattering in curved space time. In particular,
glory scattering and orbiting phenomena in the mathematical theory
of BHs have been thoroughly discussed by Chandrasekhar (1983).

In the next section we discuss the case of force laws differing
but slightly from the inverse square. The differential equation of the
orbit is studied to obtain the equation of an ellipse with rotating
apsis. The apsidal angle and its derivative with respect to N (or
equivalently δ) are derived in terms of the eccentricity e.

In Section 3 we extend our results to the case of force laws differ-
ing considerably from the inverse square and calculate ∂θ (e)/∂ N
for such laws. Section 4 presents the conclusions and discussion.

2 T H E C A S E O F F O R C E L AW S D I F F E R I N G
BU T S L I G H T LY F RO M T H E I N V E R S E S QUA R E

That the force law differs but slightly from the inverse square was
the hypothesis that Asaph Hall made in 1894, in seeking to account
for the anomalous precession of the apse of Mercury (Hall 1894).
In 1859 Le Verrier (Le Verrier 1859) had found that some 38 arcsec
per century of the precession of the apse of Mercury could not be
accounted for on the basis of Newton’s inverse-square law, and in
1882 Simon Newcomb revised this estimate upward to 43 arcsec
per century (Newcomb 1882). Taking the gravitational law to be
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given by −µ r−N , Hall used the formula π/
√

3 − N , where 3 − N
was n in Newton’s notation, to deduce from 43 arcsec per century a
law in which the exponent N = 2.00000016. Hall was apparently
unaware of Newton’s derivation of the formula 180◦/

√
n; he cited

instead a paper by Joseph Bertrand from which the formula can be
derived (Bertrand 1873). But Bertrand’s argument, like Newton’s,
assumes that the greatest and least distances to the centre of force
differ infinitesimally. Is the formula validly applicable to the orbit of
Mercury? And more generally, does precession measure deviation
from the inverse-square law even when the eccentricity is sizable?

To address this question, we turn to the differential equation of
the orbit. Let the central force be given by f (r ) = −µ r−N , where
µ is a constant (choose µ = 1). We assume N > 0, so that f (r ) →
0 as r → ∞. The standard differential equation for the shape of the
orbit, expressed in terms of the reciprocal radius vector, u = 1/r ,
and the angle about the centre of force, θ , is

d2u

dθ2
+ u = uδ

h2
, (1)

where N − 2 = δ (Valluri et al. 1997). Here h (angular momentum)
is twice the rate of the description of area r 2 (dθ/dt) = h. In the cases
we want to examine, δ, which can be positive or negative, will be
small enough in absolute value so that we can ignore its square. (In
Hall’s case it was −0.00000016.) To obtain an approximate solution
of equation (1) in this case, we suppose u = u0 + �y, where u0 is
the solution when �y = 0, namely u0 = [1 + e cos (θ − θ ′)]/h2,
and �y is a perturbation introduced to take account of the difference
when δ differs from zero.

Substituting this expression for u into equation (1), we obtain

1

h2
+ d2(�y)

dθ 2
+ �y = 1

h2
(u0 + �y)δ = uδ

o

h2
+ δ (�y) uδ−1

o

h2
. (2)

In expanding uδ
0 on the right, we observe that, while we suppose δ to

be small enough so that its square may be neglected, we are allowing
the eccentricity e to have any value in the interval 0 < e < 1; we
shall thus take into account higher powers of the eccentricity than
the first. If we neglect a small constant 1/h2 − 1/h2δ+2, equation (2)
can be put in the form

d2(�y)

dθ2
+ (�y)

(
1 − δ

h2δ

)

= δ

h2δ+2

∞∑
i=1

(−1)i+1

(
ei

i

)
cosi (θ − θ ′)

− δ(�y)

h2δ

∞∑
i=1

(−1)i ei cosi (θ − θ ′). (3)

Here we have shifted the constant term δ(�y)/h2δ to the left-hand
side. All terms with the coefficient δ(�y)/h2δ will prove to be of
O(δ2), once we have shown that �y is of O(δ). We shall discuss the
solution of equation (3) with the second term on the right deleted
(McLachlan 1947). Inclusion of this second term results in the dif-
ferential equation of Hill which can be solved approximately by
the theory and application of Mathieu functions (McLachlan 1947;
Valluri et al. 1999). The resulting differential equation is mathemat-
ically analogous to that of a harmonic oscillator with a restoring
force (1 − δ/h2δ) �y and oscillating driving forces proportional to
(−1)i+1ei cosi (θ − θ ′)/i . This is equivalent to a driving force which
depends on the eccentricity e, a resonant term that builds up the
precession and small amplitude higher harmonic periodic perturba-
tions. The resulting equation is linear with constant coefficients; its
general solution is therefore the sum of the complementary function

and a particular integral. If we let 1 − δ/h2δ = λ2, the complemen-
tary function = const. cos λ (θ − θ ′). After further simplification
we obtain

u0 + �y = 1

h2
[1 + e cos λ(θ − θ ′)] + O(δ). (4)

The terms of O(δ) on the right are small relative to those free of the
factor δ; neglecting them, we have the equation of an ellipse with
rotating apse, which we can write as

u = 1

h2
[1 + e cos λ(θ − θ ′)]. (5)

The apsidal angle is given by (θ − θ ′) = π/λ. To a near approxi-
mation, λ= 1 − δ/2 h2δ = 1 − δ/2, as h2δ is close to unity because of
the smallness of δ. This turns out to be the same result that Newton’s
formula gives: π/

√
n = π/

√
3 − N = π/

√
1 − δ = π/(1 − δ/2).

For δ = 0 (inverse square case) the result is π, as it should be.
Newton’s formula, we recall, is valid only for very small eccentric-
ity. What role does the eccentricity play in our solution?

