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An Extension of the Applicability

of Iterated Deferred Corrections

By Reinhard Frank, Joerg Hertling and Christoph W. Ueberhuber

Abstract.   A new way of estimating local discretization errors (based on an idea due to

P. E. Zadunaisky) is introduced.   If error estimates obtained by this method are used in

connection with the general class of iterated deferred correction algorithms, they lead to

an extension of the domain of applicability, when compared with the variants used by

Fox and Pereyra.

1. Introduction.   Iterated Deferred Correction (IDC) has been introduced by

Fox [2] and Pereyra (e.g. [10]-[13]) as a technique to accelerate the convergence

of finite difference schemes.  This procedure is based on estimating the local discreti-

zation error, and all implementations known to the authors (e.g. Pereyra [13], Lentini,

Pereyra [8], Daniel, Martin [1]) require an explicit knowledge of the asymptotic ex-

pansion of the local discretization error.  This severely restricts the range of applica-

tions of iterated deferred corrections; if the structure of the required asymptotic ex-

pansions is too complicated, an automatic deferred correction solver cannot be im-

plemented in a practicable manner.

In this paper we will present a new technique for obtaining estimates of the

local truncation error, which is based on an idea of P. E. Zadunaisky [15].  This

procedure does not require the explicit knowledge of the corresponding asymptotic

expansions.  So, even extremely involved expansions of the local discretization error

do not cause any difficulties for an automatic IDC-code which utilizes this estimation

procedure.   In Sections 2 and 3 we will develop and discuss in detail our variants of

the IDC.   Section 4 contains an asymptotic analysis (h —► 0), and the results of

numerical experiments are presented in Section 5.

2. Basic Ideas.  To outline our ideas we will use scalar two-point boundary-

value problems (BVPs) of the following form:

(2.1) y"=f(t,y,y'),   y(0) = A,   y(\) = B

with / sufficiently smooth.  This type of problem has been chosen because all "classi-

cal" implementations of deferred corrections are not immediately applicable to (2.1)

iff depends nonlinearly on y (cf. Pereyra [12]).  To apply standard IDC-codes it

would be necessary to transform (2.1) into a first-order system.   Such a transforma-

tion has the practical disadvantage of doubling the dimension of the system of non-

linear algebraic equations which has to be solved at each step of the IDC.   Using the

new variant of the IDC presented below, (2.1) may be solved without transforming it

into a first-order system.
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Our ideas may be applied to rather arbitrary types of operator equations; we will

use the two-point BVP (2.1) to explain the ideas and to analyze its asymptotic behavior:

Consider the "classical" second-order finite difference scheme:

(t,°_, - 277° + rj°v+x)lh2 = f(tv, v°v, (t,°+1 - t?»_,)/2A),       v = 1(1)« - 1,

(2.2)
T7°  = A T7°   = Br¡0 -A, T]n        D

with the solution-vector t,0 := (t?q, ... , 17°) which is an approximation to the exact solu-

tion/ of (2.1) at the (equidistant) gridpoints tv = v h, v— 0(1)«; h = \\n. If we knew

the exact local discretization error

lv-=(y(tv_x)-2y(tv)+y(tv+x))lh2

(2-3) -/(f., y(t„), (y(tv+x)-y(tv_x))/2h),

at every gridpoint tv we could obtain the vector 77 = (t?0, ... ,1J„, ...,!?„) = (y(0),... ,

y(tv),... ,y(\)) of the discretized exact solutiony(t) by solving the system

(*„_, - 2Vv + %+l)lh2 =f(tv, nv, (Vv+X -riv_x)/2h) + lv,    u=l(l)n - 1,

(2.4)
T70 =A,     T]„ = B.

