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Abstract
In this paper, a general Blinder-Oaxaca decomposition is derived that can also
be applied to non-linear models, which allows the differences in a non-linear
outcome variable between two groups to be decomposed into a part that is ex-
plained by differences in observed characteristics and a part attributable to
differences in the estimated coeffcients. Departing from this general model,
we show how it can be applied to different models with discrete and limited
dependent variables.
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1 Introduction

The decomposition method developed by Blinder (1973) and Oaxaca (1973) and

generalized by Juhn, Murphy, and Pierce (1991), Neumark (1988) and Oaxaca and

Ransom (1988, 1994) is a very popular descriptive tool in empirical economics, since

it allows the decomposition of outcome variables between two groups into a part

that is explained by differences in observed characteristics and a part attributable

to differences in the returns to these characteristics. So far, these decomposition

methods have mainly been applied in the context of linear regression models. In

many cases, however, the outcome variable is non-linear, requiring the estimation

of non-linear models because OLS yields inconsistent parameter estimates and in

turn misleading decomposition results. In particular, since the parameter estimates

of non-linear models typically differ from the marginal effects of the latent outcome

variable, they cannot be used to perform a standard Blinder-Oaxaca decomposition.

A decomposition method for models with binary dependent variables has been

developed by Fairlie (1999, 2003). In this paper, we generalize the Blinder-Oaxaca

decomposition method to other non-linear models. Based on this generalized de-

composition, we than demonstrate how the Blinder-Oaxaca decomposition can be

applied to models with discrete and limited dependent variables.

2 An Extension of the Blinder-Oaxaca Decompo-

sition to Non-linear Models

Consider the following linear regression model, which is estimated separately for the

groups g = (A,B),

Yig = Xigβg + εig,

for i = 1, ..., Ng, and
∑

g Ng = N . For these models, Blinder (1973) and Oaxaca

(1973) propose the decomposition

Y A − Y B = ∆OLS = (XA − XB)β̂A + XB(β̂A − β̂B), (1)

where Y g = N−1
g

∑Ng

i=1 Yig and Xg = N−1
g

∑Ng

i=1 Xig. The first term on the right

hand side of equation (1) displays the difference in the outcome variable between
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the two groups due to differences in observable characteristics, whereas the second

term shows the differential that is due to differences in coefficient estimates.

A decomposition of the outcome variable similar to equation (1) is not appro-

priate in the non-linear (NL) case, because the conditional expectations E(Yig|Xig)

may differ from Xgβ̂g. For that reason, the decomposition of the mean difference of

Yi between the two groups has to be considered:

∆NL
A = [EβA

(YiA|XiA) − EβA
(YiB|XiB)] + [EβA

(YiB|XiB) − EβB
(YiB|XiB)] , (2)

where Eβg(Yig|Xig) refers to the conditional expectation of Yig and Eβg(Yih|Xih)

to the conditional expectation of Yih evaluated at the parameter vector βg, with

g, h = (A,B) and g �= h. Changing the reference group, an alternative expression

for the decomposition is

∆NL
B = [EβB

(YiA|XiA) − EβB
(YiB|XiB)] + [EβA

(YiA|XiA) − EβB
(YiA|XiA)] . (3)

In both equations, the first term on the right hand side again displays the part of the

differential in the outcome variable between the two groups that is due to differences

in the covariates Xig, and the second term the part of the differential in Yig that

is due to differences in coefficients. To apply this decomposition to different non-

linear models, one just has to derive the respective sample counterparts S(β̂g,Xig)

and S(β̂h,Xig) of the conditional expectations Eβg(Yig|Xig) and Eβh
(Yig|Xig) for

g, h = (A,B) and g �= h. The following section illustrates the application of equation

(2) for different models with discrete and limited dependent variables. An estimation

of the corresponding components of equation (3) is straightforward. Note that this

decomposition shares all problems of the original Blinder-Oaxaca decomposition,

such as, e.g., a potential sensitivity of the results with respect to the choice of the

reference group and the specification of the regression model.