Clairaut was probably the first to publish a method for the treat-
ment of the lunar theory founded on the integration of differential
equations (Brown 1895). In the spirit of Clairaut’s approach in his
lunar theory, we adopt a rotating ellipse as a starting point

u = 1

h2
[1 + e cos λ′(θ − θ ′)], (6)

where λ′ will differ from λ as previously defined in such a way as
to take account of the effect of eccentricity on apsidal angle. We
substitute equation (6) back into equation (1), and as before neglect
the small constant 1/h2 − 1/h2δ+2, and all terms involving δ raised
to a higher power than the first. We find that

1 − λ′2 = δ

h2δ

∞∑
i=0

(−1)i ei

i + 1
cosi λ′(θ − θ ′). (7)

We can get an average result for the right-hand side by integrating
it over the apsidal angle, from 0 to π, then dividing by π.

1 − λ′2= δ

h2δ

(
1 + e2

6
+ 3 e4

40
+ 5 e6

112
+ · · ·

)

= δ

h2δ

arcsin e

e
. (8)

Further, in the course of our investigation, it was brought to our
attention (Nauenberg, private communication) that λ′2 is given to
third order in e1 by the formula

λ′2 = (3 − N )

[
1 − (N − 2)(N + 2)

12
e2

1

]
, (9)

where e1 is the first coefficient in the expansion u = u0[1 +∑∞
n=1 en cos(nλ′φ)], e2 = (1/12)(N − 2)e2

1, e3 = (1/96)(N − 2)
(N − 3)e3

1, and the eccentricity e is approximated by e ≈ e1 − e2 +
e3. Equation (9) gives results for the apsidal angle,

θ = π

λ′ = π{
(3 − N )

[
1 − (N − 2)(N + 2)e2

1/12
]}1/2 .

This formula gives results for the apsidal angle closely agreeing
with those obtained by numerical integration (see Section 3). In
addition, it implies that for N = 2.00000016 as proposed by Asaph
Hall, the square bracket is effectively 1, and λ is given with good
accuracy by (3 − N)1/2 in agreement with Newton’s and Bertrand’s
formulas.
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By this calculation, for δ small enough so that h2δ can be taken
as unity,

λ′ = 1 − δ

2

arcsin e

e
, (10)

and the apsidal angle π/λ′ is approximately π (1 + δ arcsin e/2e).
Here arcsin e/e > 1, and increases with increasing eccentricity. The
lowest power of e entering into the formula is e2, which implies that
Newton’s formula is accurate to first order in e. As we shall show
later, equation (8) is qualitatively correct in that δ/h2δ is multiplied
by a factor that increases with increasing e; however, the values it
gives for the apsidal angles are a bit shy of the true values, the error
increasing with increasing e. The derivative of the apsidal angle θ

with respect to the power-law index N or in terms of δ, from the
Clairaut type of approach, the perturbative analysis (Valluri et al.
1997) and Newton’s formula are given below.

∂θ

∂δ
∼ π

2

arcsin e

e
∼ π

2

(
1 + e2

6
+ 3 e4

40
+ · · ·

)
, (11)

∂θ

∂δ
∼ π

2

(
1 + e2

4
+ e4

8
+ · · ·

)
, (12)

∂θ

∂δ
∼ π

2

1

(1 − δ)3/2
. (13)

Equation (13) is independent of e and gives accurate results only
for almost vanishing e. For given δ, precession, or the departure
of the apsidal angle from 180◦, becomes greater as the eccentricity
increases. It follows that departure of the apsidal angle from 180◦

becomes a more sensitive index of departure from the inverse-square
law as the eccentricity increases.

In the case of Mercury, with e = 0.2056, the fraction arcsin e/e
is 1.0072. Multiplying by δ/2 and by 180 × 3600, we find the ex-
tra precession per half cycle, namely 0.052 arcsec. Multiplying this
result by 830.39, the number of half-cycles per Julian century, we
obtain 43.20 arcsec, the extra precession per Julian century. Without
the factor 1.0072, the result would be 43.05 arcsec, a difference of
0.3 per cent, rather less than the uncertainty in the empirical value of
the precession. [In 1947 G.M. Clemence (Clemence 1947), taking
into account all the observations of Mercury from 1765 to 1940,
found the extra precession to be 43.11 ± 0.45 arcsec per century.]
For our Moon (e = 0.05493) the derivative for equation (11) is
(π/2)(1.000504), for equation (12) (π/2) (1.000756) and for equa-
tion (13) π/2.

By 1903 Hall’s alternative power law to account for the 43ȧrcsec
of anomalous precession in the apsis of Mercury had become un-
tenable: Ernest W. Brown’s development of the Hill–Brown lunar
theory was sufficiently detailed to rule out Hall’s alternative power
law (Brown 1903). In 1915 Einstein showed that the anomalous
apsidal precession could be derived from his Theory of General
Relativity (GR: Einstein 1915; Roseveare 1982; Earman & Janssen
1993).

Table 1. High-eccentricity asteroids, their semimajor axis a, their inclination i along with their perihelion q and aphelion Q distances.