The well-known idea of IDC consists in using 77o in order to obtain an estimate I1 :=

(/},... ,l„_x) of the local discretization error /:=(/,,...,/„_,) and in solving

(2 5)   (1»i-i-2,»i+1'i+iWh2ss^,»í¿.(»íí+i-nÍ_i)/2*)+C.   ^»KiK-i,

nl = A.    T,» = s

to obtain the improved numerical solution T71 := (t7¿, ..., 77^). This idea may be used in

an iterative fashion: The estimates of the local truncation error I2,13,... ,1',... which

are needed to compute the approximate solutions T72, T73,..., 17/,... are obtained from

T71, r?2, ... , rj~1, ... , respectively.

We will now describe our method for obtaining the quantities /¿:

Consider a fixed gridpoint f„, and let tß, ... , tv_x, tv+ x, ... , tß + m. be mj

adjacent gridpoints.   Define the polynomial P¿ of degree m- which interpolates to

77'- ' at the points ?„,..., tß + m.:

(2.6) Pl(tK) = ni-\     K = p(l)p + mr

We use P'v in order to define the following new BVP

y" =f(t, y, y') + (P'v)"(t) -f(t, pfr), (P'v)'(t)),

y(0)=Pl(0),   y(\) = Pi(\)

whose exact solution is P'v.  Since the values 77^" ' are (assumed to be) good approxi-

mations to y(tK), we may expect that PÍ(t), (PÍ)'(t) and (P'v)"(t) approximate y(t),

y'(t) and y"(t), respectively, on [tß, tß + m.].  Outside of [tß, tß + m.] the polynomial

P'v(f) may differ significantly from y(t).  Therefore, we could think of (2.7) as a

"local neighboring problem" for (2.1).   Since we know the exact solution of the BVP

(2.7) we have the exact local discretization error Vv of (2.7) at the gridpoint t   at our
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disposal.  The "local proximity" of (2.1) and (2.7) near tv suggests to use the known

local discretization error /J as an estimate for the unknown discretization error lv.

The idea of constructing a "neighboring problem" with known solution (using

the results of a numerical method applied in advance) and to obtain error estimates via

the numerical solution of this "neighboring problem" is due to Zadunaisky [15].  He

used this idea to estimate the global discretization error of Runge-Kutta methods.  The

proposal to use this idea iteratively may be found in Stetter [14].   An asymptotic

analysis (h —>Q) of such an iterative procedure (based on global error estimates) has

been given by Frank [4] and Frank, Ueberhuber [6].   In these papers the method has

been called Iterated Defect Correction (IDeC).   According to this course of develop-

ment, the above scheme (i.e. our special variant of the IDC) may be considered as a

"local variant" of the IDeC.

3.   Algorithmic Details.  We now describe some practical details of the procedure

introduced in Section 2.  An essential point of our method is the construction of

"local neighboring problems" (cf. (2.7)) with known solution.

Since the local discretization error of such a problem, at the point r„, is

iÍ=irl(t»-l)-u>Í(tv)+HVv+i)]lh2

(3.1) - [A'v H(K), Ä+1)-^-i))/2«)

+ (PÍ)"(tv)-f(tv,PÍ(tl/),(PÍ)'(tv))],

only the values (P'v)'(tv) and (P'v)"(tv) are needed for an implementation [the required

values of 4 are given by P'v(tv_x) = v'vZ\, P[(tv) = vi~1, P'v(tv+X) = vÍ+\]-  There-

fore, it is not necessary to set up the polynomials P'v explicitly.   It suffices to calculate

the quantities (!"„)'(tv) and (P'v)"(tv) by forming weighted sums

(p>)'(tv) = amiK'^lr1 + • • • + Kfnkl.f.

(p>)"(tv) = (iih2)[v^virl + •■• + rmy-:m¿,

where the superscript v - p of the weights denotes their dependence on the relative

position of tv with respect to the interval [tß, tß + m .] (cf. (2.6)).

