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ABSTRACT - I build a new statistic for the 
characterization of frequency stability of clocks  and 
oscillators. It improves on the traditional Allan 
variance statistic especially at long averaging times. 

INTRODUCTION AND SUMMARY 

The impulse response of the commonly used 
technique of differencing of independent random 
variables overlaps (correlates) "odd" and "even" 
deviates except the first and  last one if the data are 
not wrapped. This implies there are about twice as 
many deviates as there are actual degrees of freedom 
in the mean-square, and  the resulting sample Allan 
variance is appropriately divided by 2(M-1). We 
obtain 

where {ykt], k' = 1,2,3,. . . ,N-l are fractional 
frequency differences averaged over 7, and {yk}, k 
= 1,2,3,. . , ,M are fractional frequency differences 

averaged over interval m7,. Hence 6,- is implicitly 
dependent on dimensionless quantity m, a scale 
parameter which for efficiency can be limited to 
rational powers of 2,  i.e.,  2'=m,  i=0,1,2,3 ,... 

2 

The sample Allan variance is useful as a power-law 
(octave band) spectral estimator but  is time-shift 
(phase) sensitive and depends on where we start the 
calculation with  respect to data in process. For large 
data sets and small scale values of m, the odd and 
even deviates average together in the equation for a 
fairly accurate estimation of a broadband spectral 
distribution or variance of first differences. The 
division by 2(M-1) is arguably due to overlapping 
two sets of deviates but ought to approach M-l for an 

accurate estimate in the statistic as m7, +. T/2 since 
the first and  last deviates do not overlap (unless the 
data are wrapped). Under most conditions, wrapping 
the data improves the estimate. However, at the 
largest scale, the estimate degrades for another 
reason, namely the sample variance has  no response 
to an  evenly symmetric function at this scale. These 
reasons cause an estimation error or what can be 
misinterpreted as a "bias" at long intervals in 
virtually all cases even though the estimation is 
actually unbiased. 

Realizing this, we can re-express deviates in terms of 
"in-phase'' and "phase-shifted'' versions of sample 
variances. Examining this result reveals that the 
argument in the  sample  Allan variance above is 
essentially twice the in-phase variance only. Shifting 
the observation or sampling window by T~ and 
wrapping the data with an overall frequency 
difference removed  will conveniently yield N-l 
sample variances which  can  be averaged with the 
usual in-phase sample Allan variance. For (y,,} = 
y . . , y N-l ,  this statistic is given by 
- - 

DISCUSSION 

This paper presents a very simple example which 
shows a common and heretofore undiscussed pitfall 
in  the calculation of the sample version of the Allan 
variance for long averaging times 7. The sample 
Allan variance is preferred over the modified 
variance for long-term frequency stability estimation 
since 7 can be as long as T/2 whereas 50% more data 
length is required overall for the modified version 
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using the same 7.  The concepts of this paper can 
easily be extended to the modified variance however. 

In frequency-standards metrology, measurements  of 
average relative frequencies are passed through a 
first-order high-pass filter which is used for removing 
nonstationary behavior [Box  and Jenkins, 19701. A 
digital (discrete) version of such a filter (known as 
finite impulse response or FIR) is routine for creating 
stationary variates from original nonstationary 
variables with a "red" PSD having a power-law noise 
process no steeper than ccf2 [Rabiner and Gold, 
19751. Furthermore it necessarily correlates 
otherwise random uncorrelated measurements 
assumed to  be independent [Beran, 19921 [Box, 
Hunter, Hunter, 19781. The sample variance of 
overlapping (not necessarily maximally overlapped) 
first-differences quantifies spectral features of the 
data using a smooth broadband, constant-Q, 
equivalent frequencydomain response [Allan, Weiss, 
Jespersen, 19911 [Howe and Percival, 19941. This 
filter unfortunately has deep nulls at the reciprocal of 
the averaging time and its harmonics. For broadband 
noise, a sequence of many overlapping deviates is 
averaged; hence there is an average of as many 
arbitrary phases associated with an equivalent 
frequency-domain filter. However, for long scales, 
the nulls in the filter response can dramatically affect 
the result because averaging cannot be claimed as an 
advantage since only one or two deviates may be 
involved. The problem is that particular stochastic 
processes having even functional symmetry over the 
finite observation can put virtually all of the noise 
power precisely in the filter's nullpoints at the longest 
scale. 