Name 1984 QY1 1999 XS35 2000 LK 2000 SG8 2001 DQ8 2002 AJ129 2002 PD43 2003 MT9 2004 CK39 5025 P-L

e 0.914 0.947 0.947 0.901 0.902 0.915 0.956 0.920 0.925 0.901
a (au) 2.97 17.9 2.27 2.45 1.84 1.37 2.51 2.52 4.26 4.22
i (deg) 17.8 19.4 17.4 24.0 13.0 15.5 26.3 6.81 14.7 7.34
q (au) 0.255 0.954 0.119 0.242 0.181 0.117 0.111 0.202 0.320 0.417
Q (au) 5.69 34.9 4.41 4.66 3.51 2.63 4.92 4.84 8.20 8.01

Early discussions of alternative gravitational force laws took place
largely within the context of the precession of the perihelion of Mer-
cury. This small planet being closest to the Sun and on a relatively
eccentric orbit suffers the largest GR-induced precession of any
of the planets in our Solar system. Precession owing to differing
force laws, however, is not confined to the region close to the Sun.
Equation (10) is independent of the size of an orbit, but depends
rather on its eccentricity. Both the precession rate of an orbit and
the ease with which such precession is observed increase as the
eccentricity of the orbit increases. As a result, observational limits
of δ can most easily be constructed by observing high-eccentricity
objects. As the number of bodies known to be on high-eccentricity
orbits has increased dramatically since early discussions of the ef-
fects, the number of opportunities for testing δ directly in systems
with different properties, such as high e and larger mass, has also
grown.

The longest known and hence best observed objects on high-e
orbits are comets. However, these bodies suffer non-gravitational
accelerations (i.e. accelerations owing to the back reaction of gases
sublimating from the comet nucleus) that are difficult to quantify.
For example, during its 1986 appearance, Comet Halley is thought
to have experienced such back reaction forces of magnitude roughly
10−5 of the gravitational force owing to the Sun (Rickman 1986).
Additionally, the magnitude of this force varies with the distance of
the comet from the Sun and its instantaneous direction is unknown,
its determination complicated by such effects as variations between
the pre- and post-perihelion legs of its orbit (Sekanina 1964; Festou
1986), variations in the outgassing on time-scales of order of a day
(Festou, Rickman & West 1993) and rotation of the (potentially
precessing) nucleus itself (Wilhelm 1987). Thus comets are not ideal
candidates for measurements of δ.

Asteroids are different from comet nuclei in being devoid of the
volatile materials whose outgassing complicates the precise deter-
mination of the motion of a comet. Some extinct comets may lurk
among the asteroid population and low-level outgassing may af-
fect their motion, but the effect would be greatly reduced and the
number of such objects is likely quite small (Levison et al. 2002).
Though asteroids are typically on low-eccentricity orbits the pop-
ulation known to be on orbits of higher e has increased markedly
over the past decades. For example, at this writing the Minor Planet
Center lists 151 objects with e > 0.75, and 10 with e > 0.9 (see
Table 1). All of these have been discovered in the last 5 yr, with
the exception of 5025 P-L and 1984 QY1, discovered in 1960 and
1984, respectively. Both were only observed for a few (3–4) days
and are now considered lost. 2000 LK was only observed for 7 d,
but 1999 XS35, 2000 SG8, 2001 DQ8, 2002 PD43, 2003 MT9 and
2004 CK39 have arc lengths from two to several weeks. The longest
observational arc, and hence one of the better candidates for such
measurements is 2002 AJ129, which has been observed for over
a year. Its aphelion distance is far from Jupiter, reducing the ef-
fects of perturbations from this planet, and it will make a number of
close approaches to within 0.1 au of Earth (in 2010, 2018 and 2026)
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which should allow its orbit to be very accurately determined by
radar.

We note that variations in the orbit of asteroid 6489 Golevka
attributed to the Yarkovsky effect have recently been detected by
radar (Chesley et al. 2003). The observation of this small effect,
amounting to only 15 km in the range to the body, indicates that
the measurement of other small perturbations may be possible. The
eccentricity of the orbit of 6489 Golevka is substantial (0.6) and it
may also provide a useful limit on the value of δ, though the data
published do not allow such a calculation.

Anomalous precession may also be observed outside our Solar
system. The inspiralling orbits of stars into massive BHs, for ex-
ample, are expected to display dramatic relativistic perihelion pre-
cession as they undergo orbital changes owing to the dissipation of
energy and angular momentum as gravitational waves (cf. Barack &
Cutler 2004). Planets orbiting other stars offer another opportunity.
At the time of writing, there are 120 extrasolar planets known to be
orbiting 105 stars. If in fact there is only one planet orbiting most of
these stars as these numbers naively imply, then the determination
of δ becomes significantly easier as perturbations owing to other
bodies do not need to be modelled. If, as is more likely the case,
there are in fact other smaller planets present, the fact that the body
being observed is likely the most massive in the system provides
us with a significant advantage over our own Solar system where
the largest bodies are on low-eccentricity orbits. Any perturbations
such a planet suffers owing to other bodies in the system will be
reduced in proportion to the ratio of masses, while any anomalous
precession remains unaffected. The Extrasolar Planet Encyclope-
dia (http://www.obspm.fr/encycl/encycl.html) lists ten planets with
e > 0.5 currently known. These planets and their properties are de-
scribed briefly in Table 2. They have masses typically of a Jupiter
mass or more, and are (as yet) the only planets detected around
their parent stars. Their orbital periods range from 62 d to 5.7 yr and
thus observations of the systems could be expected to reveal any
anomalous precession on a reasonable time-scale. For example, con-
sider the extrasolar planet HD 3651b with e = 0.63 and a period =
62.23 d (Fischer et al. 2003). If δ = ±10−6, then θ ∼ π ± 2 × 10−6,
giving an anomalous precession of 10−4 deg per half-cycle. Given
the orbital period of the planet, this would produce 0◦1 of extra
precession per century. Amounting to one part in a few thousand,
this should be detectable with continued observations. Thus sys-
tems like this one, particularly if there is only one planet present or
it is the most massive by far, can be expected to provide increasing
refined constraints on δ. Prospects for measuring the precession of
high-eccentricity asteroids in our own Solar system where higher

Table 2. High-eccentricity extrasolar planets, listing their eccentricity and
orbital period as well as their mass (in Jupiter masses) multiplied by the sine
of the inclination of their orbit to the plane of the sky (M sin I).