Of the many different ways to choose [t    t +m.] around f„ we mention only

two possibilities:

(a) For even values of m, (= 2r.) we might choose [tß, tß + m .] symmetrically

around tv: [tv_r„ tv+r.].   In order to use symmetric intervals near the boundaries the

well-known trick devised by Fox (e.g. Fox [2, pp. 69-71], Keller [7]), may be

applied.   The idea is simply to compute auxiliary values t)'~. , r}'S2 , ■ • •'. r?n+'i >

vh + 2 > • ■ • at points exterior to [0, 1 ], provided that we do not approach a possible

singularity too closely.  To use the symmetric intervals [tv_rt> tv+r] around tv means

that there is exactly one local neighboring problem (2.7) for every gridpoint tv, i.e.

K-rf tu+rj\ is moving along [0,1].

(b) If h is a multiple of m, (n = s,m) for all IDC-steps /, the interval [0, 1] is

subdivided into intervals [0, tm .], [tm ., t2m .],..., [*/,._ X)m., 1] ■ In this case only

one local neighboring problem is defined on every subinterval. For tv G (t,¡_x\m ., t¡m.]
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the respective problem (2.7) is defined by means of the polynomial Pj, which inter-

polates tl[íí.i)m .,■■-, vim1-  m contrast to (a) no trick has to be applied near the

boundaries tQ = 0 and tn = 1.

Concerning the differentiation weights, one preferably uses variant (a) since

only one set of weights (i.e. WJfM = WuK~("~ri} = W"J, and V"J, k = 0(1)/«,.) is needed.

In contrast to the IDeC based on global error estimates (outlined in Frank [4] ),

where a constant degree of the interpolating polynomials (for the different steps of

the IDeC) is an essential feature of the method, it is advisable in our variant of the

IDC to use increasing degrees of the interpolating polynomials: mx < m2 < m3 <• • •.

For example, a reasonable choice would be m. = 2/ + 2. Further details of the imple-

mentation of IDC-schemes (e.g. mesh selection algorithms, stopping criteria,...) will not

be discussed here, but we refer the reader to Lentini, Pereyra [8] and Daniel, Martin [1].

4. Asymptotic Behavior. An extensive asymptotic analysis of the IDC-methods

applied to operator equations has been given by Pereyra [11]. Since our variant is a

member of the general class of IDC-methods considered there, we can use the results of

Pereyra (cf. Theorem 3.2 and Theorem 3.3 of Pereyra [11]).

We restrict our considerations to problem (2.1) and assume an IDC-method as

described in Section 3:  We consider interpolating polynomials with increasing degree

m, = 2/ + 2 located symmetrically to tv (version (a) of Section 3). To prove the existence

of asymptotic expansions it is essential to use a fixed formula over the whole interval

[0, 1 ]. Therefore, we use the extension technique of Fox near the boundaries, i.e. values

77¿ are computed on intervals I'h with 1% D l£ D • • • D /¿max = [0, 1], where the size

of these intervals is determined by the stepsize h and the intended maximum number of

iterations /max.   As the following theorem is concerned with asymptotic results

(h —*0) we will choose the intervals (for theoretical reasons only) as being independ-

ent of h.  If «0 denotes the largest stepsize considered, we choose /' := Vn   D In. As

a result of this assumption, we use redundant values 77^ at gridpoints tv with tv G I1

but tvtf.Vh, which are irrelevant for practical implementations.

Theorem 3.2 of Pereyra [11] reads now:

Theorem 4.1.  From the inductive assumption

(4.1) r?'"1 -y(tv) = h2¡ei2¡\tv) + h2^2ei2j\2(tv) + • • • + h2Je¡-/(tv) + Rv

with Rv = 0(h2J+2) on I'~l, it follows that

(4.2) 4-yitv) = A2/+V2/+2(>„) + h2i+4e>2j+4(tv) + ■■■+ h2J-2e2J_2(tv) + R\

with Rv = 0(h2J) on V.

Proof.   The assertion (4.2) is identical with (3.9) of Theorem 3.2 of Pereyra [11].

Therefore, we only have to show that the hypotheses of this theorem hold for our

special case, as in particular we need to verify the assumption (3.4) of Lemma 3.1

(Pereyra [11]).