FIR filter concepts are used  in this paper because 
they relate directly to the nth-order differences used 
in the statistics quantifying frequency stability. They 
also help clarify the problem addressed in this paper 
in using the sample Allan variance. 

To begin, the N-sample standard variance is not 
convergent for the often encountered case  of  red 
noise processes of the measured relative phase of an 
oscillator {xk'}; it is highly variable with averaging 
time 7=m7, or correspondingly half of the reciprocal 
sampling frequency and its aliases. We assume  that 
differencing techniques allow probability theory to be 
applied to such non-convergent time series. 
Differencing creates the new series { x ' ~ , .   . . , x ' ~ - ~ }  
formed from the original series {xI, ..., xN} by the 
"V" operator as [Brockwell and Davis, 19871 

Essentially, differences of high enough order "pre- 
whiten" measured data which  is then subject to 
classical statistical treatment. A first-difference of 
average frequency has proven to be a simple and 
adequate whitening filter for oscillators [Barnes, et 
al., 19711. Thus the two-sample (first difference) 
standard variance of frequency was one of the first 
suggested frequency stability measures [Allan, 19661. 
Briefly, it is (using the notation in [Allan, 19661): 

2 2 o$r) = Ud(2,T =T). 

All measurements are discrete, not continuous. 
Interval Ak is taken to be minimum (denoted in a 
time series by T ~ )  with other longer intervals given by 
mAk (denoted by T), where m = 1,2,3,. . . .for 
efficiency however m is often limited to increments 
of rational powers of 2, i.e.,  m=2', i = 0,1,2,3, .  . . 
More specifically, we start with assumed independent 
discrete variables {Xk,}, sampling (spatial or 
temporal) interval Ak (separating time marks tk'  if a 
time series), and m which designates the shift or 
"stride" in an unprimed index k derived from k' such 
that k is incremented once for every mth increment of 
k'. Hence k = k'/m, and  mAk (i.e., 7) is the 
physical spacing or scaling of measurements within 
total observation M or T for k = 1,2,3, .. . ,M. 
Recall that M and T are actually dimensions of space 
or time which are proportioned to dimensionless 
integers for mathematical convenience. Although 
confusing, averaging-time dimension "7" is often 
used  in  the context of statistics having dimensionless 

Ak, k, and M such that ~ - - 

commonly, the unprimed index k has an implied scale 
m and {Xk,,,} is a sequence with spacing mAk of 
measured  phase differences between two oscillators; 
{y,,,} are average frequency differences. That is 

- Most 
M T 

5 I - -  l 
Ys,=ys,(rkl-mro,rkr)=- 1 y ( r ? d t / =  

m ~ O t k , - n t S ,  (3) 

Xkl-m(rkl -mzo) - 'kkrkl) - xk-l,m-xk,m 

mz0 m70 

Additionally, an important procedure assumed in this 
paper is  that overall frequency difference (Ay,+N) is 
removed. This means  that xN = x1 which without 
loss could be set to 0. From eq (1) and  eq (3) it 
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- l /  ykf = --x,,, and generally 
=0 

By removing  an initial time offset, we  can construct 
{vkf} from {xk'] and vice-versa. 

If process  {yk,,}  is white, eq  (2) is equivalent  to 

where  {vk,,}  is  an infinitely long series of 
nonoverlapping  averaged discrete measurements of 
process y(t); the averaging  time is given  by m7, = 7; 
I' < > " denotes an infinite-time ensemble average; 
and k(origin) = 6. We of course  never  can calculate 
this variance  but  can calculate a statistic which serves 
as  an estimate. We often refer to a calculation of 
"the  variance" when  we usually mean "the statistic" 
or sample variance. 

