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I. The fundamental inequality

1. To every neighborhood on a Riemann surface there is given a map onto

a region of the complex plane. For any two overlapping neighborhoods the

corresponding maps are directly conformai.f We agree to denote points on

the surface by ro, corresponding values of the local complex parameter by w.

We introduce a Riemannian metric of the form

(1) ds = X | dw |,

where the positive function X is supposed to depend on the particular parame-

ter chosen, in such a way that ds becomes invariant. The metric is regular if X

is of class C2. In this paper we shall, without mentioning it further, allow X to

become zero, although such points are of course singularities of the metric.

It is well known that the Gaussian curvature of the metric (1) is given by

(2) K = - X"2A logX,

and that this expression remains invariant under conformai mappings of the

70-plane. We are interested in the case of a metric with negative curvature,

bounded away from zero. It is convenient to choose the upper bound of the

curvature equal to —4. From (2) it follows that the corresponding X satisfies

the condition

(3) A log X ^ 4X2.

When we set u = log X this is equivalent to

(4) Am ^ 4e2".

The hyperbolic metric of the unit circle \z\ < 1 is defined by

(5) aV = (1 - | 3 I2)"11 dz\

and has the constant curvature — 4.

2. Consider now an analytic function to=/(z) from the circle \z\ <1 to a

Riemann surface W. The analyticity is expressed by the fact that every local

parameter w is an analytic function of z. To a differential element dz corre-

sponds an element dw whose length does not depend on the direction of dz.

The corresponding value of ds=\\dw\ = X*|dz|   is therefore uniquely de-

* Presented to the Society, September 8, 1937; received by the editors April 1, 1937.

t For the definition of a Riemann surface see T. Radó, Über den Begriff der Riemannschen Fläche,

Acta Szeged, vol. 2 (1925).
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termined, and we have \z=\\w'(z)\. It is also seen that » = log \z satisfies

the condition (4) whenever the given metric has a curvature ^ — 4. An ex-

ception has to be made for the possible zeros of X*, corresponding to the zeros

of Xand w'(z).

Theorem A. If the function to =f(z) is analytic in \z\ < 1, and if the metric

(1) of W has a negative curvature iS—4 at every point, then the inequality

(6) ds ^ da-

will hold throughout the circle.

Proof : Choose an arbitrary R < 1 and set v = log R(R2 —\z\ 2)_1 for | z\ <R.

We note that Av = 4e2" and consequently

(7) A(m - v) ^ 4(e2" - e2").

Let us denote by E the open point set in \z\ <R for which u>v. It is

clear that E cannot contain any zeros of X,. Hence (7) is valid and shows that

u — v is subharmonic in E. It follows that u — v can have no maximum in E

and must approach its least upper bound on a sequence tending to the

boundary of E. But E can have no boundary points on \z\ =R, for v becomes

positively infinite as z tends to that circle, and at interior boundary points

we must have u — v = 0, by continuity. A contradiction is thus obtained, un-

less E is vacuous. The inequality u^v consequently subsists for all points

with \z\ <R, and letting R tend to 1 we find u ^ —log (1 — | z\2) at all points.

This is equivalent to (6).

If W is the unit circle and ds its hyperbolic metric, Theorem A is simply

the differential form of Schwarz's lemma given by Pick.*

3. Several generalizations of the theorem just proved suggest themselves

at once. Since the only thing we need is to prevent the function u — v from

having a maximum in E, it is obvious that the assumptions on X can be con-

siderably weakened, without affecting the validity of the argument. We shall

give below two such generalizations which are found to be particularly useful

for the applications.

Theorem Al. Let X be continuous and such that at every point, either

(a) the second derivatives of « = log X are continuous and satisfy (4), or (b) it

is possible to find two opposite directions «', n" for which du/dn' +du/dn" >0.

Then the statement of the previous theorem is still true.

Opposite directions in the w-plane correspond to opposite directions in the

z-plane. At a maximum of u — v we have du/dn g dv/dn in any direction, when-

* An account of all questions related to Schwarz's lemma will be found in R. Nevanlinna,

Eindeutige analytische Funktionen, Springer, 1936, pp. 45-58.
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ever the directional derivative exists. For opposite directions dv/dn'+dv/dn"

= 0; hence du/dn' +du/dn"^0 in case of a maximum. It follows that no

maximum can be attained in points satisfying condition (b).

We shall call ds' =\'\dw\ a supporting metric of ds=\\dw\ at the point

Wo if : (1) X' =X at wo, (2) X' is defined and ^X in a neighborhood of w0.