Our error-estimation procedure determines completely the operators S- intro-

duced by Pereyra (cf. (3.1) of Pereyra [11]).  The i>th component [Sj(r¡)]v of S- for

a given argument 77 = (77_p,... ,t?0,... , t?„, ... ,7?„,... ,v„ + p) is defined as
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[Sftd] v := [Pv(tv_x) - 2Pv(tv) + Pv(tv+ ,)] lh2

(4.3) - f<fv W> lPv(tv+i) - PvVv-i)} /2«)

-P'¿{tv)+f{tv,Pv(tv),P'v(tv)),

where Pv is the polynomial (of degree 2/ + 2) defined by

pv(tK) = nK,    K = p-i-i(i)p+f+i.

Note.   The components 77_p, ... , i?_x ; i\n+ x, ... , r¡n+p correspond to the

gridpoints outside of [0, 1], which are necessary to enable a uniform definition of

[Sj(v)] v f°r an relevant values of v according to Fox's device (cf. Section 3 and the

remarks preceding Theorem 4.1).  p decreases with increasing/; and therefore, the

dimension of the vector 5,(t?) is smaller than the dimension of the vector 77.

In (3.4) of [11] the operators 5;. are applied to the vectors 77 = iphy := (y(- ph),

... , y(0), ... , y(tv), ... , y(l), ... ,y(\ + ph)), where y(t) is the solution of problem

(2.1).  The polynomials P* defined by

P*(tK)=y(tKl      K = v-j-l(l)v+j+ 1,

satisfy

[(dl/dti)p;](tv)

(4.4) = [(d'/dñy] (tv) + const h2s [(dr/df)y] (f„)

+ const «2s+2 [(dr+2/dtr+2)y)(tv) + •■• + 0(h2J),

where

s := (j + 2) - i/2, r : = 2/ + 4    if/ is even,

(4.5)
s := (/ + 2) - (i + l)/2,      r:=2/ + 3    if/is odd.

[Sj(<P„y)]v may De expanded as

\SjbPhy)] v = [/"„Vi)- 2p:(0 + P*(tv+i)] I"2

- f(tv, P*(tv), [P*v(tv+X) -P*(r„_,)]I2h)

- (p:r(tv)+m, p*(tv), (p*y(tv))

= (2h2/4\)(P*)lv(tv) + (2hV6\)(P*)vl(tv)

+-f(tv, P*(tv), (P*)'(tv) + (h2ß^P*)"\tv) + ■ • •)

(4.6)
+ f(tv,P*(tv),(P*)'(tv))

= (2h2m(P*)W(tv) + (2h*l6\)(PÏ)y\tv)

+-const h%.(tv, P*(tv), (P*y(tp)YP*)m(tv)

- h4 [const fy,(tv, P*(tv), (P*)'(tv))(P*)v(tv)

+ const fyr(tv, P*v(tv), (Pt)'(fvMP*y"(-0)^

-h6[—-]-+ 0(h2J).
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Using P*(tv) = y(tv), substituting (4.4) into (4.6), applying further Taylor expansions

and reordering the terms of the resulting expression according to powers of h, we ex-

plicitly obtain the operators F- and tjX of (3.4) in Pereyra [11].  After forming

Fre'chet-derivatives, the desired relation (3.4) of Pereyra [11] is verified.    D

Note.   An alternative proof of this theorem is given in Frank, Hertling, Ueber-

huber [5] for problems of the type y" = f(t, y).  The generalization to problems (2.1)

is straightforward.

5. Numerical Results.  The technique described above has been applied to a num-

ber of test problems.  Here we only show the application to the following simple test

problem (equation of the catenary)

y" = Vi+(/)2,

(5.1) y(- l) = cosh(- l),

y(l) = cosh(l),

with the solution y = cosh(r).  The error estimates at the boundaries were obtained by

using auxiliary points outside of [- 1, 1] (cf. Section 3); the degrees of the polyno-

mials/^ were m. = 2/ + 2. Stepsizes h = 1/4 and « = 1/8 have been used.   The results

Table 1

Absolute errors for problem (5.1)

i « i

j =   2

j = 3

j = 4

j ■ 5

min.

mean

max.

min.

mean

max.

min.

mean

max.

min.

mean

max.

min.

mean

max.

min.

mean

max.