M sin I (M Jup) period (d) e

HD 80606 3.41 111.78 ± 0.21 0.927 ± 0.012
ι Draconis 8.64 550.65 0.71
HD 222582 5.11 572.0 0.71
HD 89744 7.2 256 ± 0.7 0.7 ± 0.02
HD 2039 4.85 ± 1.7 1192 ± 150 0.68 ± 0.15
16 Cygni B 1.69 798.9 0.67
HD 3651 0.2 62.23 0.63
HD 39091 10.35 2063.8 0.62
HD 147513 1.0 540.4 ± 4.4 0.52 ± 0.08
HD 1237 3.21 133.82 ± 0.2 0.505 ± 0.018

accuracies can be obtained are even better, though the effects of
other perturbations complicates the analysis.

Given the recent increase in the number of high-eccentricity as-
teroids and improvements in radar detection techniques, as well
as the discovery of massive high-eccentricity planets on short-
period orbits around other stars, the ‘laboratory’ for the measure-
ment of deviations from Newtonian gravity has expanded dramat-
ically over the last decade. These advances provide the possibility
of testing Newtonian gravity in new regimes of eccentricity, mass
and other parameters, and the authors encourage observers in this
regard.

3 T H E C A S E O F F O R C E L AW S D I F F E R I N G
C O N S I D E R A B LY F RO M T H E I N V E R S E
S QUA R E

We turn now to cases where δ can be considerably larger, say 0.25 or
0.5. In such cases we may determine the apsidal angle by numerical
integration. For our force law the potential energy is given by

V (r ) = −
∫ r

∞
(−r−N ) dr = r−N+1

−N + 1
,

where we have taken the gravitational constant and the central mass
to be 1 and the case N = 1 is excluded. The introduction of a
cosmological constant 	 would result in

V (r ) = r−N+1

−N + 1
− 	

6
r 2

(Einstein 1917; Earman 2001). In addition, it is known that when
N = 3 the trajectory is a Cotes spiral, in which r goes to 0 or
∞. As our concern is with bounded orbits in the neighbourhood of
N = 2, we shall mainly confine our investigation to the open interval
[1 < N < 3]. In this range V < 0. The total energy is

E = 1

2

[(
dr

dt

)2

+ r 2

(
dθ

dt

)2
]

+ V (r ). (14)

The kinetic energy, given by the bracketed term on the right, is
always positive, whence V < E . In order that the orbit be bounded
away from r = 0 and r = ∞, we must have E < 0.

For N = 1, V (r ) is the logarithmic potential characteristic of the
singular isothermal sphere (Binney & Tremaine 1987). We give a
brief analysis of the determination of θ (e) for this case, by Touma
& Tremaine (1997), separately at the end of this section.

We eliminate t from equation (14) by means of r 2(dθ/dt) = h,
the angular momentum. The result is simplified if we replace r by
1/u. We thus obtain

du

dθ
=

√
2

h

[
E + uN−1

N − 1
− h2u2

2

]1/2

. (15)

For du/dθ to be real, the radicand on the right must be positive,
and at each apse we must have du/dθ = 0, the apsides being defined
where the radicand on the right has real positive roots. Suppose the
least root is u1 (for the higher apse) and the greatest is u2 (for the
lower apse). Then the angle between higher and lower apses, or
‘apsidal angle’, will be

θ = h√
2

∫ u2

u1

[
E + uN−1

N − 1
− h2u2

2

]−1/2

du. (16)

The results in the inverse-square case have been shown earlier
(Valluri et al. 1997) and θ = π. This, of course, is an expected
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Table 3. Apsidal angle and its derivative (N = 3/2).

Eccentricity Apsidal angle ∂θ/∂ N θ − θ 0

in degrees (per cent deviation)

e � 1 146.969 (= θ0) 48.8 0
0.2 146.657 49.2 −0.312 (0.212 per cent)
0.4 145.641 50.4 −1.328 (0.904 per cent)
0.6 143.608 52.7 −3.361 (2.287 per cent)
0.8 139.530 57.7 −7.439 (5.062 per cent)
1.0 120.0 80.0 −27.00 (18.4 per cent)

result: the inverse-square law, when the orbit is bounded away from
infinity, implies a fixed elliptical orbit with apsidal angle π.

In the case of a non-zero 	, equation (15) becomes

du

dθ
=

√
2

h

[
E + uN−1

N − 1
− h2u2

2
− 	

6u2

]1/2

. (17)

This is expected to introduce a consequent additional perihelion
shift for Mercury of 	/5 × 10−42 cm−2 arcsec per century, which
is negligible as 	 ∼ 10−58 cm−2 (e.g. Rindler 1986). It is worth
noting that the integration of equation (17) can be done in terms of
elliptic functions (Goldstein 1990), and that the generalization of
equation (15) leads to post-Newtonian orbits in the Schwarzschild
space–time metric which give accurate values for the precession,
for example, of Mercury or the binary pulsar system (Schutz 1996).

In equation (16), both E and h can be regarded as functions of the
limits of integration, u1 and u2. It follows that the apsidal angle θ ,
for given N, is a function of u1 and u2 alone. Indeed, it is a function
solely of the ratio u1:u2.

Using the MATHEMATICA program, we have integrated equa-
tion (16) by numerical integration for N = 3/2, 7/4, 9/4 and 5/2.
As Whittaker (1961) observes, equation (16) can be solved in terms
of elliptic functions when N = 3/2, 5/3, 7/3 or 5/2; as elliptical
functions are doubly periodic, the result of the integrations cannot
be π. But we have chosen to apply a uniform program of numeri-
cal integration (Valluri et al. 1997). For each of our four values of
N, we assigned E three different values (−2, −1, −0.5), and for
a series of values of h (400 in each case, with �h = 0.001), we
computed the corresponding values of u1 and u2 from the radicand
of equation (16). Finally, for each pair (u1 , u2), we carried out the
numerical integration of equation (16) to obtain the apsidal angle θ .