Theorem A2. Suppose that X is continuous, and that it is possible to find a

supporting metric, satisfying (4), at every point of W. Then the inequality (6)

still holds.

If u—v>0 at z0, then u' — v will also be positive, and consequently sub-

harmonic, in a neighborhood of z0* A maximum of u — v will a fortiori be a

maximum of u' — v. Hence u — v can have no maximum in E.

II. Schottky's theorem

4. As a first application we prove Schottky's theorem with definite nu-

merical bounds.

Theorem B. If f(z) is analytic and different from 0 and 1 in \z\ <1, then

(8) log | fis) | < \^- (7 + log | /(0) | )
1 — 6

for\z\ ^0<l.t

Let £"i=fi(w) map the region outside of the segment (0, 1) onto the ex-

terior of the unit circle, so that w = oo corresponds to fi = °o, w = 1 to ft = 1,

and w = 0 to ft = — 1. We also set Ç2(w) =ft(w_1) and ft(w) =ft(l — w). Clearly

these functions define similar maps of the regions outside of the segments

(1, oo ) and (— oo, 0). Explicitly, ft(w) is obtained from the equation

(9) ft + fr] = 4w-2.

We introduce the coordinates pi = | w \, p2 = | w — 11 and divide the plane

into regions Oí." piel. Piel; ft: Pial, Piáp»; ß«: piel, PiSpi- The metric

I d log f i I .       .
(10) dsi =-    i,     = X¡   aw
__ 2(4 + lpgf | r41 ) '       '

* u' corresponds to X' as u to X.

f Schottky's original theorem was purely qualitative. Numerical relations have been studied at

great length, notably by Ostrowski {Studien über den Schottky'sehen Satz, Basel, 1931, and Asymp-

totische Abschätzung des absoluten Betrags einer Funktion, die die Werte 0 und 1 nicht annimmt, Com-

mentarii Mathematici Helvetici, vol. 5 (1933)), but no simple inequality comparable with (8) has

ever been proved.

Added in proof: Numerical bounds of the same order of magnitude are found by A. Pfluger,

Über numerische Schranken im Schottky'sehen Satz, Commentarii Mathematici Helvetici, vol. 7

(1935). His proof depends on the use of modular functions, while ours is strictly elementary.
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is readily recognized as the hyperbolic metric of a half-plane with the con-

stant curvature — 4. Computing the derivatives f / (w) we find

Xfl = 2(piP2)i'2(4 + log I fil),

(11) Xr1 = 2piP2i'2(4 + log |f, I),

Ar1 = 2p2Pii'2(4 + log |f3|).

We now set ds=\\dw\ with X=X, in fl,-. This metric is regular and satis-

fies condition (3) except at the singular points 0, 1, » and on the lines sepa-

rating the regions ßj. On these lines X is still continuous, as seen from (11)

and the relations between fi, f2, and fs.

Next we wish to show that condition (b) in Theorem Al holds on the

singular lines. We consider the arc pi = 1, p2 > 1 and choose »', n" as the outer

and inner normals of the circle. The required condition is

a a a       Xi
-log Xi H-log X2 =-log — > 0.
dn' an" an'    & X2

From (11) we obtain
a

-log
a Xi        1        dn'

1Qg — = — -
dn'        X2       2        4 + log | f 11

which is also equal to

1 a$i
--2(4 + log kil)"1—.
¿ dtp

where $x = axgÇx,tp = &xgw. For $>i we have the simple relation cos<£i = pi—p2,

which for pi = 1 becomes cos $>i = 1 — 2 sin <p/2. Differentiating we find

a*!       1 (^   _ tf>\"2

dtp
-t(1+csct)'

and by use of the inequalities ir/3^tp^5ir/3, |fi| >1, we are finally led to

the desired result,

a Xi       1      3112
-log — >-> 0.
dn'        X2       2        4

By symmetry, the same must be true for the arc p2 = 1, pi > 1. The trans-

formation w' = (1 — w)-1 takes ßi into ßü and ß2 into ß3. Since the function X is

invariant under the transformation we conclude at once that condition (b)

will hold also on the line separating ßü and ß3.

From Theorem Al we can now conclude that w=f(z) satisfies the differ-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1938] EXTENSION OF SCHWARZ'S LEMMA 363

ential inequality X| dw\ ^ (1 — | z\ 2)-1| dz\. Integrating, we find that the short-

est distance between the points/(0) and/(z), \z\ =6, measured in the metric

ds=\\dw\, cannot exceed [log (l+0)/(l -0)]/2.