If series {yk} is derived  from a continuous function 
y(t), the fractional frequency difference of  two 
oscillators, then  we  must infer that  each  sampled 
random variable is an  average over 7=m7,.  The 
recommended  sample  variance of first-differences of 
{yk] (denoted hereafter as  AVAR)  is 

Equation (3) can  be  combined  with  eq (6) for AVAR 
in  terms  of {xk'}. The  elements Yk+l - yk (called 
"deviates") corresponding to a particular value  of 7 

derive from  changes  in  the data having a 

corresponding  frequency  of - (and its aliases) 

and a corresponding  phase  given by the starting point 
at k =k(origin)  [Howe, Allan, Barnes,  19811.  The 
sample  variance is therefore not  only  dependent  on 7 
but is additionally always phase-sensitive, i.e., 
dependent on where  we start the calculation with 
respect to data in process. 

2r 

Although this paper  is  not directly about  an 
inconsistent statistic due to an  improper  number of 
degrees  of freedom, the improper  normalization or 
scaling by degrees  of  freedom for short data lengths 
also create an obvious inaccuracy or bias in its 

corresponding statistic. Briefly, inaccuracy or bias 
can be quantified using  simulated data by  an 
inconsistent trend (given by the slope) of the 
calculated statistic decomposed  as a function  of 7 or 
equivalently what is called the power-law 
characterization (again the slope) of  an  estimated 
power spectral density (PSD). The  division by 2(M- 
1) in eq (6) is justified by  the  argument that the two- 
sample  variance  in the infinite limit is the same  as the 
standard  variance  (which divides by M-l only) for  a 
white  Gaussian  power-law  process since the cross 
product of (yk+1-Tk)2 goes to zero yielding (yz+l+z). namely, the sum  of  two  standard 
variances shifted by mAk. For M = 2Ak  and  M = 
4Ak, eq (6) has finite impulse  response (FIR) or 
"convolving function" shown in figure l(a) and l(b). 

h(mAk) 
A 

h(mAk) 
t 

(a) m=) (b) m = 2  

Typ~ca firs-wder high-pass impulse responses; mAk=k.  
Devlates (xk,, - x,) are from adjacent random  variables. 
The usual variance  overlaps adjacent deviates. 

Fig.  1 

The sample  variance of first-difference deviates is an 
average  of these squared deviates at spacings of mAk 
within  the total observation  M as shown in eq (6). 
Adjacent deviates are not  independent.  Each  element 
(yk+l-yk) is  half  of the preceding  and  following 
elements (except for the first and last).  For example, 
element ( y3-y2) is not  independent  of  preceding 
element (y2-y,) since both  elements  equally  include 
y2. Similarly, the following  element (y4-y3) 
contains y3 .  As a result the variance will correlate 
each  element  even  though the original data is 
uncorrelated (as is the case  with a white  Gaussian 
process) [Yoshimura,  19761.  This correlation 
vanishes at the longest scale because deviates no 
longer overlap, that is, as  mAk + M, there are no 
overlapped deviates; in this case therefore the 
division (or normalization)  should  be M-l in eq (6) 
rather than 2(M-1). Wrapping the (xk'}  data allows 
2(M-1) to be  used  even  at the longest scale and  hence 
is a way to get  around this particular long-scale bias. 
Wrapping  means  that x< = xSmodN  for < 1 and 

- -  

- -  
- -  

- - -  
- 
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q > N ,  i.e., x1 = x ~ + ~ .  An assumption of 
stationarity implies that the wrap can be applied. The 
procedure also must include matching the endpoints 
(i.e.,  xN=xl) of {xk') to avoid a step in the wrapped 
data. This, as mentioned, is  easily done when an 
overall frequency difference is removed. We must 
eliminate the increment xN  to in the wrap to 
avoid a potential bias since they are made the same 
value. Furthermore we  must  pay attention that N is 
even (N-l is odd) because  AVAR (in terms of  {xk'}) 
is a second difference of distinct phase values and 
could inadvertently respond with 0 at the longest 
possible scale if N is odd. Using {yk,} derived from 
{xk,} eliminates the concern regarding whether the 
total should end up being odd or even. 