3 Discrete Dependent Variable Models

3.1 Logit and Probit Models

Discrete dependent variable models comprise binary and ordered Logit and Probit

models as well as models for count data. Because binary Logit and Probit models
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may be considered as a special case of ordered Logit and Probit models, the decom-

position method for binary dependent variables proposed by Fairlie (1999, 2003)

represents a special case of the Blinder-Oaxaca decomposition for ordered choice

models. Ordered Logit and Probit models (O) are frequently used as a framework

for analyzing outcomes of opinion surveys. These models are based on a latent

regression of the form

Y ∗
ig = Xigβ

O
g + εO

ig,

where Y ∗
ig is unobserved. Instead of Y ∗

ig, only the following realizations are observed:

Yig = 0 if Y ∗
ig ≤ 0,

= 1 if 0 < Y ∗
ig ≤ µ1,

= 2 if µ1 < Y ∗
ig ≤ µ2,

. . .

= J if µJ−1 ≤ Y ∗
ig,

where the µ’s are unknown parameters to be estimated together with the coefficients

βO
g . The conditional expectation of Yig evaluated at the parameter vector βO

g can

be written as

EβO
g
(Yig|Xig) = F (µ1 − Xigβ

O
g ) − F (−Xigβ

O
g )

+ 2[F (µ2 − Xigβ
O
g ) − F (µ1 − Xigβ

O
g )]

+ ...

+ J [1 − F (µJ−1 − Xigβ
O
g )].

Assuming that the error term εO
ig is normally distributed across observations leads to

the ordered Probit model, where F (·) is defined as the cumulative standard normal

distribution Φ(·). The Logit model is obtained when the error term εO
ig is assumed

to follow a logistic distribution, i.e. when F (·) represents a cumulative logistic

distribution Λ(·).
Given the estimates of the parameter vector βO

g , the sample counterparts of the
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single components of the decomposition equation can be calculated by

S(β̂O
g ,Xig) = N−1

N∑
i=1

{
[F (µ̂1 − Xigβ̂

O
g ) − F (−Xigβ̂

O
g )]

+ 2[F (µ̂2 − Xigβ̂
O
g ) − F (µ̂1 − Xigβ̂

O
g )]

+ . . .

+ J [1 − F (µ̂J−1 − Xigβ̂
O
g )]

}
.

The sample counterpart of EβO
h
(Yig|Xig), S(β̂O

h ,Xig), is obtained by just replacing

β̂O
g with β̂O

h in the above equation.1 These sample counterparts can then be used to

calculate the single parts of the decomposition equation (2) as

∆̂O =
[
S(β̂O

A ,XiA) − S(β̂O
A ,XiB)

]
+

[
S(β̂O

A ,XiB) − S(β̂O
B ,XiB)

]
.

The Blinder-Oaxaca decomposition for ordered choice models reduces to the decom-

position method for binary choice models if J = 1.

3.2 Count Data Models

The Poisson regression model (P), which has been widely used to study count data,

assumes that the dependent variable Yig conditional on the covariates Xig is Poisson

distributed with density

f(Yig|Xig) =
exp(−µig)µ

Yig

ig

Yig!
, Yig = 0, 1, 2, ...

and conditional expectation

E(Yig|Xig) = µig = exp(Xigβ
P
g ).

The sample counterpart of EβP
g
(Yig|Xig) which is necessary to estimate the decom-

position equation is given by

S(β̂P
g ,Xig) = Y g,β̂P

g
=

1

Ng

Ng∑
i=1

exp(Xigβ̂
P
g ).

1Because the calculation of S(β̂h,Xig) is straightforward, we will present just the calculation

of S(β̂g,Xig) in the remainder of the paper.
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A well-known problem of the Poisson-model is the assumption that the dependent

variable has the same mean and variance µig = exp(Xigβ
P
g ). If this assumption is

violated, an alternative conditional distribution of the dependent variable needs to be

specified that permits a more flexible specification of the variance of the dependent

variable. The negative binomial (Negbin) regression model (NB) represents such

an alternative. The Negbin regression model relaxes the assumption of equality of

the conditional mean and the variance of the dependent variable while assuming

the same form of the conditional mean as the Poisson-model. Hence, the sample

counterpart of the conditional mean of the Negbin regression model is

S(β̂NB
g ,Xig) = Y g,β̂NB

g
=

1

Ng

Ng∑
i=1

exp(Xigβ̂
NB
g ).