1/4

9.80 -4

1.75 -3

2.38 -3

1.43 -5

2.53 -5

3.42 -5

2.03 -7

3.19 -7

3.96 -7

2.06 -10

2.54 -9

3.89 -9

3.82

2.01

3.39

-11

-10

-10

1.55 -11

3.55 -11

6.25 -11

1/8

1.27 -4

4.11 -4

5.92  -4

4.55 -7

1.46 -6

2.10  -6

1.67 -9

4.63 -9

6.15  -9

1.66 -12

9.38 -12

1.48 -11

6.39 -14

1.73 -13

3.06 -13

9.95 -14

3.67 -13

5.33 -13
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Table 2

Absolute errors and orders of convergence for

problem (5.1) at the gridpoint t = 0.  (The

symbol * denotes the fact that machine

accuracy has been reached).

j = o

abs.error

order

j = 1

abs.error

order

3 = 2

abs.error

order

j = 3

abs.error

order

j = t

abs.error

order

j = 5

abs.error

order

h  =  1/4 h  =  1/í

2.38  -3

3.42  -5

3.96  -7

2.06 -10

3.39 -10

5.04 -11

2.01

4.03

6.01

6.96

11.37

6.56

5.92  -4

2.10  -6

6.15  -9

1.66 -12

1.28 -13*

5.33 -13*

of this section were obtained with a FORTRAN implementation on the CDC Cyber

74 at the Technical University of Vienna in single precision (48-bit mantissa).

In Table 1 we present a summary of the absolute errors obtained on an equi-

distant grid.  Table 2 contains the absolute errors at the point r = 0 for both step-

sizes and the numerically calculated orders.  Compare these orders with the orders

2, 4, 6, 8, 10, 12 which are theoretically to be expected.

Results obtained from other test problems, supported our theoretical considera-

tions in a similar way.

6. Conclusion.   A new variant of the well-known Iterated Deferred Correction

(IDC) methods has been presented in this paper.   In contrast to all IDC-methods

implemented so far, this new variant is not based on the explicit knowledge of the

asymptotic expansion of the local discretization error.  Consequently, it is suitable for

operator equations where this requirement presents difficulties to conventional imple-
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mentations of IDC-methods.   But problems of that type could also be solved with

Iterated Defect Correction (IDeC) methods (e.g. Frank [4], Frank, Ueberhuber [6] ).

For example, BVPs of the type y" = f(t, y, y') have been solved successfully with both

methods: the IDeC and the new variant of the IDC, discussed in this paper.

The question arises then of when should one prefer one algorithm or the other.

The advantage of all IDC-methods (compared with IDeC-methods) lies in the

possibility to increase the order of convergence of the scheme without limitations (at

least theoretically) in the course of the procedure, whereas the IDeC-methods assume

an a priori choice of the maximum attainable order of convergence (because polyno-

mials of a fixed degree have to be used). A second advantage of deferred corrections is

that it preserves the structure of the Jacobians (e.g. tridiagonal matrices for problem

(2.1)).   If the IDeC is applied to second-order problems, difficulties arise at those

points where different interpolating polynomials join.  This fact may sometimes lead to

a perturbed structure of the Jacobian (e.g. for problem (2.1) the tridiagonal form of

the Jacobian is slightly perturbed by elements which increase the bandwidth).

From these remarks no conclusive decision may be drawn on which method is

preferable for a given problem.   Insights, necessary for such a decision, could only be

gained in a large-scale test-study which should also include the new method of B.

Lindberg which has recently been brought to our attention (cf. Lindberg [9]).  This

method may also be considered as a variant of IDC.
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