Yet another pathological analysis error can occur. 
We first separate the variance into two nonoverlapped 
versions with odd and even indexes to emphasize that 
it is a sum of variances [see, for example, Jenkins 
and Watts, 19681: 

O+T) 2 "/2<6k+l  -yk)'> 

=1/2[<6*-T=-J 2 > -Tu)2>1 
(7) 

where the first term on the right is the odd-indexed 
deviates and the second term is  the even-indexed 
deviates. 

h(mAk) 

To go further, note that deviate requires a 
total interval of 2mAk  and  is centered at k. That is, 
y k  is derived from the interval spanning k-l to k, and 
y k+l_is derived from span k to k+ 1. So the location 
of Vyk+l  is centered at k and its information content 
spans 2mAk with odd indices at  k = 1,3,5.. . and 
even indices at k = 2,4,6.. . as shown in figure 2 
where m = 1. From this view, the localization of 
the odd and even marks of span 2Ak have a fixed 
phase relationship or phase difference of Ak 

- 
- 

corresponding to a half-period of a fundamental 
periodic change to which the deviate identifies and 
assigns an amplitude. Now consider AVAR as a 
power-law (constant-Q) spectral estimator [Allan, 
Weiss, Jespersen, 199 l]. For a frequency component 
in {yk) at f = 1/(27), the first term of the bottom 
expression of eq (7) detects an in-phase or 0" 
reference phase, and the second term detects an out- 
of-phase or 180" (relative to 0") phase. By 
inspection, there is a fundamental change at the same 
frequency f = 1/(27) which can go undetected in the 
interval, namely, one-quarter and three-quarter period 
(or 90" and 270" phase-shifted) changes. 

Deviations of a particular kind can go undetected in 
a 2mAk (or 27) interval using AVAR. From a 
spectral point of view, the usual finite estimation of 
the original Allan definition is problematic because of 
this. From a time domain viewpoint the problem is 
that deviates are zero if the average frequency of the 
first interval equals the average frequency of the 
second  which is true for an infinite set of even 
functions. The Allan statistic therefore has no 
response to any even function over the whole 
interval. As an example of the problem, hypothetical 
data are shown in figure 3 by the noisy plot over 
observation M. The statistic as described by eq (6) 
for M = 4Ak will have deviates made from mean 
values Y k  for segments k=  1, .  . . ,4. A linear fit is 
indicated by the solid-line segments plotted with 
slopes 0, +A/Ak,  -A/Ak, and 0 respectively. The 
resultant plot has even functional symmetry over M 
with 

y1 = y4 = 0 
yz = F,, = A/2. 

'k 
t 

Example of even symmetric function over  observation M 

Fig. 3 
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According to AVAR, the sample statistic of  eq (6), 
$(2Ak) = 0. Obviously, the variance is not really 
0 yet our estimate is 0. In this regard, determining 
and  removing a polynomial (particularly a  drift 
coefficient) over  the interval has  meaning  only  if the 
procedure is physically correct. Drift removal is 
model-dependent [Barnes, 19831. A popular  method 
involves  quantifying drift as an overall second- 
difference of {xkr} which,  when  removed, results in 
the usual sample  Allan  variance  being precisely 0 at 
the longest 7 [Weiss, Allan, Howe, 19921 [Weiss  and 
Hackman, 19921. 

We replace the Allan  two-sample function (which I 
will denote as "real"  or "in-phase") shown  in figure 
1 and  reproduced in figure 4(a) by a phase-shifted 
version  of  it to pick  up variations in  a phase- 
quadrature  component of the data over the marsest 
interval or longest scale of 7. This turns out to  be  a 
three-sample  sequence over each interval which is 
shown in figures 4(b) and 4(c) and  denoted as 
"imaginary" or "phase-quadrature" functions. The 
Allan  two-sample in-phase function has  odd 
functional symmetry  in the interval 27 as shown in 
figure 4(a) and  hence is suitably an "odd  sampling 
window function." The  three-sample  sequence  has 
even  symmetry in the same interval 27 as shown in 
figures 4(b) and 4(c) given by sequence 

* &k+3 - 6 k + ,  +yk+l) 'yk11 

where the average  frequency  is  taken over 7/2 rather 
than 7. 

Without loss eq (7) can  be rewritten as 

yk=Yk( tk-r /2 ,  f k ) ,  k=1,3,5 ... 

in which the variance  is still for scale 7 but where 
(y,} are average frequencies over 7/2 rather than 7. 

Modified in the form  of finite impulse  responses 
shown  in figure 4 and rewritten as a mean-square 
combination  of  an "in-phase" variance  and  "phase- 
quadrature"  variance gives 

where the average  frequency is taken  over 712. 