Different to the Poisson model, the Negbin model assumes a quadratic relationship

between the variance and the mean, i.e.

V (Yig|Xig) = µig + αµ2
ig.

where α is a scalar parameter to be estimated together with βNB
g .

In addition to the Poisson and Negbin regression models, zero-inflated models

are frequently used when analyzing count data. These models take into account that

real-life data may contain excess zeros, causing a higher probability of zero values

than is consistent with the Poisson and negative binomial distribution. In this case

it could be assumed that zeros and positive values do not come from the same data

generating process (Winkelmann 2000).

In order to investigate the probability of excess zeros, Lambert (1992) proposed

a zero-inflated Poisson model, that allows for two different data generating regimes:

the outcome of regime 1 (R1) is always zero, whereas the outcome of regime 2 (R2)

is generated by a poisson process. In this model, the unconditional expectation of

the dependent variable consists of the conditional probability of observing regime 2

and the conditional expectation of the zero-truncated density:

E(Yig|Xig) = (1 − Pr(R1|Xig))E(Yig|R2,Xig). (4)

Lambert (1992) specifies the conditional probability of regime 1, that always leads
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to a zero outcome, as a Logit model:

Pr(R1|Xig) =
exp(Zigγg)

1 + exp(Zigγg)
,

where Zig contains the covariates of the conditional probability of excess zeros and γg

is the parameter vector to be estimated. The unconditional mean of the dependent

variable specified by equation (4) can then be estimated for the zero-inflated Poisson

and the zero-inflated Negbin model by

S(β̂j
g ,Xig) =

1

Ng

Ng∑
i=1

(1 − (P̂ r(R1)|Xig))µ̂ig =
1

Ng

Ng∑
i=1

exp(Xigβ̂
j
g)

1 + exp(Zigγ̂
j
g)

,

for j = ZIP, ZINB.

Hurdle models represent another modification of count data models. The hurdle

model can be interpreted as a two-part model, where the first part is a binary out-

come model, and the second part a truncated count data model. The unconditional

mean of the dependent variable in these models is given by:

E(Yig|Xig) = Pr(Yig > 0|Xig)E(Yig|Yig > 0,Xig).

According to Cameron and Trivedi (1998) the conditional expected values of Yig of

the hurdle Poisson (HP) and the hurdle Negbin (HNB) model are given by

E(Yig|Yig > 0,Xig) =
exp(Xigβ

HP
g )

1 − exp(− exp(XigβHP
g ))

and

E(Yig|Yig > 0,Xig) =
exp(Xigβ

HNB
g )

1 − (1 + α exp(XigβHNB
g ))−

1
α

,

respectively. Assuming a logistic distribution for the underlying zero generating

process, the unconditional expected values can be estimated by

S(β̂HP
g ,Xig) =

1

Ng

Ng∑
i=1

exp(Xigβ̂
HP
g )

(1 − exp(− exp(Xigβ̂HP
g )))(1 + exp(Zigγ̂HP

g ))

and

S(β̂HNB
g ,Xig) =

1

Ng

Ng∑
i=1

exp(Xigβ̂
HNB
g )

(1 − (1 + α exp(Xigβ̂HNB
g ))−

1
α )(1 + exp(Zigγ̂HNB

g ))
.
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4 Limited Dependent Variable Models

4.1 Tobit Models

Limited dependent variable models comprise truncated regression models and mod-

els for censored and corner solution outcome variables. Technically, censored and

corner solution outcome variables may be described appropriately by a Tobit model

(Wooldridge 2002). While censored outcome variables are not observable for a part

of the population (such as top-coded wage information or preferred labor supply),

corner solution outcome variables take on the value zero with positive probability

but represent a continuous random variable over strictly positive values (such as

actual labor supply). In the Tobit model (TB), the dependent variable takes on

the values a1 and a2 with positive probability and represents a continuous random

variable over values between a1 and a2, i.e.