In Tables 3–6, for each of the four force laws investigated, we
tabulate the apsidal angles θ corresponding to eccentricities of
0.2, 0.4, 0.6, 0.8, as well as the apsidal angle θ 0 determined by
Newton’s or Bertrand’s formula for very small eccentricity, θ −
θ 0, and the percentage deviation of θ from θ 0. We will discuss the
calculation of the derivative column in these tables shortly. A graph
plotting apsidal angle against eccentricity, as determined by the
numerical integrations in each case was determined (Valluri et al.
1997).

Table 4. Apsidal angle and its derivative (N = 7/4).

Eccentricity Apsidal angle ∂θ/∂ N θ − θ 0

in degrees (per cent deviation)

e � 1 160.997 64.1 0
0.2 160.808 64.7 −0.189 (0.117 per cent)
0.4 160.194 66.7 −0.803 (0.499 per cent)
0.6 158.957 70.6 −2.040 (1.267 per cent)
0.8 156.438 78.5 −4.559 (2.832 per cent)
1.0 144.0 115.2 −17.00 (10.6 per cent)

Table 5. Apsidal angle and its derivative (N = 9/4).

Eccentricity Apsidal angle ∂θ/∂ N θ − θ 0

in degrees (per cent deviation)

e � 1 207.846 0
0.2 208.132 +0.286 (0.138 per cent)
0.4 209.073 144.4 +1.227 (0.590 per cent)
0.6 210.981 153.0 +3.135 (1.508 per cent)
0.8 214.929 173.6 +7.083 (3.408 per cent)
1.0 239.5 320.0 +31.65 (15.23 per cent)

Table 6. Apsidal angle and its derivative (N = 5/2).

Eccentricity Apsidal angle ∂θ/∂ N θ − θ 0

in degrees (per cent deviation)

e � 1 254.558 0
0.2 255.316 +0.758 (0.298 per cent)
0.4 257.795 +2.237 (1.272 per cent)
0.6 262.829 279.8 +8.271 (3.249 per cent)
0.8 273.275 315.1 +18.717 (7.353 per cent)
1.0 354.7 720.0 +100.1 (39.33 per cent)

In the particular case where e = 1 (Valluri et al. 1997), the integral
(16) can be reduced for N > 1 to

θ =
∫ 1

0

(uN−1 − u2)−1/2 du. (18)

which leads to the elliptic and hyperelliptic integrals. We observe
that a logarithmic function for the potential results for N = 1. This,
of course, is not the usual power law. Such a potential is unusual
for motion about a point; it is rather more typical of a line source
(Goldstein 1990). For N < 1, the potential is an increasing function
of r and the apsidal angle is π/2. This is the same for the Hooke’s
law force. Numerical integration of this formula for our four values
of N, namely 3/2, 7/4, 9/4, 5/2, gives less accurate results than the
analytical ones which were also shown for comparison (Valluri et al.
1997). The integral for e = 1 (which is the limiting value of large e
for bound orbits) can be exactly done in terms of the 
 (gamma) or
β (beta) functions given below

θ = 

(

1
2

)


[

(1−N )/2+1
3−N

]
(3 − N )


[
1− 1

2 + (1−N )/2+1
3−N

]
= 


(
1
2

)

( 1

2 )

(3 − N ) 
(1) = π

3 − N
. (19)

The derivative of θ with respect to N then becomes

dθ

dN
= π

(3 − N )2
. (20)

The values corresponding to e = 1 of dθ/dN for N = 3/2 , 7/4 , 9/4
and 5/2 are shown in Tables 3–6. θ 0 is the Newtonian value for the
apsidal angle. θ is the more exact value and the percent deviation
from θ 0 is also indicated in the tables.

It can be observed from these results that precession increases
for N > 2, and decreases for N < 2, with increasing eccentricity.
The differences θ − θ 0 are less than a degree for eccentricities less
than 0.2, but rise nearly to 100◦ for e = 1 when N = 5/2. Thus the
curves θ (e) turn away from the horizontal line θ = π as e increases
(Valluri et al. 1997).

We can use equation (16) to check the accuracy of this formula
for very small δ, although not, it seems, by a direct numerical in-
tegration: when |δ| is very small, MATHEMATICA and MAPLE labour
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for hours at the integration of equation (16), which turn out to be
improper integrals, without producing a reliable result. Instead we
have proceeded as follows. The derivative ∂θ/∂ N obtained from
formula (11) is 90◦ (arcsin e/e); this, multiplied by δ, will give the
amount of precession in a half-period. But we can obtain the deriva-
tive ∂θ/∂ N also from equation (16) by differentiating under the
integral sign. We first simplify equation (16) by expressing E and h
in terms of the limits of integration, and (as the result depends only
on the ratio u2 : u1) stipulating that u1 = 1. To achieve this, reverting
to equation (15) and setting du/dθ to 0 at u1 = 1 and u2 yields the
two algebraic equations

E + 1

N − 1
− h2

2
= 0 (21)

and

E + uN−1
2

N − 1
− h2 u2

2

2
= 0. (22)

Solving for E and h2/2 simultaneously from these two equations
results in

E = uN−1
2 − u2

2

(N − 1)
(

u2
2 − 1

) (23)

and

h2

2
= uN−1

2 − 1

(N − 1)
(

u2
2 − 1

) , (24)

where u2 is now the ratio of the greatest to the least distance from
the centre, that is, rM/rm, so that

u2 = 1 + e

1 − e
. (25)

It is of interest to note that the case of imaginary eccentricity
corresponds to orbits that plunge into the force centre and has
two solutions (which are complex conjugates of each other) given
by Hagihara (1931) and Chandrasekhar (1983). It is also worth-
while pointing out that the perihelion precession for Mercury in the
Schwarzschild space–time has an analogous expression, the sim-
plification being that one has to obtain the roots of a cubic equa-
tion (Schutz 1996). The solution in such a case would be given in
terms of the Weierstrass elliptic functions (Boccaletti & Pucacco
1996).