The shortest path between the circles px=m and pi = M, where M > m ^ 2,

is a segment of the negative real axis, whose length is found to be

1 4 + log | U- M) |
log

2 4 + log | fi(- m)

To simplify we introduce the lower and upper bounds |fi( — M)\ H^4M,

| Ti(—*») | ^ 5m. Setting M = \f(z) | and m equal to the greater of the numbers

|/(0) | and 2 we obtain

1 + 0
4 + log 4M ^-(4 + log 5m).

1 — 6

Here log 5»* ̂ log 10+log |/(0) | <3 +log |/(0) | and we find

4 + lo

which is stronger than (8).

1 +0 +
4 + log 4M <-(7 + log | /(0) | )

1 — 6

III. Bloch's theorem

5. Let w=f(z) be analytic in \z\ <1 with |/'(0)| =1. Let B'=B'(f) be

the l.u.b. of the radii of all simple (schlicht) circles contained in the Riemann

surface IF generated by/(z). Bloch's theorem is P = min P'>0. Landau has

proved P>.396.* Grunsky and Ahlfors proved in a recent paperB<.472.f

We show that the method developed in this paper gives an immediate

proof of Bloch's theorem with a better lower bound for B. For an arbitrary

point to on W let p(to) denote the radius of the largest simple circle of center to

contained in W. It is clear that p(to) is continuous, and equal to zero only

at the branch-points. We introduce the metric ds =X| dw\ with

OT » - 2„,„¿ _ ,) <> " •»)

and w denoting the variable of the function plane (not the uniformizing

variable). A is a constant satisfying the preliminary condition A2>B'.

In the neighborhood of a branch-point a we have p= | w -a\. Let « be

the multiplicity of a; then wx — (w — a)lln is a uniformizing variable, and

* E. Landau, Über den Blochschen Satz und zwei verwandte Weltkonstanten, Mathematische

Zeitschrift, vol. 30 (1929).

t L. V. Ahlfors and H. Grunsky, Über die Blochsche Konstante, Mathematische Zeitschrift, vol. 42

(1937). The result was found independently by R. M. Robertson.
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the corresponding Xi is determined from Xi|da>i| =X|dze>|. We obtain

Xi = »p1/2-1/"/2(^42 — p), and it is seen at once that the metric is regular

in case w = 2 and that Xi becomes zero in case «>2.

We wish to apply Theorem A2 and therefore look for a supporting metric

satisfying the requirements of that theorem. For a regular point h)0 the sur-

rounding circle of radius p(to0) must pass through at least one singularity 6

which is either a branch-point or a boundary point for the surface. We set

p' =\w — b\ and define X' = j4/[2p'1/2(.42 —p')]. This metric has the curvature

— 4 for it is obtained from the hyperbolic metric of a circle by means of the

transformation w' =w112. In all points of our circle we have p 5»p' by the defi-

nition of p. The inequality X' ¿X is therefore satisfied in a neighborhood of ro0

if the function tll2(A2 — i) increases for t^p(tDo). Under this condition X' will

be a supporting function of X, for at the center wa we have X' =X. The function

tll2(A2 — t) is increasing as long as t<A2/3. Consequently all the conditions

in Theorem A2 are fulfilled if we suppose that ^42>3-B'.

Apply the theorem with z = 0. Using the condition | dw/dz|»_0 = 1 we get

(13) A = 2po"2(A2-po),

where p0 is the radius of the largest simple circle with center at the image of

z = 0. The function in the right member of (13) is increasing, and we can re-

place po by B' obtaining A ^2Bni2(A2-B'). Letting A tend to (3£')1/2 we

finally get 5'è31/2/4. This implies that Bloch's constant B ^31'2/4>.433.

On the other side, if we insert A 2 = (3B')1/2 in (13), lower and upper bounds

for po in terms of B' can be found.

6. Landau has considered a closely related constant L. Let V = L'(f) be

the l.u.b. of the radii of all circles in the w-plane contained in the projection

of W, that is, whose values are taken by the function w=f(z), |/'(0)| =1.7.

is defined as the minimum of all such L'. Clearly, L^B.

The method employed above is immediately applicable if we choose

X=(2p log C/p)~l. This metric is regular at all branch-points, and when we

replace p by the distance p' from a fixed boundary point, the curvature be-

comes —4. In order that the function X' thus obtained be a supporting

function it is sufficient that t log C/t is increasing. This is true for t<Ce~l.

We therefore choose C>eL', obtaining the inequality 1^27/ log C/L'

as above. Letting C tend to eL' we find V S: 1/2 and hence 7,^ 1/2.

This lower bound is the best known. It shows in particular that L > B*

Harvard University,

Cambridge, Mass.

* In the other direction R. M. Robinson has proved Z,.<.544. This result has not been pub-

lished.
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