Y ∗
ig = Xigβ

TB
g + εTB

ig ,

Yig = a1 if Y ∗
ig ≤ a1

Yig = a2 if Y ∗
ig ≥ a2

Yig = Y ∗
ig = Xigβ

TB
g + εTB

ig if a1 < Y ∗
ig < a2,

εig ∼ N(0, (σTB
g )2).

If one is interested in the marginal effects of a latent censored outcome variable,

the strategy would be to use the Tobit estimator in the standard Blinder-Oaxaca

decomposition depicted in equation (1). However, the conventional decomposition

method leads to erroneous predictions of the components of the decomposition equa-

tion if we aim at analyzing the observable corner solution outcome variable Yig. In

this case, an alternative decomposition method must be applied.

Assuming homoscedastic and normal distributed error terms εTB
ig , the uncondi-

tional expectation of Yig given Xig consists of the conditional expectations of Yig,

weighted by the respective probabilities of observing a1, a2, or a value between a1
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and a2, i.e.

E(Yig|Xig) = a1Φ1(β
TB
g ,Xg, σ

TB
g ) + a2Φ2(β

TB
g ,Xg, σ

TB
g )

+ Λ(βTB
g ,Xg, σ

TB
g )

[
Xigβ

TB
g + σTB

g

λ(βTB
g ,Xg, σ

TB
g )

Λ(βTB
g ,Xg, σTB

g )

]
. (5)

where

Λ(βTB
g ,Xg, σ

TB
g ) = 1 − Φ[(σTB

g )−1(a1 − Xigβ
TB
g )] − Φ[(σTB

g )−1(a2 − Xigβ
TB
g )]

and

λ(βTB
g ,Xg, σ

TB
g ) = φ[(σTB

g )−1(a1 − Xigβ
TB
g )] − φ[(σTB

g )−1(a2 − Xigβ
TB
g )].

φ(·) represents the standard normal density function.

Equation (5) shows that a decomposition of the outcome variable similar to equa-

tion (2) is not appropriate for censored outcome variables, because the conditional

expectations E(Yig|Xig) in the Tobit model depend on the variance of the error

term σTB
g . Even though the ancillary parameter σTB

g does not affect the sign of the

marginal effects, it affects their magnitudes and therefore becomes important for the

decomposition. Depending on which σTB
g is used in the counterfactual parts of the

decomposition equation, several possibilities of decomposing the mean difference of

Yi between the two groups can be derived. Two possibilities are

∆TB
AB =

[
EβTB

A ,σTB
A

(YiA|XiA) − EβTB
A ,σTB

B
(YiB|XiB)

]
+

[
EβTB

A ,σTB
B

(YiB|XiB) − EβTB
B ,σTB

B
(YiB|XiB)

]
, (6)

and

∆TB
AA =

[
EβTB

A ,σTB
A

(YiA|XiA) − EβTB
A ,σTB

A
(YiB|XiB)

]
+

[
EβTB

A ,σTB
A

(YiB|XiB) − EβTB
B ,σTB

B
(YiB|XiB)

]
, (7)

where EβTB
g ,σTB

g
(Yig|Xig) now refers to the unconditional expectation of Yig evaluated

at the parameter vector βTB
g and the error variance σTB

g . In both equations, the

first term on the right hand side displays the part of the differential in the outcome

variable between the two groups that is due to differences in the covariates Xig,
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and the second term the part of the differential in Yig that is due to differences in

coefficients.

The two versions of the decomposition equation differ from each other as soon

as large differences in the variance of the error term between the two groups exist.

Note however, that the decomposition using σTB
B to calculate the counterfactual

parts, as in equation (6), is more comparable to the OLS decomposition described

in equation (1), since the counterfactual parts differ from EβTB
B ,σTB

B
(YiB|XiB) only

by using the parameter vector for group A, βTB
A , rather than by using the parameter

vector and the error variance for group A in the alternative decomposition described

in equation (7).