With the above simplifications, the integral takes the form

θ = (
ux

2 − 1
)1/2

×
∫ u2

1

[
ux

2(1−u2)+(
u2

2−1
)

ux +(
u2−u2

2

)]−1/2
du. (26)

Clearly the apsidal angle depends only on N and u2 (or e). The
derivative of θ with respect to x is shown below

∂θ

∂x
= u2

2 − 1

2
√

ux
2 − 1

×
∫ u2

1

ux
2 (1 − ux ) ln u − ux

2 (1 − ux ) ln u2[ (
1 − ux

2

)
u2 − (

1 − u2
2

)
ux + ux

2 − u2
2

]3/2 du,

(27)

where x = N − 1. This result is true for all x in the interval 0 < x <

2. The integrand has discontinuities at both limits. The integral has
a meaning by the limit process and has a finite value. Evaluating the

result at x = 1 (so that N = 2), we find

∂θ

∂x
= 1

2(u2 − 1)

×
{

π u2 ln u2 −
∫ u2

1

(1 − u2) u2 ln u2 − (
1 − u2

2

)
u ln u

[ (u2 − u) (u − 1) ]3/2 du

}
.

(28)

The integrals on the right can be given in closed form in terms
of generalized hypergeometric functions (GHGFs) and can also be
expressed in terms of algebraic and logarithmic functions, which are
given below, though much of the tedious algebra has been omitted.

∫ u2

1

(1 − u2) u2 ln u2 − (
1 − u2

2

)
u ln u

[(u2 − u) (u − 1)]3/2 du

= π u2 ln u2 − 2 π (u2 + 1)

(√
u2 − 1√
u2 + 1

)
.

(29)

The expression from the GHGF reduces to that given in equa-
tion (29). Thus, for the special case of N = 2, the exact solutions
are θ = π and

∂θ

∂N
= π

(
u2 + 1

u2 − 1

) (√
u2 − 1√
u2 + 1

)

= π

1 + √
1 − e2

= π (1 − √
1 − e2)

e2

∼ π

2

(
1 + e2

4
+ e4

8
+ · · ·

)
(30)

which is identical to the approximation (for small e) given by equa-
tion (12). This exact solution for ∂θ/∂ N (N = 2) clearly shows that
the approximate method for obtaining the apsidal angle θ given in
the paper of (Valluri et al. 1997) really uses the first derivative term
of the Taylor expansion of θ (e, N) in obtaining approximate values
for θ in the region around N = 2. Equation (12) is understandably
not an approximation in the usual sense and is much more accurate
than equation (11).

We have checked by numerical integration, and have thus evalu-
ated equation (28) for the values of u2 that correspond to eccentrici-
ties of 0.2, 0.4, 0.6, 0.8, namely 3/2, 7/3, 4 and 9. The results of our
comparison, in degrees per unit N, are shown in Table 7.

We can also compute ∂θ/∂h, where h(e, N) is the angular mo-
mentum of the orbit. Though h is constant in the Kepler case, in
systems where dissipation is important this constraint vanishes, and
the induced precession can be modelled by a consideration of ∂θ/∂h.

By the chain rule

∂θ

∂N
= ∂θ

∂h

∂h

∂N
(31)

where we have used θ = θ (N , e) or θ = θ (N , h). Therefore

∂θ

∂h
= ∂θ

∂N

(
∂h

∂N

)−1

. (32)

Table 7. Derivatives of (∂θ/∂ N ) (N = 2) for different eccentricity e.

e (29) (12) Quartic Cubic Finite difference

0.2 90.92 90.92 89.98 89.97 89.98
0.4 93.92 93.89 92.96 92.94 92.96
0.6 100.00 99.56 98.97 98.98 98.99
0.8 112.50 109.01 111.50 111.40 111.39
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From equation (24) we can compute

∂h

∂N
= 1

h

(
uN−1

2 (N − 1) ln u2 − uN−1
2 + 1

(N − 1)2
(

u2
2 − 1

)
)

. (33)

Combining equation (33) with equation (30) we obtain

∂θ

∂h
= πh(u2 + 1)(

√
u2 − 1)

(
(N − 1)2

(
u2

2 − 1
))

(u2−1)(
√

u2+1)
(

uN−1
2 (N −1) ln u2 − uN−1

2 +1
) . (34)

This equation will be singular where the denominator is zero. This
criteria in particle-scattering theory determines the location of scat-
tering resonances. Given the importance of resonances to the grav-
itational N-body problem, we examine this situation further.

Assuming e < 1 and taking the case N = 2, the denominator of
equation (34) is zero where

u2 ln u2 − u2+1 = 0. (35)

From a mathematical view point, it is interesting that this equation is
related to the Lambert W function f (W ) = W exp(W ) (Corless et al.
1996). Rewriting equation (35) we find

1

u2
= −W0[−exp(−1)], (36)

where W 0 is the principal branch of the multivalued Lambert Wk

function with branch index k = 0. Recalling that u2 = (1 + e)/
(1 − e), the solution to this equation is u2 ≈ −3.5911214 or e ≈
1.77. This is in conflict our earlier assumption of an elliptic orbit,
and indicates this condition is not satisfied on the principal branch
for N = 2. The trivial solution u2 = 1 gives e = 0 for which the
apsidal line is not defined.