Another  variance  can  be  defined  from two variances 
of  orthogonal  in-phase  and  phase-quadrature 
elements.  This  formalism bears a similarity to the 
method  of  complex  demodulation  used in signal 
processing  [Bingham, Godfrey, and  Tukey, 19671. 
In this method, time-series data are assumed to 
contain periodicities and  viewed as consisting of 
separate real  and  imaginary parts; the variance is 
calculated for each part and the total is taken as 

where " E) " means power-added together. 
Functionally, the method of complex  demodulation is 
shown in figure 5. The real part is comprised  of 

sin (n m Ak) 

cos ( x  m Ak) 

Method of complex  demodulation 

Fig. 4 
Fig. 5 

deviates of the actual data (the in-phase  observation) 
and the k imaginary part are the deviates created  by 
shifting the observation  window by ViT (the phase- 

325 



quadrature observation). In  the  case  of  a first-order 
difference filter, we obtain impulse  responses 
precisely  as  shown in figure 4(a) for the real  part  and 
figures 4(b) and 4(c) for the  imaginary part. The 
sign of  the  imaginary  part  becomes unimportant as 
the deviates are squared. The imaginary  part  that  is 
outside the  actual data are wrapped; that is, h(M+k) 
= h(k). This is justified because one assumes  the 
measurement  is for periodic (sine and  cosine) 
functions which are in process, that is, unwindowed 
and periodically extended. 

The estimate to  eq  (9) is  an  equivalent description to 
an "in-phase" and "phase-quadrature'' discrete 
functional  component separation. Using  this method, 
the variance of  the even-symmetric function is 
computed  by  moving  the observation window by mf2, 
for the "phase-quadrature'' variance  and  adding this 
to  the "in-phase'' variance. This has  a  sample  statistic 
given by 

mz 

xl ,  x*,..  .xN with  wrap such that  xc = xCmodN for 
~<landq>N,i.e.,x,=~~+,whichreindexestox~ 
as  noted earlier. Shifting the data and  using  a  wrap 
simplifies the form of the sample variance  of eq (1 1) 
corresponding to  eq  (9)  [for a discussion of  wrapped 
data, see  Howe  and Percival, 1995; also  briefly  in 
Bloomfield, 19761. Equation (1 1) is  an  average  of 
variances whereas eq (10) implies  an RSS for 
orthogonal (sin vs. cos)  basis  functions or an RMS 
for random functions. Using simulation of  common 
power laws, the difference between  an  average  and 
RMS of variances turns out to be negligible  in 
practice. Returning to the  previously  mentioned 
hypothetical example and using eq (1 l),  the  result  is 
not 0 but rather 

HIGHER ORDER DIFFERENCES 

Given continuous function f(k) with  nth order 

derivative ( ~ d y k )  where "k" is  the  independent 

variable),  there are n derivatives for n  possible 
orders. Continuous function f(k) is  an  idealization; 
all  physical  measurements will sample f(k) in 
discrete, usually equispaced, increments Akk despite 
the fact  that  Akk  may be infinitesimally small. In all 
cases, therefore, we are representing f(k) as discrete 
continuous f(mAk)  which describes a  space- or time- 
ordered sampled function with nth order possible 
differences. The variance  is like an average of these 
squared differences. In  this case, there are not n, but 
always 2" independent  differences in the average for 
n orders. To preserve independence, the proper 
variance  is  therefore  the square root  of the sum  of 
squares  of 2" variances. To obtain stationary 
deviates, the order of differencing is usually quite 
small, frequently 1 or  2. This is  because the 
corresponding (high-pass) impulse response makes 
new  deviates which have a PSD which goes as f+*" 
for each order n. Hence  an f4 PSD would  need to 
be differenced only twice (order 2)  to realize white 
Gaussian noise. Similarly, many functions can be 
well  approximated on an interval  of  finite length by 
a  polynomial  of  low degree. For the simple high 
pass  first  difference (order l ) ,  there are 2' or two 
independent  sets  of differences and  the proper 
variance  is just the RMS of  the two variances from 
each  set  as  discussed  in  this paper. For the second 
difference (order 2), there are 2' or four independent 
sets  of differences, and so on. 