Using the sample counterpart of equation (5),

S(β̂TB
g ,Xig, σ̂

TB
g ) = N−1

N∑
i=1

a1Φ1(β̂
TB
g ,Xg, σ̂

TB
g ) + a2Φ2(β̂

TB
g ,Xg, σ̂

TB
g )

+ Λ(β̂TB
g ,Xig, σ̂

TB
g )

[
Xigβ̂

TB
g + σ̂TB

g

λ(β̂TB
g ,Xig, σ̂

TB
g )

Λ(β̂TB
g ,Xig, σ̂TB

g )

]
,

equation (6) can be estimated by

∆̂TB
AB =

[
S(β̂TB

A ,XiA, σ̂TB
A ) − S(β̂TB

A ,XiB, σ̂TB
B )

]
(8)

+
[
S(β̂TB

A ,XiB, σ̂TB
B ) − S(β̂TB

B ,XiB, σ̂TB
B )

]
.

Similarly, equation (7) can be estimated by

∆̂TB
AA =

[
S(β̂TB

A ,XiA, σ̂TB
A ) − S(β̂TB

A ,XiB, σ̂TB
A )

]
(9)

+
[
S(β̂TB

A ,XiB, σ̂TB
A ) − S(β̂TB

B ,XiB, σ̂TB
B )

]
If the dependent variable is not truncated, i.e. if a1 → −∞ and a2 → ∞, equa-

tions (6) and (7) reduce to the original Blinder-Oaxaca decomposition described in

equation (1).

4.2 Truncated Regression Models

The results derived for the Tobit model can be easily transferred to a truncated

regression model of the form

Yig = Xigβ
TR
g + εTR

ig ,
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where the dependent variable is truncated at a lower limit a1 and a higher limit

a2. The error terms εTR
ig are assumed to be homoscedastic and distributed normally

with mean zero and variance (σTR
g )2. Consequently,

Yig|Xig ∼ N(Xigβ
TR
g , (σTR

g )2).

In this model, the unconditional expectation of Yig given Xig consists of the condi-

tional expectation of Yig weighted with the probability of observing a value between

a1 and a2:

EβTR
g ,σTR

g
(Yig|Xig) = Λ(βTR

g ,Xg, σ
TR
g )

[
Xigβ

TR
g + σTR

g

λ(βTR
g ,Xg, σ

TR
g )

Λ(βTR
g ,Xg, σTR

g )

]
.

Consequently, similar to equations (8) and (9), the components of the decomposition

equation of the truncated regression model can be estimated by using the sample

counterpart of the unconditional expectation:

S(β̂TR
g ,Xig, σ̂

TR
g ) = N−1

N∑
i=1

Λ(β̂TR
g ,Xig, σ̂

TR
g ) ×[

Xigβ̂
TR
g + σ̂TR

g

λ(β̂TR
g ,Xig, σ̂

TR
g )

Λ(β̂TR
g ,Xig, σ̂TR

g )

]
.

5 Conclusion

In this paper, the decomposition method proposed by Blinder (1973) and Oaxaca

(1973) is extended to non-linear models. The extension of the conventional de-

composition method permits a decomposition of differences in a non-linear outcome

variable between two groups into a part that may be explained by differences in ob-

served characteristics and a part that is attributable to differences in the estimated

coefficients.

The paper illustrates how the Blinder-Oaxaca decomposition can be applied

to models with discrete and limited dependent variables. In particular, a Blinder-

Oaxaca decomposition method for ordered Logit and Probit models is derived which

represents a generalization of the decomposition method for binary Logit and Probit

models proposed by Fairlie (1999, 2003). Moreover, the Blinder-Oaxaca decompo-

sition is applied to count data models, including Poisson and Negative Binomial
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models, zero-inflated Poisson and Negative Binomial models as well as Hurdle Pois-

son and Negative Binomial Models. An empirical application of the decomposition

method for count data models is provided by Bauer, Göhlmann, and Sinning (2006).

Finally, the Blinder-Oaxaca decomposition is extended to truncated regression and

Tobit models, where the latter has been used by Bauer and Sinning (2005) to analyze

differences in the savings behavior between natives and immigrants in Germany.
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