We also present the values of the derivatives obtained by appli-
cation of Lagrangian interpolation and finite difference methods to
the data points of Tables 3–6. The use of all five data points gives
a quartic equation whereas we obtain two cubic equations by use
of the first four and last four data points. The slope of the curve at
N = 2 is obtained from a single differentiation of the quartic; the
slopes for the cubic at N = 2 are averaged. The results from both of
these methods agree very nearly (Wilson, private communication).
The values in Table 7 are in good agreement with each other; the
discrepancies from the correct values are less than or about 1 per
cent of the correct values. This deviation is possibly owing to the
scarcity of data points. We conclude that the curves θ (e) are smooth.
Another way to show this is to use the first derivative given in equa-
tion (30), which indicates that the first-order approximation of θ (e)
in the vicinity of N = 2 is a smooth function for all e. Equation
(30) can be used to determine θ in the neighbourhood of N = 2 for
all e. The derivative of the complete solution of the Mathieu–Hill
differential equation with respect to δ(=N − 2) gives a smooth and
finite value (Valluri et al. 1999).

We observe that Newton’s formula implies that ∂θ/∂ N is always
90◦ for x = 1 (N = 2) irrespective of the eccentricity e. The inte-
gration of equation (28) shows that, for an eccentricity of 0.2, our
factor arcsin e/e gives an apsidal precession that is 0.34 per cent
shy of the correct value. With this correction, Asaph Hall’s value
of δ gives 43.35 arcsec of precession per Julian century, differing
from the empirical value he assumed (43 arcmin) by less than the
observational uncertainty.

It is instructive to present plots of θ , ∂θ/∂ N , E and h versus e or
1/u 2 (=rm/rM) for select values of N. e and N act as independent
variables for θ , ∂θ/∂ N , E and h, which depend only on N and e.
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Figure 1. The function I(e) for different values of N: (a) N = 3/2, (b)
N = 7/4, (c) N = 9/4, (d) N = 5/2.

Parts (a)–(d) of Figs 1–6 study the variation for

(1) ∂θ/∂ N (=I ) as a function of e for different N,
(2) θ as a function of e for different N,
(3) E as a function of e for different N,
(4) E as a function of N for different e,
(5) h as a function of e for different N,
(6) h as a function of N for different e.

The values of I increase for higher N. Figs 7 and 8 show the three-
dimensional graphs for E(e, N) and h(e, N). Figs 9 and 10 show the
three-dimensional graphs for θ (e, N) and ∂θ/∂ N (e, N ).

We have also asked the following interesting question: is it pos-
sible that, with the eccentricity increasing in a continuous fashion,
the apsidal precession might diminish continuously and finally, at
some value of the eccentricity, become zero? We could not find any
evidence for such isolated cases of apsidal quiescence.
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Figure 2. The function θ (e) for different values of N: (a) N = 3/2, (b)
N = 7/4, (c) N = 9/4, (d) N = 3/2.
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The Logarithmic Potential (N = 1): The logarithmic potential is a
planar non-axisymmetric power-law potential. Touma & Tremaine
(1997) have studied the dynamics of eccentric orbits for such a po-
tential as well as their power law obtained by a symplectic mapping.
They study the orbit structure of non-axisymmetric potentials rele-
vant to galaxies. In the case of a scale-free spherical potential the
expression for the precession rate (in their notation)

g(α, y) = 2 h(α) y

∫ [
2 ln u − u2 y2 h2(0)

]1/2
du, (37)

where α = 0 is the logarithmic potential, h(0) = e−1/2, y = L/Lc(E)
for −1 � y � 1. E = 1/2 + ln rc (α = 0 is the dimensionless angu-
lar momentum (for a circular orbit with radius rc). Here, Lc(E) =
e−1/2 eE ≡ h(0) eE and g(α, y) = 2 π Pr/P φ where Pr and Pφ are
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Figure 9. Three-dimensional graph for function θ (e, N).

the radial and azimuthal periods. For near radial orbits, they find

limy→0± g(α, y) ≡ ±g0(α) = ±π (α � 0).

In general, the precession rate is a function of the energy of the
orbit. The symplectic map remains unchanged. The value will be
halved for half of the complete orbit.

We were able to obtain this value by first finding the roots of the
denominator of the integrand by the use of the function (Lambert
W function), one that has seen a renaisssance among physicists and
mathematicians in recent years (e.g. Cranmer 2004; Warburton &
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Figure 10. Three-dimensional graph for function ∂θ
∂N (e, N ).

Table 8. Numerical integration results for g0(α).

h(0) y(0) E Integral

1 e− 1
2 3.314201e-2 −e−1 3.14168841052944936010

2 e− 1
2 12.257e-3 −e−0.844 3.14164760003483989337

3 e− 1
2 20.01375e-4 −e−0.84303 3.14149690810185111545

Wang 2004). The definition of W is that it is the multivalued function
that solves the equation (Corless et al. 1996)

W eW = Z (38)

where Z is complex.
The integral∫ 5

0.37

2 y(0) h(0)√
(2 x + 2 E)e−2x − y2(0) h2(0)

dx (39)

was evaluated using a ten-point Gaussian quadrature C program.
The limits of integration are the roots of the radical in the integrand.
These were obtained from a MAPLE plot. The results are summarized
in Table 8. As expected, the integral evaluates to π. Also note that
varying h(0) will result in a wider range of y(0) values. It should be
pointed out the roots of the denominator of the integrand, (2x + 2E)
e−2x−y2(0) h2(0), determines the limits of the integration.

Touma & Tremaine (1997) provide an asymptotic power series for
g(α, y) by use of the Mellin transformation followed by the inverse
Mellin transformation.