AN IMPROVED STATISTIC AT LONG TERM 

I construct  a sample variance (eq (11)) that  is  an 
average  of  variances  of separate in-phase  and  phase- 
quadrature deviates  (time-shifted  by m/2) and given 
by a procedure which wraps {xk'} or equivalently 
{Uk,}. This is  sufficient to avoid  a  potentially serious 
estimation error compared  to  traditional  AVAR  at 
long averaging times. Historically  the  Allan variance 
is  the composite variance of interest. It formally 
derives from the  standard  variance  (see eq  (2)).  We 
compute various things from finite data which are 
calculations  of  statistics (one being AVAR)  as 
estimators of  the  Allan variance. For a  set  of noise 
processes,  a  good estimator (1) has the same  mean  as 
the  variance  and (2) itself  has  a  low  variance.  A 
question  is  whether  the three-sample sequence 
introduced  in this paper when  combined with the 

dk 
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original AVAR implies a new definition having better 
confidence or is  a better estimate of the existing 
definition. Better statistical certainty usually derives 
from  more  degrees  of  freedom. An in-phase 
convolving  function (first term  of  eq (9)) is being 
combined  with  another  convolving  function  at  phase 
quadrature  (second term of  eq (9)). This is either an 
extension  of the historically used  two-sample  variance 
or is a different concept. 

We  can establish an  even better long-term estimator 
which  describes  and  hence predicts longer-term 
frequency stability from available measurements.  We 
can  average all possible N- l  sample variances, each 
time shifted by 70. For {yk,} = y ,..., yN-l,  this 
statistic is given by 

- - 

- - - - - -  
where { Y k , , , )  = Yj+l,_Yj+27...> YN-1 .  Y 1 ,  Y2...-,Yj 
are spaced by 70 and { y k'} is therefore wrapped  and 
reindexed by j .  (7k.j) are averages  implied  over 7 = 
m7,. Equation (3) can  be  combined into eq (12)  for 

- 

2 6torol in terms  of {xk'}. 

This statistic and its associated impulse  responses 
average the variances of all possible fractional 
frequency deviates. The  new statistic properly picks 
up  and  normalizes all functional variations at all 7 
scales, and  at the longest ones, namely as 7 + T/2. 
Its use is recommended for at least the longest four 
scales. 

SIMULATION WITH RANDOM WALK OF {xk, l  

Figure  6(a) shows 100 plots of calculations of the 

square root of ai,,(r> for 100 simulations  of 
random  walk  of  phase  modulation (RWPM). Equation 
(12) is the expression  used for these calculations and 
N = 1024 for each simulation. Each  of the simulation 
averages  of  two-sample  variances is equal to one. 
The  bottom plot is the 100-simulation total mean  and 
shows excellent agreement  with theory.  Figure  6(b) 
is the same  set of calculations using traditional square 
root of maximally-overlapped  AVAR.  We  see  that 
the spread in the estimates is greater using  AVAR 
instead  of the new statistic in figure  6(a) especially at 
7 = Ti2. The  new statistic is preferred  at  long 
averaging  times since it yields a  distribution which  is 
less skewed  and  which  is less susceptible to optimistic 
(sometimes  very optimistic) estimation errors. 
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tau tau 

Fig. 6(a) Fig. 6(b) 

Top: New statistic  (indicated as square  root  of TOTALVAR) 
calculated  for 100 RWPM simulations  with  unit  (two-sample) 
mean.  Note  the  reduced  skew  and  spread  in  the  response  for  long 
term  averaging  times  compared  to  traditional  square  root of 
maximally-overlapped AVAR shown at  right  at  the top of  figure 
6 @ ) .  
Bottom: Mean  of  the 100 simulations  using  square  root of 
TOTALVAR agrees  satisfactorily  with  theory. 

Top: For comparison,  traditional  square  root of maximally- 
overlapped AVAR is  calculated  for  the  same 100 RWPM 
simulations as used  at  left for  square  root  of TOTALVAR in  figure 
6(a).  Note  the  wider  skew  and  spread  for  long  term  averaging 
times  and  the  tendency  toward  an  optimistic  (sometimes  very 
optimistic)  response. 
Bottom: Mean of the 100 simulations  using  square  root of 
maximally-overlapped AVAR is shown. 
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