Newton had found, in orbits differing from circles, very special
force laws giving rise to orbit closure. He assumed it quite unlikely
that such closure could arise under other laws for isolated values of
the eccentricity e – clearly a radical departure from the systematic
order he helped discover. He rightly inferred in Proposition I.45 that
the relation between force law and orbit shape was one of mutual
implication. Modern classical mechanics proves that zero precession
implies the inverse-square force law by means of the Runge–Lenz
or eccentricity vector – a vector which points from the origin to the
pericentre, and is a constant of motion if and only if the force is
inverse square (Chandrasekhar 1995; Goldstein 1975). The Runge–
Lenz vector of length e in the orbital plane ensures the fixity in
space (or in Newton’s terminology ‘the quiescence of the aphelion
points’) of the direction of the major axis of the elliptic orbits.
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Newton’s assurance was more, perhaps from a general view of the
relation between the orbital species and central force types. From
Proposition 9 and 41 of Book I he proved that for the 1/r3 force
law, the path of the body will be an equiangular spiral, spiralling
into the centre or out to infinity unless the initial conditions are just
right for circular motion. Thus for the force law 1/r3, there can be
no apsides. Here the force law determines the character of the curve,
and conversely.

In his correspondence with Hooke during 1679–80 (see Turnbull
1960; Nauenberg 1994), Newton argues that in a uniform central
force field [ f (r ) = constant], a projected body would move in a
trajectory something like a trefoil but not reentrant. The angle then
between upper and lower apse would be between 90◦ and 180◦. It
seems likely that he constructed this orbit in discrete steps using
the fact that the curvature goes directly as the force and inversely
as the square of the velocity, and in addition using the reflective
property for any orbit in a central force field (Nauenberg 1994):
the trajectory from apo to pericentre is obtained as a mirror im-
age of the trajectory from peri to apocentre, combined with a ro-
tation. Constructing the orbits in discrete steps is a process that is
unavoidably inaccurate. Proposition 45 proves his generalization
for the apsidal angle for cases in which eccentricity is negligible.
Only in two cases would the orbit be fixed and reentrant: when
N = 2, and when N = −1. In the second edition of the Principia,
Newton showed these two reentrant orbits to be dual to one another
in the following sense: the law of force for the one can be derived
from that for the other by an appropriate shift in the centre of force
(from focus to the centre of the ellipse or vice versa). Both these
orbits are related by a quadratic mapping in the complex plane.
Moreover, Newton’s work has given an amazingly modern proof
from a topological perspective of the transcendence of Abelian in-
tegrals as it was based on the topology of Riemann surfaces (Arnold
& Vasil’ev 1989). We believe that Newton’s precession theorem is
also of interest from the perspective of the invertibility of Abelian
integrals relative to algebraic curves, the genus of the corresponding
algebraic equations and the Lambert W function. Riemann’s meth-
ods based on the topology of Riemann surfaces will be relevant in
such a study (Nobile 1908).

4 C O N C L U S I O N S

We have shown that the apsidal angle θ (N, e) for each N in the
interval (1, 3) is a smooth and continuous function of e. We have
also applied the analytical results to the calculations of the lunar
orbit and Mercury’s perihelion. In addition, we found that ∂θ/∂e,
∂2θ/∂e2, ∂θ/∂ N and ∂2θ/∂ N 2 are all continuous, i.e. there is no
evidence for isolated cases of apsidal quiescence. The apsidal angle
and its derivative are also calculated for the special case e = 1 in
the interval 1 < N < 3.

From a physical point of view, the slow lunar precession of 1.◦5
per half revolution owing to the action of the Sun perturbing the
Earth–Moon system or the precession of the perihelion of Mercury
does indicate that the precession theorem can be used to measure
inverse-square variation even if precession owing to perturbation is
present. For any body in orbit for which perturbation accounts for all
of the precession, the zero unaccounted for precession counts as a
null experiment measuring inverse-square variation. Increase of the
eccentricity increases the amount of precession that results owing to
a deviation from the inverse square. This suggests a null experiment
with the absence of unexplained orbital precession a more appro-
priate measure of inverse-square variation of a centripetal force.
Exciting possibilities are offered by recent discoveries of asteroids

and extrasolar planets. These bodies provide new opportunities for
new high-precision tests of the form of the gravitational force law.

The introduction of mean gravitational field potentials generated
by many bodies to study the motion of a single body under the rea-
sonable assumption that it does not appreciably disturb the external
field is a useful technique particularly in the study of the difficult
N-body problem. Such an approach offers interesting aspects of a
variety of applications in galactic dynamics and other fields. In such
a context, spherically, axially and spheroidally symmetric potentials
are of relevance (Boccaletti & Pucacco 1996) and mathematically
tractable. Some of the mathematical analysis in this paper might be
useful in such a study.

In addition, recent findings of satellites of asteroids raise interest-
ing questions on the formation and the gravitational non-spherical
potentials or force laws that describe their interaction. Touma &
Tremaine (1997) have shown that potentials relevant in the mor-
phology of orbits in triaxial potentials determine the structure of
triaxial galaxies. Power-law potentials generated by power-law den-
sities have singular behaviour and they indicate that such potentials
could also be caused by massive BHs at the centres of many nearby
galaxies. The high-resolution Hubble Space Telescope (HST) pho-
tometry of nearby elliptical galaxies and spiral bulges has provided
support for the relevance of power-law potentials. Such studies as
well as those on gravitational wave sources associated with the or-
bital decay of binary BH pairs that raise interesting questions on the
coordinate dependence of semimajor axis and eccentricity (Damour
& Deruelle 1985; Junker & Schaefer 1992) may further elucidate
features of orbital dynamics.
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